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Abstract-Currently, few tools exist to aid the FPGA developer in 
translating an algorithm designed for a general-purpose-
processor into one that is precision-optimized for FPGAs. This 
task requires extensive knowledge of both the algorithm and the 
target hardware. We present a design-time tool, Précis, which 
assists the developer in analyzing the precision requirements of 
algorithms specified in MATLAB. Through the combined use of 
simulation, user input, and program analysis, we demonstrate a 
methodology for precision analysis that can aid the developer in 
focusing their manual precision optimization efforts. 

I. INTRODUCTION 

One of the most difficult tasks in implementing an 
algorithm in an FPGA substrate is dealing with precision 
issues. Typical general-purpose processor concepts such as 
word size and data type are no longer valid in the FPGA 
world, which is dominated by finer-grained computational 
structures, such as look-up tables. Instead, the designer must 
use and implement bit-precise data paths. 

The difficulty is in the translation of a software algorithm 
into a hardware implementation that is precision-optimized 
for FPGAs. This task requires extensive knowledge of both 
the algorithm and the target hardware. Unfortunately, there 
are few tools that aid the would-be FPGA developer in this 
translation. In this paper, we discuss our work in filling that 
gap by introducing a developer-oriented tool for the design-
time analysis of the impact of precision on algorithm 
implementation. 

II. BACKGROUND 

At the head of the development chain is the algorithm. 
Often, the algorithm under consideration has been 
implemented in some high-level language, such as 
MATLAB, C, or Java, targeted to run on a general purpose 
processor, such as a workstation or desktop personal 
computer. The most compelling reason to utilize a high level 
language running on a workstation is that it provides infinite 
flexibility and a comfortable, rich environment in which to 
rapidly prototype algorithms 

                                                           
1 This is an abstract of the full paper: M. L. Chang, S. Hauck, 
“Précis: A Design-Time Precision Analysis Tool”, IEEE Symposium 
on Field-Programmable Custom Computing Machines, 2002. 

This tool flow requires the developer to first convert a 
software prototyped algorithm into a hardware description. 
From this hardware description language (HDL) 
specification, various stages and intermediate tools are used 
to perform simulation and generate target bitstreams, which 
are then executed on reconfigurable logic. 

A simple conversion without precision analysis would 
most likely yield an unreasonably large hardware 
implementation. On the other hand, if the algorithm actually 
requires more precision for some data sets than the data path 
provides, the results obtained from the algorithm could 
potentially be incorrect due to unchecked overflow or 
underflow conditions. 

Therefore, within the HDL description, it is important that 
the developer determine more accurate bounds on the data 
path. Typically, this involves running a software 
implementation of the algorithm with representative data sets 
and performing manual fixed-point analysis. At the very 
least, this requires the re-engineering of the software 
implementation to record the ranges of variables throughout 
the algorithm. From these results, the developer could infer 
candidate bit-widths for their hardware implementation. Even 
so, these methods are tedious and often error-prone. 

Unfortunately, while many of the other stages of hardware 
development have well-developed tools to help automate 
difficult tasks, few tools can automate HDL generation from 
a processor-oriented higher level language specification. And 
while there are C-to-Verilog[1] and C-to-VHDL[2] tools in 
existence, they do not offer such “designer aids” that would 
help with precision analysis of existing algorithms 
implemented in a high level language. 

III. PRÉCIS 

In order to fill this void in hardware development tools, 
we are developing Précis, a design-time precision analysis 
tool. Précis utilizes MATLAB as an input specification for 
algorithms and is designed to interact with the developer in 
order to assist them in making the best choices regarding data 
path precision. Currently, Précis aids the developer by 
providing a constraint propagation engine, simulation 
support, range finding capabilities, and performing precision 
slack analysis. 

Précis is designed to complement the existing tool flow. It 
is not meant to be an HDL generator, a MATLAB-to-HDL 



 

converter, or an optimizing compiler of any sort. Instead, it is 
meant to provide a convenient way for the user to interact 
with the algorithm under consideration. Our goal is for the 
knowledgeable user, after interacting with our tool, to have a 
much clearer idea of the precision requirements of their data 
path. It is our belief that the developer of the algorithm, with 
suitable software assistance, can perform much better 
precision analysis and optimization than a fully automated 
tool could ever achieve. 

