
The Transmogrifier-4: An FPGA-Based Hardware Development System with
Multi-Gigabyte Memory Capacity And High Host and Memory Bandwidth

Joshua Fender, Jonathan Rose, David Galloway
The Edward S. Rogers Sr. Department of

Electrical and Computer Engineering
University of Toronto

{fender, jayar, drg}@eecg.utoronto.ca

Abstract

 FPGA-based hardware development systems are
extremely useful for exploring exciting applications in
vision, graphics, and many other computationally
intensive problems. Our experience with previous
systems has shown that their memory capacity, inter-
FPGA bandwidth, host-to-FPGA bandwidth, and memory
bandwidth are all critical to the successful
implementation of high performance systems. This paper
presents the design, and implementation, of a new
FPGA-based development system that was created with
the goal of providing as much performance in these four
areas as feasible. The design consists of 4 Altera Stratix
FPGAs, providing a total of 316,160 four-input LUTS
and 29.5Mb of on chip ram. This is supplemented with
8GB of external memory. The system has a measured
17.6GB/s of total aggregate memory bandwidth, and
154MB/s (read) and 266MB/s (write) measured host-to-
FPGA bandwidth. This paper describes the motivating
applications, major design issues, and performance of
the Transmogrifier-4 field-programmable system.

1. Introduction

 An FPGA-based rapid development system is a set of
hardware and software components that enable hardware
engineers to design and implement high speed digital
systems both quickly and cheaply. Typically, the
hardware components consist of a number of FPGAs,
some memory, some peripherals, and a link to a host
computer. The software components usually consist of a
design tool flow, such as synthesis, placement and
routing tools, and an IP library. Through the use of a
properly designed hardware platform, an engineer can
design and test many different digital systems without
having to design a physical hardware platform for each.
The only limitations on what is possible are those that
arise from the hardware platform itself.
 This paper presents a next-generation FPGA-based

development system, called the Transmogrifier-4 (TM-
4), which removes a number of the limitations found in
previous development systems. In particular this paper
will focus on improving four key areas: memory depth,
memory bandwidth, inter-FPGA bandwidth, and host–to-
hardware bandwidth.
 This paper is organized as follows: Section 2 provides
a brief examination of previous development platforms
and describes which previous characteristics that are
incorporated into the TM-4. Section 3 describes three
application case studies that were used to determine
where existing solutions could be improved and
summarizes the design requirements of the TM-4.
Section 4 presents the design of the TM-4, and Section 5
describes the performance tests and results while Section
6 concludes.

2. Background

 The design of the TM-4 builds upon the knowledge
gained from previous development platforms. In
particular past platforms have shown the benefits of
incorporating various numbers of FPGAs into a single
platform, as well as providing a variety of different ways
to interconnect multiple FPGAs.
 Previous development systems have consisted of
systems ranging from a single FPGA to dozens of FPGAs
spanning multiple circuit boards. For example, the
previous two generations of Transmogrifiers, the TM-2
[3] and TM-3 [1], had 32 FPGAs and 4 FPGAs
respectively.
 Our experience with the 32 FPGAs on the TM-2
showed that it was very difficult for a user to effectively
use that many FPGAs, where as 4 FPGAs were much
easier to use. Since modern FPGA densities provide
large (and increasing) amounts of development logic,
large numbers of FPGAs are no longer needed. This fact,
combined with past experiences, suggests that the TM-4
should be designed with only 4 FPGAs.
 Past development systems (in our own work and that
of others) have connected multiple FPGAs in a number of

different topologies, shown in Figure 1, including:
crossbar interconnections [2], [3], [4], [5], [6], [7], [8],
hardwired fully interconnected schemes [9], [10], 2D [7],
[11] or 3D meshes [12], linear interconnects [13], ring
interconnections [14], and tree structures [15].
 The selection of which topology is best suited for the
TM-4 can be made by pruning out inappropriate options
until only one is left. Of the 6 topologies, the last three,
D, E and F, are only suited for special cases of
applications where as the TM-4 is intended as a general-
purpose machine. Topology C is not applicable to the
TM-4 as it consists of only four FPGAs. This leaves only
options A and B. Since topology B provides lower
latency then topology A, with only the cost of additional
pins, this topology is best suited for the TM-4.

