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Abstract—This paper proposes the concept of Ahead-Me Cov-
erage (AMC) aiming to get the coverage of a cellular network
ahead of the mobile users for maintaining enhanced Quality-
of-Service (QoS) in cellular-connected unmanned aerial vehicle
(UAV) networks. In such networks, each base station (BS) with an
intelligent logic can automatically tilt the direction of its radio
antennas based on the trajectory of UAVs. For this purpose,
we first formulate AMC as an integer optimization problem
for maximizing the minimum transmission rate of UAVs by
jointly optimizing the angles of the different radio antenna,
the resource allocation and the selection of the appropriate
serving BS for the UAVs throughout their path. For this complex
optimization problem, we then propose a solution based on Deep
Reinforcement Learning (DRL) to solve it. Under this solution, we
adopt a multi-heterogeneous agent-based approach (MHA-DRL)
including two types of agents, namely the UAV agents and the BS
agents. Each agent implements an Advantage Actor Critic (A2C)
to learn optimal policies. Specifically, the BS agents aim to tilt
their antennas to get ahead of the UAVs throughout their mobility,
and the UAV agents target selecting the appropriate serving
BSs along with resource allocation. Performance evaluations are
presented to validate the effectiveness of the proposed approach.

Index Terms—Ahead-Me Coverage (AMC), Cellular Networks,
Unmanned Aerial Vehicles (UAVs), Deep Reinforcement Learning
(DRL), Multi-Heterogeneous Agent-based DRL (MHA-DRL).

I. INTRODUCTION

The next generation of mobile networks are envisioned to
ensure limitless connectivity with higher throughput, lower
relay and stronger security. It is notable that 5G/6G mobile net-
works are expected to be the key infrastructure enabler to sup-
port a wide range of applications, such as virtual/augmented
reality, the Internet of Things (IoT), autonomous vehicles, and
unmanned aerial vehicles (UAVs). Such networks are deployed
to mainly serve ground users. This poses a new challenge
on the mobile networks to maintain the enhanced Quality-of-
Service (QoS) for UAV users flying in the sky.

This paper introduces the concept of Ahead-Me Coverage
(AMC), where the goal is to get network coverage ahead
of mobile users. Specifically, we consider the scenario of
UAVs using a cellular network to ensure network connectivity.
Field evaluations have shown that the radio antennas of the
base stations (BSs) are usually tilted to serve ground users,
which might not be advantageous for flying UAVs. one way
to overcome this is by dynamically tilting the direction of the
radio antennas in a way to anticipate the mobility of the users
and ensure better coverage. As shown in Fig. 1, a radio antenna

of BS equipped with an electrical motor can take different
position by tilting its angle, which leads to the change of the
radio coverage area.
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Fig. 1: Tilting the radio antenna: a radio antenna with an
electrical motor can take several positions by tilting its angle.

In the literature, different works have been proposed to
enhance the QoS of mobile users. However, it has not been
investigated for the problem of automatically adjusting the
antennas to maintain the radio coverage ahead of the flying
UAVs. To the best of the authors’ knowledge, this is the
first work to propose the AMC concept. To this end, we
first formulate AMC as an integer optimization problem for
maximizing the minimum transmission rate of UAVs by jointly
optimizing the angles of the different radio antenna, the
resource allocation and the selection of the appropriate serving
BS for the UAVs throughout their path. This is a a non-linear
and non-convex optimization problem, and then we propose
a solution based on Deep Reinforcement Learning (DRL) to
solve it. Under this solution, we adopt a multi-heterogeneous
agent-based approach (MHA-DRL) including two types of
agents, namely the UAV agents and the BS agents. Each agent
implements an Advantage Actor Critic (A2C) to learn optimal
policies. Specifically, the BS agents aim to tilt their antennas
to get ahead of the UAVs throughout their mobility, and the



UAV agents target selecting the appropriate serving BSs along
with resource allocation.

The rest of this paper is organized as follows. Section II
presents related works. We present the system model and
problem formulation in Section III. The proposed MHA-
DRL approach for the AMC is introduced in Section IV.
Performance evaluations are provided in Section V. Finally,
Section VI concludes this paper.