In the following sections, we describe in brief detail the 
constituent parts of Précis. We ask that readers refer to [12]—
a previously published paper—for a more detailed review of 
our work. 

A. MATCH front-end 

The front-end of Précis comes from Northwestern 
University in the form of a modified MATCH compiler[3,4]. 
The MATCH compiler understands a subset of the MATLAB 
language and can transform it into efficient implementations 
on FPGAs, DSPs, and embedded CPUs. It is used here 
primarily as a pre-processor to parse MATLAB source. The 
MATCH compiler was chosen as the basis for the MATLAB 
code parsing because no official grammar is publicly 
available for MATLAB. We are not constrained to using the 
MATCH compiler, though, as our tool may be updated to 
accommodate an alternate MATLAB-aware parser. 

The MATCH compiler remains a work in progress and is 
currently being marketed by AccelChip[5]. 

B. Précis application 

The main Précis application is written in Java, in part, due 
to its relative platform independence and ease of graphical 
user interface creation. Précis takes the parsed MATLAB 
code output generated from the MATCH compiler and 
displays a GUI that formats the code into a tree-like 
representation of statements and expressions. An example of 
the GUI in operation is shown in Figure 1. 

 
Figure 1. Screen capture of the Précis GUI. 

The left half of the interface is the tree representation of 
the MATLAB code. The user may click on any node and, 
depending on the node type, receive more information in the 
right panel. The right panel displayed in the figure is an 
example of the entry dialog that allows the user to specify 
fixed-point precision parameters, such as range and type of 
truncation. With this graphical display the user can then 
perform the various tasks described in the following sections. 

C. Propagation engine 

A core component of the Précis tool is a constraint 
propagation engine. The propagation engine simulates the 
effects of using fixed-point numbers and fixed-point math in 
hardware. This is done by allowing the user to (optionally) 
constrain variables to a specific precision by specifying the 
bit positions of the most significant bit (MSB) and least 
significant bit (LSB). Variables that are not manually 
constrained begin with a default width of 64 bits. Typically, a 
user should be able to provide constraints easily for at least 
the circuit inputs and outputs. 

The propagation engine traverses the expression tree and 
determines the resultant ranges of each operator expression 
from its child expressions. This is done by implementing a set 
of rules governing the change in resultant range that depend 
upon the input operand(s) range(s) and the type of operation 
being performed. For example, in the statement a=b+c, if b 
and c are both constrained by the user to a range of 2^15 to 
2^0, 16 bits, the resulting output range of a would have a 
range of 2^16 to 2^0, 17 bits, as an addition conservatively 
requires one additional high order bit for the result in the case 
of a carry-out from the highest order bit. Similar rules apply 
for all supported operations in both the forward and backward 
directions. A more complete study of propagation and its 
effects upon hardware synthesis can be found in [6]. We plan 
to continue development of our own propagation tool to a 
similar extent. 

The propagation engine can be used to get a provable 
upper bound of the growth rate of variables through the 
algorithm. This will allow the user to see a conservative 
estimate of how the input bit width affects the size of 
operations down stream. 

D. Simulation support 

As previously mentioned, a typical step in precision 
analysis is the actual running of the algorithm in a fixed-point 
environment. Précis can automatically generate annotated 
MATLAB code to aid in fixed-point simulation of the user’s 
algorithm. The user simply selects variables to constrain and 
requests that MATLAB simulation code be generated. The 
code generated by the tool includes calls to MATLAB helper 
functions that we developed to simulate a fixed-point 
environment. The simulation flow is shown in Figure 2. 
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Figure 2. Code generation for simulation. 

The purpose of these simulations is to determine the 
effects of constraining variables on the correctness of the 
implementation. Not only might the eventual output be 
erroneous, but the algorithm may also fail to operate entirely 
due to the effects of precision constraints. 