3. Design Requirement Identification

 Our previous generation of Transmogrifier, the TM-3,
was used to implement a variety of applications
including: ray tracing [16], protein identification [17],
[18], and stereo vision [19], [20]. The process of
designing these applications brought to light a number of
shortcomings in the architecture and capabilities of the
TM-3. In particular it was found that the TM-3 lacked
host computer bandwidth, memory bandwidth, inter-chip
bandwidth and memory depth. In addition, as Moore’s
law ensues, it is worthwhile to architect a next-
generation system to leverage faster and larger capacity
FPGAs.
 The following subsections examine each of the three
application case studies used to guide the design of the
TM-4. This is followed by the final design requirements
of the TM-4.

3.1. Case Study: Ray Tracing

 Ray tracing is a method of rendering 2D images of a
virtual 3D scene. The algorithm renders a 2D projection
of a 3D scene by approximating the way that light rays
propagate around the scene and eventually reach the

viewer’s eye. The light ray propagation model involves
“tracing” the path that light rays travel back from the
viewpoint, through the projection point and in to the
scene.
 A hardware ray tracing implementation [16] on the
TM-3 was found to be limited several ways by the
architecture of the TM-3. First, the available memory on
the TM-3 was limited to only 6 megabytes. This allowed
only relatively small 3D scenes to be rendered on the
TM-3. The second limitation was memory bandwidth.
 The TM-3’s memory subsystem was built to run at
50Mhz. At this clock speed the memory could not
provide 3D data as fast as the hardware could process it,
and this turned out to be the performance-limiting factor
in the design of the hardware ray tracer.
 The final limitation of the TM-3 was the amount of
host computer bandwidth. Both the dataset, which
represents the 3D scene, and the resulting 2D image
required data transfers between the TM-3 and its host
computer. However, the available bandwidth, less the
2MB/s, meant that the TM-3 could process data much
faster than it could communicate its results.
 Experience from the ray tracing application suggested
that the TM-4 should have more memory, more memory
bandwidth, and more host computer bandwidth.

3.2. Case Study: Novel Protein Identification

 An active area of research in proteomics involves the
identification of biological proteins contained in a
physical sample. The current approach attempts to
identify the molecular makeup of proteins using a device
known as a mass spectrometer. This device can take a
protein, break it up into small pieces and identify the
molecular make up of these small pieces. It is then
necessary to assemble these “fragments” into a completed
protein. One approach to assembling the fragments
involves searching the human genome [17], [18].
 The human genome contains a description of every
possible protein, and as such can be used to reassemble
the protein fragments previously obtained. The
algorithm to accomplish this involves searching the
entire human genome dataset, several gigabytes of data,
and matching the fragments to certain proteins.
Successive fragment searches each reduce the set of
possible protein matches until only one protein is left.
This protein should be the same as the protein in the
physical sample.
 A prototype created on the TM-3 showed that the
algorithm could be easily parallelized to consume all
available memory bandwidth. In addition it was found
that a large amount of memory was also required to store
genomic data. It requires approximately 1 gigabyte of
data to store the 3.3 billion base pairs that make up the

A B C

D E F
Figure 1: FPGA Interconnect Topologies

human genome. In addition there is evidence that it
might be necessary to search several different genome
datasets at the same time. This would increase the
amount of RAM required to between 2-4GB.
 The experience from this application suggests that the
TM-4 should have between 2-4GB of RAM and as much
bandwidth as feasible.