II. RELATED WORKS

Different works have been proposed in the literature to
enhance the QoS for mobile users connected to cellular
networks. In [1], the authors proposed Follow-Me Cloud
(FMC), i.e., a design tailored to user mobility. The framework
enables services to follow the mobility of the users based
on the implementation of service migration between cloud
servers. In [2], the authors provided analysis of the handover
procedure in the FMC scheme. Service migration to follow the
mobility of users was also the focus of standardization bodies.
The European Telecommunications Standards Institute (ETSI)
provided a specification for end-to-end Multi-Access Edge
Computing application mobility support in a multi-access edge
system. The underlying specifications are documented in the
group specification ETSI GS MEC 021 [3].

Besides supporting the mobility of users in terms of mi-
grating the associated application between cloud servers, the
interest has also been manifested in terms of enhancing the
coverage of the cellular network. In UAV applications, this
has mainly been materialized in optimizing the deployment
of UAVs acting as flying base stations (UAV-BSs). In [4],
the authors investigated the problem of energy-efficient 3D
placement of a UAV-BS that is capable of tilting its directional
antenna. In another work [5], the authors investigated the
problem of energy-efficient UAV-BS coverage deployment,
which includes coverage maximization and power control.
The authors in [6] interested in using a UAV to detect
coverage hole, and then to act as UAV-BS to server users
affected by the detected coverage hole. The article [7] also
investigated the issue of 3D deployment of a heterogeneous
set of UAV-BSs that provide maximum wireless coverage for
ground users in a given geographical area. In another work
[8], the authors considered the use of UAV-BSs to provide
coverage for vehicles entering a highway that is not covered
by other networks. The proposed solution uses DRL to find
the trajectories that would ensure effective coverage.

Some works have also considered the effect of the elevation
angle on users [9], [10]. Nevertheless, the issue of implement-
ing an intelligent logic allowing to automatically tilt the radio
antenna depending on the mobility of the users has not been
investigated in the literature. This underpins the focus of this
article, whereas we advance the concept of AMC that aims to
get the coverage of a cellular network ahead of mobile users
to maintain enhanced QoS. The next section introduces the the
system model and the problem formulation.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section introduces a formulation of the AMC problem.
We consider a mobile network providing network connectivity
to flying UAVs. We focus in this paper on enhancing the
QoS for UAVs. Without losing in generality, this can also be
extended to enhancing the QoS for ground UEs. We use the
notations U and V to denote the set of BSs and the set of
UAVs, respectively. Each BS u ∈ U has a set B of RBs and is
equipped with a number of radio antennas. We denote by E the
set radio antennas for a BS u. As shown in Fig. 1, the radio
antenna of a BS can take several positions by changing its
angle. We denote by C = [c1, . . . , cC ] the C ordered positions
for a radio antenna e ∈ E .

We consider the downlink scenario in which data is trans-
mitted from the BSs of the mobile network to the flying
UAVs. Let us denote by pu = [pbu]b∈B(u,v,t) and huv(t) =
[hbuv(t)]b∈B(u,v,t) the vectors of the transmission power and
the channel gain between the BS u ∈ U and the UAV v ∈ V
over the set of selected RBs B(u, v, t) at timestamp t. The
channel gain depends on the angle of the radio antenna and
the position of the UAV. It can be approximately modeled as
[4]

hbuv(t) =

 gbuv(t) if ψuv(t) ≤ ϕ,

g ≈ 0 otherwise,
(1)

where gbuv(t) is the gain from the main lobe of the antenna.
Each deployed BS in the network operates an Orthogonal
Frequency Division Multiple Access (OFDMA) technique, and
thus intra-cell interference is neglected. The transmission rate
between the BS u and the UAV v can be expressed as

rv(t) =
∑

b∈B(u,t)

rbuv(t)

=
∑

b∈B(u,t)

W log2

(
1 +

pbuh
b
uv(t)