3.3. Case Study: Stereo Vision

 One of the fundamental problems facing the computer
vision field is to extract depth information from an image
or images of a scene. Stereo vision is one approach to
this problem that works by mimicking the way human
vision works: two cameras are aligned side-by-side, and
each camera sees a slightly different version of the scene.
These differences can be used to extract depth
information. By utilizing simple geometric relationships
between corresponding objects in each image, depth can
be calculated. The difficult step is to identify the
matching points between each image. One solution to
the matching problem is to perform a large number of
correlations between the pixels in each image. This
approach works well but is very computationally
intensive.
 The TM-3 was used to accelerate a state-of-the-art the
stereo vision computation [21] to the point where it could
operate in real time [19], [20]. However, the logic area
requirements necessary to meet real time performance
were very high. The implementation of the stereo vision
algorithm needed to be spread across all four FPGAs of
the TM-3. It was found that the lack of communication
bandwidth between each FPGA made partitioning the
design difficult but in the end a functional stereo vision
system was created.
 The experience from this application suggests that the
TM-4 should have as much inter-FPGA bandwidth as
possible in order to simplify the problem of partitioning
designs.

3.4. Design Requirements

 The design of the TM-4 builds on the past generations
of FPGA-development systems by incorporating the key
characteristics identified from previous development
systems with the improvements identified above. The
following list summarizes the different design
requirements of the TM-4.

1. Logic capacity: 4 of the largest available FPGAs
2. Interconnect Topology

a. Fixed point-to-point
b. As much inter-chip bandwidth as feasible

3. Memory

a. 4GB or more
b. As much bandwidth as feasible

4. External Interfaces
a. 2 analog video in channels
b. 2 digital video channels (IEEE-1394)
c. VGA video out DAC

5. Host Computer Interface
a. As much bandwidth as possible
b. Simple to use for designers

6. Miscellaneous
a. Must have a mechanism for remote access

to the development platform.
b. Should be reconfigurable as fast as

possible
c. Designed to minimize the risk of a design

error-induced system failure
d. Circuit board should conform to extended

ATX form factor specification

 The need to build a new development system, the TM-
4, arose from the fact that no commercial development
systems could meet the feature set, listed above. The
following section will describe the design of the TM-4
and how it was motivated from the design requirements
above.

4. The TM-4 Design

 The following sections present the design of the TM-
4, as motivated by the previously identified design
requirements. A system-level block diagram will be
introduced for the TM-4 and each block will then be
examined in more detail. A complete description of the
TM-4 can be found in [22].

4.1. Design Overview

 The design of the TM-4 consists of two major
subsystems: the FPGA development subsystem, and the
interface subsystem. The development subsystem
contains the portion of the TM-4 that is directly usable by
designers in implementing their designs. The interface
subsystem provides support functionality, including both
control of the TM-4 and a communication channel from
the host computer to the development subsystem.

Development
FPGAs

External
Memory

Host
Interface

Host
Computer

User
Peripherals

Interface Sub System Development Subsystem
Figure 2: Top Level System Diagram

 Figure 2 shows the division between development and
interface subsystems. The development subsystem is
composed of programmable logic, external memory, and
user peripherals that are all available for designers to use.
The interface subsystem consists of a host computer and
a host interface.
 Each of these five components, the programmable
logic, the external memory, the user peripherals, the host
interface and the TM-4 controller will are all described in
the following subsections.

4.2. Programmable Logic

 The programmable logic subsystem of the TM-4 is
comprised of two different items: the FPGAs and the
interconnection between them. The first two design
requirements, 1 and 2, specified that the TM-4 should
contain four of the largest FPGAs available, be fully
interconnected using point-to-point connections and
provide as much bandwidth as possible. At the time the
components for the TM-4 were being selected the largest
FPGAs available were the Altera Stratix and the Xilinx
Virtex 2 Pro. Each FPGA had various advantages over
the other, such as dedicated DDR SDRAM hardware for
the Stratix and greater pin flexibility for the Virtex 2 Pro.
The final selection of the Stratix FPGA for the TM-4 was
guided by the fact that Stratix FPGAs where shipping
before Virtex 2 Pro FPGAs.
 Each of the four Altera Stratix S80 chips selected for
the TM-4 provide 79,040 four-input lookup tables and
flip-flops (logic elements), 7.4Mb of on-chip SRAM, 176
embedded 9x9 multipliers and 1203 I/O pins. When
combined the total usable development area of the TM-4
is 316,160 logic elements, 29.6Mb of on-chip SRAM,
and 704 embedded 9x9 multipliers.

Development
FPGA

Development
FPGA

Development
FPGA

Development
FPGA

142 SE

20 Diff

142 SE

20 Diff

64 SE

40 Diff

64 SE

40 Diff

64 SE
40 Diff

64 SE
40 Diff

 The point-to-point interconnect topology used to
connect the four FPGA is shown in Figure 3. The goal of
this topology is to provide as much inter-FPGA
bandwidth as feasible. The selection of the number of
signals between each FPGA and the signaling standard
used was based on both hardware limitations and
physical circuit board issues.

 For example, modern differential signaling standards
were preferred as they provide higher bandwidth then
single ended standards. However, there are only a
limited number of differential pins available on the
Stratix FPGA. This led to the need to incorporate single
ended pins in addition to differential signals.
 In total the bandwidth between any pair of FPGA
varies between 56Gb/s and 66.5Gb/s.

4.3. External Memory Selection

 The design requirements specified that the TM-4
should have at least 4GB of memory and have as much
memory bandwidth as possible. This raises the questions
of what type of memory technology to use, how it should
be connected to the development FPGAs, and exactly
how much.
 The selection of memory technology was driven
primarily by practical considerations. The amount of
memory required, 4GB or more, meant that it was
impractical to use SRAM, because of the number of
components that would require. This meant that DRAM
was the only practical choice as it provides much greater
memory capacity for the same number of components
than SRAM. There were two major types of memory
module technology available at the time the TM-4 was
being designed: DDR SDRAM and RAMBUS. Both
technologies provided similar memory densities and
bandwidths but DDR SDRAM could be more easily
incorporated in the TM-4, due to the hardware support
for this type of RAM in the Stratix FPGA [23].
 The selection of how to many modules to use, and
how to connect them to the development FPGAs,
required a balance between performance and cost. The
total amount of memory bandwidth is proportional to the
number of independent memory modules provided.
However, each module comes at the cost of power, space,
and expense. Since each Stratix FPGA has hardware
support for up to two DDR SDRAM modules, the
question became one of either using 1 or 2 independent
RAM banks per FPGA. Since memory bandwidth was
one of the driving goals of the TM-4 it was decided to use
two DDR SDRAM modules per FPGA, for a total of 8
modules in total.
 Each of these ram slots can be populated with between
512MB and 2GB of ram running at up to 166MHz, the
maximum specified speed for the Stratix FPGA. The
standard configuration will contain 8 1GB modules and
provide a total peak bandwidth of 17.8GB/s.

4.4. User Peripherals

 The design requirements for the TM-4 identified video
applications as one possible use for the TM-4, and as

Figure 3: FPGA Interconnect Structure

such, specified that the TM-4 should contain two NTSC
analog video-in channels, one VGA video-out channel
and two independent IEEE-1394 buses.

Development
FPGA

Development
FPGA

Development
FPGA

Development
FPGA

NTSC Video
In

RGB Video
Out

IEEE-1394
Firewire

Expansion
IO Header

Expansion
IO Header

NTSC Video
In

IEEE-1394
Firewire

 Since the first two peripherals, analog video-in and
video-out, were both present on the TM-3, the same
proven design was brought forward to the TM-4. The
NTSC video-in channels were implemented using two
Phillips SAA7111 decoder chips, and the VGA video-out
channel was provided by an Analog Devices ADV7123
triple 10bit video DAC.
 The IEEE-1394 bus is a new interface, which was not
present on the TM-3. Its implementation is also more
complicated due to the complicated communication
protocols that it uses. The TM-4 was designed to
implement as much functionality in hardware as possible,
while still remaining flexible. We selected a 2 chip
IEEE-1394 [24] solution. These chips provide both the
physical and link layers of the IEEE-1394 networking
protocol. Users of the TM-4 must implement the
remaining layers using the development FPGA. This
division, between hardware components and logic within
the development FPGA, was selected to allow the user of
the TM-4 sufficient flexibility to control the bus how they
see fit. This meant allowing the user to fully control all
networking layers above the link layer.
 Figure 4 shows how the different peripherals are
connected to the four FPGAs. The top left FPGA handles
all the analog video peripherals, include 2 video-in
channels and one VGA out channel, the top right FPGA
handles the two independent IEEE-1394 buses. The two
remaining FPGA do not have any specialized peripherals
but do have I/O headers available for future expansion.