Ibuv(t) +WN0

)
, (2)

where W refers to the bandwidth of a RB, Ibuv(t) =∑
u′∈U\{u} p

n
u′hnu′v(t) is the interference impact from non-

serving BSs, and N0 represents the noise power.
The trajectory of the UAVs is predefined and we aim to

optimize the network in such a way that the coverage is
ensured throughout their paths. The availability of a predefined
paths is due to the fact that operating UAVs requires sending
an operational flight plan to a traffic regulation entity (e.g.,
Unmanned aerial system Traffic Management - UTM) for
validation, which can also be communicated to the mobile
network to ensure the required QoS. As shown in Fig. 2, based
on the the trajectory of the UAV, the BS adjusts the angle of
their radio antennas. In Fig. 2 (a), u1 has directed a radio
antenna to serve the UAV, while u2 is preparing. In Fig. 2 (b),
u1 and u2 directed their antennas to serve the UAV, while
u3 is preparing. The later has directed its antenna to serve the
UAV when it reached it range, as shown in Fig. 2 (c). Although



(a)
𝒖𝟏 directed its antenna to serve 

the UAV; 𝒖𝟏 is preparing. 

(b)
𝒖𝟏 and 𝒖𝟐 directed their antenna to serve 

the UAV; 𝒖𝟑is preparing. 

(c)
𝒖𝟑 directed its antenna to serve 

the UAV. 
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Fig. 2: Illustration of AMC principle: BSs dynamically adjust the direction of their radio antennas so to cover the trajectory
of the UAV.

Fig. 2 illustrates the case of one UAV, we consider in this paper
several UAVs, which makes the optimization more complex.

Let us denote by T = [1, . . . , T ] the T timestamps in which
the optimization should be performed. In order to characterize
the angle taken by a radio antenna e ∈ E of the BS u ∈ U at
timestamp t ∈ T , we define the boolean variable X t

u,e,c as

X t
u,e,c =


1 if the BS u ∈ U chooses the angle

c ∈ C for its radio antenna e at
timestamp t ∈ T ,

0 otherwise.

(3)

As the UAV is moving, the associated serving BS will change
throughout the path in such a way to maintain an optimized
QoS. In order to characterize the the selected BS for the UAV
v, we define the boolean variable Yt

v,u as

Yt
v,u =


1 if the UAV v ∈ V connects to the BS

u ∈ U at timestamp t ∈ T ,

0 otherwise.

(4)

Furthermore, changing the serving BS along with the mobility
of the UAVs implies an adequate selection of the RBs. In order
to characterize the RB b ∈ B assigned to the UAV v ∈ V , we
define the boolean variable Zt

v,b as

Zt
v,b =


1 if the UAV v ∈ V uses the RB b ∈ B

at timestamp t ∈ T ,

0 otherwise.

(5)

Based on the previous variables and the expression of the

transmission rate, we can formulate the AMC as follows:

maximize
{X t

u,e,c},{Yt
v,u}

min
v∈V

T∑
t=1

∑
u∈U

Yt
v,u

∑
e∈E

cC∑
c=c1

X t
u,e,c

∑
b∈B

Zt
v,brv(t),

(6)

s.t.

∀u ∈ U ,∀v ∈ V,∀t ∈ T ; Yt
v,u ∈ {0, 1}, (7)

∀u ∈ U ,∀e ∈ E ,∀c ∈ C,∀t ∈ T ; X t
u,e,c ∈ {0, 1}, (8)

∀v ∈ V,∀b ∈ B,∀t ∈ T ; Zt
v,b ∈ {0, 1}, (9)

∀v ∈ V,∀t ∈ T ;
∑
u∈U

Yt
v,u = 1, (10)

∀u ∈ U ,∀e ∈ E ,∀t ∈ T ;
∑
c∈C

X t
u,e,c = 1, (11)

∀u ∈ U ,∀e ∈ E ,∀ci ∈ C,∀t ∈ T ;

X t
u,e,ci = 1 =⇒ X t+1

u,e,ci + X t+1
u,e,ci−1

+ X t+1
u,e,ci+1

= 1,

(12)