4.5. Host-to-FPGA Communication Channel

 The design of the communication link between the
host computer and the development FPGAs was driven
by two design requirements: the link should have as
much bandwidth as possible, and that it be easy for
designers to use the channel. The latter was already
solved in the design of the TM-3 by providing a set of IP
blocks, and software [25] running on the host computer,
that abstract away the complexities of communicating
with a host computer. The first requirement, maximizing
bandwidth, was the focus of the TM-4’s communication
channel design.

Bridge
User

Circuit
Development

FPGA
Software Host

Computer

Development
Bus

Host
Computer

Bus

 The communication channel between the development
FPGAs and the host computer consists of a number of
different components, as shown in Figure 5. For
transfers from the host computer to the development
FPGAs there are several steps: Software, running on the
host computer, initiates the transaction by requests that
data be transferred to the development FPGAs. This data
is then be transmitted from the host computer to a bridge
within the TM-4 itself. This bridge then passes the data
on to the development FPGAs and ultimately to the
circuit running within it. Transfers in the other direction
take similar steps in reverse.
 The communication channel consists of four major
components: the physical hardware links between the
host computer, the bridge chip, and the development
FPGAs, the IP core which implements the bridge, the IP
cores running on the development FPGAs and the
software running on the host computer. Each of these
will be examined in the following sections.

4.5.1. Physical Hardware Communication Links

The host communication channel contains two physical
hardware links, the link between the host computer and
the bridge chip, and the link between the bridge chip and
the development FPGAs. Each of these links was
designed to meet the design requirement of having as
much host computer bandwidth as feasible.
 The first link, between the host computer and the
bridge chip, needed to use a standard interface that was
available in commodity computers. The selected link,
was the link that provided the greatest bandwidth, PCI.
In particular 66Mhz 64bit PCI was selected. This link
provides a theoretical peak bandwidth of 528MB/s.

Figure 4: User Peripheral Connections
Figure 5: Host-to-FPGA Communication Channel

 The second link, between the bridge chip and the
development FPGAs, need not have been a standard
interface and was custom designed. The link selected
was a bus consisting of 32 data bits that could run at a
data rate up to a 100Mhz. The result was a
communication link that could sustain transfers of nearly
400MB/s. The reasoning behind the bus width and speed
were that the bus needed to be easily combinable into
64bit PCI words, by combining two 32-bit words, and
that the bus should still run synchronously, by keeping
the clock below 100MHz. The resulting 400MB/s
bandwidth was not expected to be a bottleneck to system
performance due to the fact that the PCI bus’s overhead
prevents it from reaching its theoretical peak bandwidth.

4.5.2. Host-to-Development Bridge

 The connection between the host computer’s PCI bus
and the development FPGAs communication bus is
bridged in the Interface FPGA. This FPGA contains a
custom-designed logic core that performs the translation
between the two buses. The PCI interface is
implemented using an Altera PCI IP core. This core
interfaces with two FIFO buffers, used for clock domain
translation between the 66Mhz PCI bus and the 100Mhz
development bus, and some simple development bus
transaction logic.

4.5.3. Parameterizable Bus Interface Logic Cores

 The physical communication link between the FPGA
and the interface bridge incorporates a custom design bus
protocol. In order to hide the complexity of interfacing
with this bus, a set of parameterizable logic cores were
created. These modules encapsulate all the functionality
required to interface with the bus while presenting a
simple handshaking based interface to the user. Instead
of dealing with multi-cycle bus transactions the user only
needs to interface with a simple three-wire handshake
interface of one of the parameterizable cores.

4.5.4. Host Software

 The final component of the host communication
channel is the software that runs on the host computer.
This software is responsible for providing a simple
interface for communications between user software and
user hardware in the development FPGAs. There are two
different pieces of software that provides this
functionality, a device driver and a software API.
 The device driver is a kernel-mode Linux driver that
handles all the hardware details necessary to
communicate with the TM-4 without requiring any user
intervention. The driver provides a simple software API

that can be linked into user programs to enable a C
program to directly communicate with the development
FPGAs. This API provides the ability to both read and
write to the FPGAs as well as to catch errors and to
monitor the state of the TM-4.

PCI Bus
Interface

Clock
Translation

FIFO

Interface FPGA

User
Circuit

Library
Interface

Component

Development FPGA

D
e
ve

lo
p
m

e
n
t

B
u
s

Kernel
Driver

Dev Bus
Interface

API

Host Computer

6
4
/6

6
 P

C
I

B
u
s

User's
C

Code

 Figure 6 summarizes all the communication steps
necessary for communicating between the host computer
and the development FPGAs.

4.6. Self Contained Development System

 The final design requirement for the TM-4 is that it
should be designed with an extended ATX form factor.
This selection allows for the TM-4 to be housed in a
standard PC case and act as a completely self-contained
system.
 The complete TM-4 system consists of the hardware
motherboard, shown in Figure 7, a plug in single board
computer, shown in the right of Figure 7, all of the
peripherals that go with such a computer, DVD drive,
hard drive, and networking, a Linux operating system,
and various software design tools. All of these
components are contained in a single standard PC case.

5. Performance Results

 A prototype of the TM-4 was built, as shown in Figure

Figure 6: Development Communication Bus

Figure 7: The TM-4 Prototype

7, and its performance was measured. The performance
results of each of the primary goals of the TM-4, having
as much memory bandwidth, inter-FPGA bandwidth and
host-to-FPGA bandwidth as possible, are presented in the
following three subsections. It should be noted that the
goal of having as much memory capacity as feasible is
correct by design, and as such, does not require explicit
measurement.

5.1. Memory Performance

 Memory performance of the TM-4 was measured by
implementing a test circuit, on the development FPGAs
that could both read and write from the attached DDR
SDRAM. The test circuit consisted of a DDR SDRAM
controller and a simple interface circuit that was
designed to perform large block transfers. This access
pattern was selected because it is representative of
applications that work with data streams. A hardware
clock counter was used to determine the time taken to
complete the block transfers and a bandwidth was
calculated.
 It was found that under burst access conditions the
TM-4 could provide a sustained memory bandwidth of
17.6GB per second total.

5.2. Inter-FPGA Performance

 The next goal of the TM-4 was to provide as much
inter-FPGA bandwidth as possible. The method used to
measure the actual inter-FPGA bandwidth of the TM-4
was to determine the maximum data rate of a single
LVDS channel and then to extrapolate this result to the
entire set of channels. The procedure used to measure
the data rate of a channel was to have two test circuits
running on two different FPGAs. The first FPGA would
transmit data while the second would receive it.
Additionally, other LVDS channels would be driven with
random data to simulate cross talk. The clock rate of the
circuits was then increased until channel failure
occurred.
 Unfortunately, a design error involving the selection
of clock pins on the Stratix FPGA limited the maximum
speed of the LVDS channels to 462Mbps instead of the
maximum rated 840Mbps, and enabled only half the
LVDS channels to be used. However, under these
conditions, the test circuit showed the TM-4 was capable
of meeting this reduced speed of 463Mbps. At this speed
the total measured aggregate bandwidth between FPGAs
is either 577 or 1155MBps, depending on which pair of
FPGA is considered.
 A second revision of the TM-4 is being produced to
fix this error.

5.3. Host-To-FPGA Performance

 The final goal of the TM-4 was to provide as much
host-to-FPGA bandwidth as feasible. This channel is
implemented using a 64bit 66Mhz PCI bus with a
maximum bandwidth of 528MBps. However, the
expected actual performance of the TM-4 should be much
lower due to various overheads.
 The procedure used to measure the performance of the
host-to-FPGA communication link was to use both
software and hardware components. The software
component would transfer a large block of data either to,
or from, a corresponding hardware circuit on a
development FPGA. These transfers were then used to
measure the actual performance of the TM-4.
 The measured write performance of the TM-4 was
found to be 266MBps, and the measured read
performance was found to be 154MBps. These
performance numbers corresponds to a PCI bus
utilization of 50% and 29% respectfully.
 Through the use of a logic analyzer it was found that
write performance was limited by the host computer’s
ability to provide data quickly enough to the PCI bus, as
it was often found to be idle. Similarly it was determined
that reads were limited by the handshaking protocol
utilized in the development FPGAs. This handshaking
overhead prevented the development FPGAs from
transmitting sufficient data to the PCI bus.