∀v ∈ V,∀t ∈ T ;
∑
b∈B

Zt
v,b ≥ 1, (13)

∀u ∈ U ,∀b ∈ B,∀t ∈ T ;
∑
v∈V

Yt
v,uZt

v,b ≤ 1. (14)

The objective of the above optimization problem is to
maximize the minimum transmission rate for the UAVs v ∈ V
throughout their trajectories (as expressed in (6)). Condi-
tions (7), (8) and (9) limit the values of the boolean variables
Yt
v,u, X t

u,e,c and Zt
v,b to the set {0, 1}. Condition (10) ensures

that a UAV v ∈ V will select one and only one serving BS
at each timestamp t ∈ T . Condition (11) forces each radio
antenna e ∈ E of a BS u ∈ U to take one position at each
timestamp t ∈ T . As for Condition (12), it states that if a radio
antenna e of a BS u chooses the position ci at timestamp t,



it can only select one of the neighboring positions (ci−1, ci
or ci+1) at next timestamp t + 1. This imposes a realistic
constraint in changing the angle of a radio antenna between
two consecutive timestamp. This condition can be substituted
by the following constraint:

∀u ∈ U ,∀e ∈ E ,∀ci ∈ C,∀t ∈ T ;

X t
u,e,ci ≤ X t+1

u,e,ci + X t+1
u,e,ci−1

+ X t+1
u,e,ci+1

, (15)

which imposes that X t+1
u,e,ci+X t+1

u,e,ci−1
+X t+1

u,e,ci+1
is equal to 1

if X t
u,e,ci is equal to 1 (note that X t+1

u,e,ci +X t+1
u,e,ci−1

+X t+1
u,e,ci+1

can not be greater than 1 as per Condition (11)). On the other
hand, Condition (13) imposes that at least one RB should be
assigned to each UAV v ∈ V at each timestamp t ∈ T . As for
the last one, Condition (14) ensures that a RB b ∈ B of a BS
u ∈ U is only assigned to one of its served UAVs, at most. This
constraint is expressed as the produce of boolean variables
and can be linearized by defining a boolean variable ωt

u,v,b =
Yt
v,uZt

v,b and submitting (14) by the following constraints:

∀u ∈ U ,∀b ∈ B,∀t ∈ T ;
∑
v∈V

ωt
u,v,b ≤ 1, (16)

∀u ∈ U ,∀v ∈ V,∀b ∈ B,∀t ∈ T ; ωt
u,v,b ≤ Yt

v,u (17)

∀u ∈ U ,∀v ∈ V,∀b ∈ B,∀t ∈ T ; ωt
u,v,b ≤ Zt

v,b (18)

∀u ∈ U ,∀v ∈ V,∀b ∈ B,∀t ∈ T ; ωt
u,v,b ≥ Yt

v,u + Zt
v,b − 1.

(19)

Note that in the above conditions, (17) and (18) force ωt
u,v,b

to 0 if Yt
v,u or Zt

v,b is equal to 0, while (19) forces ωt
u,v,b to

1 if both Yt
v,u and Zt

v,b are equal to 1.
However, the above optimization problem is not linear,

which is due to the objective function. In order to enable
network optimization so that the radio coverage can get ahead
of the UAVs to enhance their QoS, we propose a solution
based on DRL. The proposed solution adopts an heterogeneous
agent-based approach including two types of agents, namely
the UAVs and the BSs. Here, the UAVs aim to select the
serving BSs along with the radio resources, and the BSs are
to adjust the positions of their radio antennas. The next section
introduces the proposed solution.

IV. AN HETEROGENEOUS AGENT-BASED DEEP
REINFORCEMENT LEARNING APPROACH FOR THE AMC

PROBLEM

This section introduces the proposed solution for the AMC
problem. This solution is based on the framework of DRL,
where a multi-heterogeneous agent-based approach is adopted.
The general DRL framework is depicted in Fig. 3. As we
can see, two types of agents are considered, namely the UAV
agents and the BS agent. At timestamp t, each agent g gets
the system state st (step 1 of Fig. 3) and decides the action
stg to execute (step 2 of Fig. 3). The taken action depends
on the agent type; a UAV agent aims to select the serving
BS along with the allocation of resources, whereas a BS
agent targets tilting its radio antennas. After the execution
of the action, the agents get the reward value along with

the next state st+1 (step 3 in Fig. 3). Each agent g also
gets the actions, at−g, performed by the other agents, which
will be used to learn the model. Indeed, implementing DRL
in a multi-agent environment requires sharing/aggregating the
experiences/models between the agents. A replay memory is
considered in our design to store the experiences that will be
used to train the neural network (step 4 in Fig. 3). We further
detail in the rest of this section the proposed design, mainly in
terms of the system state, the action space, the system reward
and learning process.
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Fig. 3: MHA-DRL framework: two types of heterogeneous
agents are considered (UAV and BS agents).

A. System state
We define the system state in a way to capture the char-

acteristic of the network and that of the mission performed
by the UAVs (materialized by the trajectory). To this end, let
us denote by Lv(t, n) the locations of the UAV v ∈ V at
timestamps [t, . . . , t+n]. Lv(t, n) allows to capture a portion
of the trajectory that can be used to prepare the network in
advance and be ahead of the mobile users. The system state
st at timestamp t is described as

st = [pu, huv(t),Lv(t, n), cue]u∈U,e∈E,v∈V , (20)

where cue is the angle position of the radio antenna e of the
BS u.

B. Action space
The action taken by an agent depends on its type. For a BS

agent, the aim is to tilt the direction of the radio antennas and
the underlying action taken by an agent u at timestamp t is
described as

atu ∈ {incr, decr, keep}|E|, (21)



which refers to the action of increasing, decreasing of keeping
the angle of each radio antenna e ∈ E of the BS u. As for a
UAV agent v, the taken action aims to select the serving BS
along with the allocation of resources. This can be described
as

atv ∈ U × {0, 1}|B|. (22)

C. System reward

After executing an action, the agent gets a reward from
the environment corresponding to the value of the selected
action given the current system state. The reward function is
therefore defined to promote the actions leading to maximize
the objective function. The reward function for the two type of
agents is based on transmission rate of the UAVs. For a UAV
agent v, the reward function corresponding to the application
of the actions atv and at−v (respectively from the agent v and
by other agent than v) on the system state st is defined as

Rv(s
t, atv, a

t
−v) = rv(t). (23)

Therefore, increasing the reward for a UAV agent is translated
into enhancing the associated transmission rate. As for a BS
agent u, the corresponding reward function from applying the
actions atu and at−u (respectively by the agent u and by other
agent than u) on the system state st is defined as

Ru(s
t, atu, a

t
−u) =

1

|Ct
u|

∑
v∈Ct

u

rv(t), (24)

where Ct
u is the set of UAVs using u as the serving BS at

timestamp t.

D. Learning process

The two agent types aim to learn optimal policies allowing
to maximize the objective function. To this end, each agent
g ∈ U ∪ V implements an A2C algorithm that directly
parameterizes the policy πg to learn. Indeed, A2C is a policy-
based algorithm that employs two deep neural networks:
the actor network (to approximate the policy) and the critic
network (to approximate the value function). For the agent
g, we denote by θ̇tg, respectively θ̈tg, the parameters of the
actor network, respectively the critic network, at timestamp t.
The parameters are updated in the direction γ̂tg (which is an
unbiased estimation of γtg) defined as

γ̂tg = ∇log(πg(atg|st))Aπg(s
t, atg, a

t
−g), (25)

γtg = ∇E[
∞∑
k=0

τkgRg(s
t+k, at+k

g , at+k
−g )], (26)

where πg(atg|st) is the probability of taking the action atg by
the agent g when the state is st, τg ∈ [0, 1] is a discount factor
and Aπg(s

t, atg, a
t
−g) is the advantage value which is defined

as

Aπg(s
t, atg, a

t
−g) = Qπg(s

t, atg, a
t
−g)− Vπg(s

t). (27)

The function Qπg(s
t, atg, a

t
−g) in the above equation refers to

the Q-function, which defines the value of the taken action,

while Vπg(s
t) refers to the V-function. By considering the

Bellman equation, (27) can be formulated as

Aπg(s
t, atg, a

t
−g) = Rg(s

t, atg, a
t
−g) + τgVπg(s

t+1)− Vπg(s
t).