5.4. Performance Summary

 The three measurement procedures, presented in this
section, show how the TM-4 design meets the goals of
providing significant memory bandwidth, inter-FPGA
bandwidth, and host-to-FPGA bandwidth. In total, the
system has a measured memory bandwidth of 17.6 GB
per second, an inter-FPGA LVDS communication
channel bandwidth, between each pair of FPGAs, of up to
1.15 GB per second, and a host-to FPGA bandwidth of
266 MB per second for writes and 154 MB per second for
reads.

6. Current Status

 Although the TM-4 is a new system it does have a
variety of functional applications, including both simple
test applications, such as video in and out, and DDR
SDRAM tests, and more complicated applications that
have been ported from the TM-3, such as a real time edge
detector and a procedural texture mapper. Figure 8
shows the real time edge detector circuit running on the
TM-4.

 Currently four additional TM-4s are being built for
use by researchers at both the University of Toronto and
McGill University. It is the goals of these researchers to
implement new applications in both the areas of
computational vision and bioinformatics, as well as other
application domains.

7. Conclusions

 This paper presented the design of an FPGA-based
rapid prototyping system. The objective of this work was
to provide a development platform with as much memory
capacity, memory bandwidth, inter-FPGA bandwidth,
and host-to-FPGA bandwidth as feasible. The resulting
tests, on a prototype system, showed that the TM-4 was
able to deliver large amounts of bandwidth in all of the
categories.
 It is the hope of the authors that the creation of this
prototyping system will enable future researchers to
implement designs not possible with previous
technologies.

8. Acknowledgements

 The authors would like to thank Altera, NSERC and
Micronet, for providing funding and FPGAs to the TM-4
project, and Marcus van Ierssel for providing valuable
technical support.

9. References

[1] The Transmogrifier-3: “http://www.eecg.utoronto.ca/~TM-
3”, April 2005.

[2] D. Galloway, D. Karchmer, D. Chow, D. Lewis, J. Rose,
“The Transmogrifier: The University of Toronto Field-
Programmable System,” Second Canadian Workshop on Field-
Programmable Devices, Kingston, June 1994.

[3] D. Lewis, D. Galloway, M. van Ierssel, J. Rose, P. Chow,
“The Transmogrifier-2: A 1 Million Gate Rapid Prototyping
System,” in IEEE Transactions on VLSI, Vol. 6, No. 2, June
1998. pp 188-198.

[4] C. Chang, K. Kuusilinna, B. Richards, R. Brodersen,
“Implementation of BEE: a Real-time Large-scale Hardware
Emulation Engine”, in FPGA '03, 2003.

[5] A. Ferrucci, M. Martin, T. Geocaris, M. Schlag, P. K. Chan,
"ACME: A Field-Programmable Gate Array Implementation of
a Self-Adapting and Scalable Connectionist Network", 2nd
International ACM/SIGDA Workshop on Field-Programmable
Gate Arrays, 1994.

[6] P. K. Chan, M. Schlag, M. Martin, "BORG: A
Reconfigurable Prototyping Board Using Field-Programmable
Gate Arrays", Proceedings of the 1st International
ACM/SIGDA Workshop on Field-Programmable Gate Arrays,
1992. pp. 47-51.

[7] H. Hogl, A. Kugel, J. Ludvig, R. Manner, K. H. Noffz, and
R. Zoz. “Enable++: A Second Generation FPGA-Processor for
ATLAS,” ATLAS internal note DQS-NO-026, CERN, 1994.

[8] J.M. Arnold et al., "The Splash 2 Processor and
Applications," Proc. Int'l Conf. Computer Design, CS Press,
Los Alamitos, Calif.. 1993, pp. 482-485.

[9] Transmogrifier 3A, University of Toronto,
“http://www.eecg.toronto.edu/~TM-3”, Jan 2005.

[10] D. Smith and D. Bhatia. “RACE: Reconfigurable and
Adaptive Computing Environment,” In 6th International
Workshop 117 on Field-Programmable Logic and Applications,
Darmstadt, Germany, September 1996. pp. 87-95.

[11] W. Eatherton, T. Schiefelbein, H. Pottinger. “An FPGA-
based Reconfigurable Coprocessor Board Utilizing a
Mathematics of Arrays,” Technical report, University of
Missouri--Rolla, Computer Science Department, 1995.

[12] G.M. Quenot, I.C. Kraljic, J. Serot, and B. Zavidovique.
“A Reconfigurable Compute Engine for Real-Time Vision
Automata Prototyping,” In IEEE Workshop on FPGAs for
Custom Computing Machines, 1994. pp. 91-100.

[13] T. A. Petersen, D. A. Thomae, D. E. Van den Bout. “The
AnyBoard: A Rapid-Prototyping System for Use in Teaching
Digital Circuit Design,” In Proceedings, The First IEEE
International Workshop on Rapid System Prototyping RSP-90,
Computer Society Press, 1991. pp. 25-32.

[14] K. Bouazza, J. Champeau, P. Ng, B. Pottier, and
S. Rubini. “Implementing cellular automata on the ArMen
machine,” In P. Quinton and Y. Robert, editors, Proceedings of
the Workshop on Algorithms and Parallel VLSI Architectures
II, Bonas, France, June 1991. pp. 317-322.

Figure 8: A Real Time Edge Detector

[15] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P.
Athanas, H. Silverman, S. Ghosh. “PRISM-II compiler and
architecture”. In Proceedings of IEEE Workshop on FPGAs for
Custom Computing Machines, Napa, California, April 1993.
pp. 9-16.

[16] J. Fender, J. Rose, "A High-Speed Ray Tracing Engine
Built on a Field-Programmable System," in IEEE International
Conf. On Field-Programmable Technology, December 2003,
pp. 188-195.

[17] A. Alex, J. Rose, R. Isserlin-Weinberger, C. Hogue,
"Hardware Accelerated Novel Protein Identification," in Int'l
Symp. on Field-Programmable Logic, Aug 2004, pp. 13-22.

[18] "Hardware Accelerated Protein Identification", Anish
Alex, M.A.Sc. Thesis, University of Toronto, 2003.
“http://www.eecg.toronto.edu/~jayar/pubs/theses/Alex/AnishAl
ex.pdf”

[19] A. Darabiha, J. Rose, W. J. MacLean “Video-Rate Stereo
Depth Measurement on Programmable Hardware,” Proceedings
of the 2003 IEEE Computer Society Conference on Computer
Vision & Pattern Recognition, June 2003, Madison, Vol. 1, pp.
203-210.

[20] "Video-Rate Stereo Vision on Reconfigurable Hardware,"
Ahmad Darabiha, M.A.Sc. Thesis, University of Toronto, 2003.
“http://www.eecg.toronto.edu/~jayar/pubs/theses/Darabiha/Ah
madDarabiha.pdf”

[21] D.J. Fleet, Disparity from local weighted phase-
correlation, Int. Conf. on Systems, Man, and Cybernetics, pp.
48-54 v.1, 1994.

[22] "An FPGA-Based Hardware Development System with
Multi-Gigabyte Memory Capacity And High Bandwidth,"
Joshua Fender M.A.Sc. Thesis, University of Toronto, 2005.
“http://www.eecg.toronto.edu/~jayar/pubs/theses/Fender/JoshF
ender.pdf”

[23] Stratix Device Handbook,
“http://www.altera.com/literature/hb/stx/stratix_handbook.pdf”
, April 2005.

[24] Texas Instruments: TSB41AB2,
“http://focus.ti.com/docs/prod/folders/print/tsb41ab2.html”,
April 2005.

[25] TM-3 Ports Package, “http://www.eecg/~TM-3/”, April
2005.