(28)

The parameters of the actor network are learned by minimizing
the negative log likelihood scaled by the advantage as

La(θ̇tg) = E[Aπg(s
t, atg, a

t
−g)log(πg(a

t
g|st))]. (29)

As for the critic network, the parameters are learned by
minimizing the error of the value function as

Lc(θ̈tg) = E[Aπg(s
t, atg, a

t
−g)

2]. (30)

V. PERFORMANCE EVALUATIONS

This section introduces the performance evaluations of the
proposed solution for the AMC concept. The simulation has
been preformed in a 1000m×1000m area consisting of 4 BSs.
The simulation also considered 5 UAVs, where each UAV has
a trajectory of 7 waypoints. Each BS has 2 radio antennas that
can be tilted from 0◦ (horizontal level) to 50◦. The threshold
angle ϕ is set to 15◦. We considered a noise power N0 of
−130dBm and a RB bandwidth of 180kHz. The DRL model
has been implemented using Pytorch [11]. In addition, the
discount factor τg is set to 0.9 and the learning rate is set to
0.001.

We have first evaluated the proposed MAH-DRL in terms
of learning optimal solutions for preparing the network to get
ahead of the mobility of the UAVs. The obtained results are
depicted in Fig. 4. As we can see, the two types of agents are
able learn policies allowing to maximize the reward values.
For a UAV agent (Fig. 4 (a)), this is translated into enhancing
the transmission rate for the associated UAV. Indeed, the
reward function for a UAV agent is based on the value of
the transmission rate (see equation (23)). As for a BS agent
(Fig. 4 (b)), increasing the reward value implies enhancing
the transmission rate for the UAVs connected to this BS (see
equation (24)).

Furthermore, we have also compared the obtained results
of the proposed approach against a baseline solution. The
latter is materialized in the case where the BSs do not change
the angle of their radio antennas. This reflects the situation
of today’s networks. The comparison is made considering
different angles of the radio antennas of the BSs for the
baseline solution. The underlying scenario consists of 5 UAVs,
where each UAV has a path of 7 waypoints (corresponding to
7 timestamps). The same scenario has been considered for the
proposed AMC approach and the baseline solution, and the
obtained results are depicted in Fig. 5. As we can see from,
the proposed AMC approach ensures better transmission rate
for the UAVs throughout their path compared to the baseline
solution. Indeed, adjusting the angle of the radio antennas in
a way to get ahead of the mobility of the UAVs allows to
ensure better coverage. Furthermore, it also allows to control
the interference from the non-serving BSs. The results of this
evaluation prove the effectiveness of the AMC approach.



(a) Average reward of UAV agents (b) Average reward of BS agents

Fig. 4: Evaluation of the proposed MHA-DRL approach.

Fig. 5: Comparison of the proposed approach against baseline
solutions (fixed angles of the BSs’ radio antennas).

VI. CONCLUSION

This paper investigated the problem of maintaining an
enhanced mobile network coverage for UAVs. It introduced the
concept of Ahead-Me Coverage (AMC), that aims to dynami-
cally tilt the direction of the radio antennas of the BSs in a way
to get the coverage ahead of the UAVs. The formulation of the
problem resulted in a non-linear and non-convex optimization.
To address this issue, we proposed a solution based on DRL.
More precisely, a multi-heterogeneous approach is adopted,
where two types of agents are considered (namely, UAV agents
and BS agents). The performance evaluation showed that the
proposed approach provides better results compared to the
baseline solutions. It also proves that preparing the network
to get ahead the flying UAVs ensures better coverage and
provides a new mean for controlling the interference.
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