Note that it is typically not sufficient to merely test 
whether the fixed precision results are identical to the 
unconstrained precision results, as this is too restrictive. In 
situations such as image processing, lossy compression, and 
speech processing, users may be willing to trade some result 
quality for a more efficient hardware implementation. Précis, 
by being a designer assistance tool, allows the designer to 
create their own “goodness” function, and make this tradeoff 
as they see fit. With the Précis environment, this iterative 
development cycle is shortened, as the fixed-point simulation 
code can be quickly generated. 

E. Range finding 

While the simulation support described above is very 
useful on its own for fixed-point simulation, it is only truly 
useful if the user can accurately identify the variables that 
they feel can be constrained. If the user does not really have 
an idea of where to begin, one place to start is utilizing the 
Précis range finding capability. The development cycle 
utilizing range finding is shown in Figure 3. 
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Figure 3. Development cycle for range finding analysis. 

After the MATLAB code is parsed into the tool, the user 
can select variables they are interested in monitoring. 
Variables are targeted for range analysis and annotated 
MATLAB is generated, much like the simulation code is 
generated in the previous section. Instead of fixed-point 
simulation, though, Précis annotates the code with another 
MATLAB support routine that monitors the range of the 
values that the variables under question take on. 

The user can then load the resultant range values 
discovered back into the Précis tool and (optionally) constrain 
the variables. The user now has an idea of what precision 
each variable requires for the sample data. Propagation can 
now be performed to determine the effect these precisions 
have on the rest of the system. 

The results from this range finding method, however, are 
data set dependent. If the user is not careful to use 

representative data sets, the final hardware implementation 
could still generate erroneous results if the data sets were 
significantly different in precision requirements, even on the 
same algorithm. For this reason we will consider range-
gathered precision information to be a lower bound. Given 
that the precisions obtained from propagation are a 
conservative upper bound, manipulating the difference 
between these two bounds leads us to another method of 
precision analysis—slack analysis. 

IV. SLACK ANALYSIS 

One of the goals of this tool is to provide the user with 
“hints” as to where the developer’s manual precision analysis 
and hardware tuning efforts should be focused. Ultimately, it 
would be extremely helpful for the developer to be given a 
list of “tuning points” in decreasing order of potential overall 
reduction of circuit size. This way, the developer could start a 
hardware implementation using more generic data path 
precision and iteratively optimize code sections that would 
give them the most benefit to meet constraints, such as time, 
cost, area, performance, or power. We believe this type of 
“tuning list” would give a developer a head start on precision 
analysis and put them on the right path of development faster 
than non-automated techniques. 

As mentioned earlier, if the user performs range finding 
analysis and propagation analysis on the same set of 
variables, the tool would obtain what would amount to a 
lower bound from range analysis and an upper bound from 
propagation. We consider the range analysis a lower bound 
because it is the result of true data sets. While other data sets 
may require even lower amounts of precision, we know we 
need at least the ranges gathered from the range analysis. 
Further testing with other data sets may show that some 
variables would require more precision. Thus, if we 
implement the design with the precision found, we might 
encounter errors on output, thus the premise that this is a 
lower bound. 

On the other hand, propagation analysis is very 
conservative. For example, in the statement a=b+c, where b 
and c have been constrained to be 16 bits wide by the user, 
the resultant bit width of a may be up to 17 bits due to the 
addition. But in reality, both b and c may be well within the 
limits of 16 bits and an addition might never overflow into 
the 17th bit position. For example, if c=λ-b, the range of 
values a could ever take on is governed by λ. To a person 
investigating section of code, this seems very obvious when c 
is substituted into a=b+c, but these types of more 
“macroscopic” constraints in algorithms can be difficult or 
impossible to find automatically. It is because of this that we 
can consider propagated range information to be an upper 
bound. 

Given a lower and upper bound on the bit width of a 
variable, we can consider the difference between these two 
bounds to be the slack. The actual precision requirement is 



 

most likely to lie between these two bounds. Manipulating 
the precision of nodes with slack can net gains in precision 
system-wide, as changes in any single node may impact many 
other nodes within the circuit. The reduction in precision 
requirements and the resultant improvements in area, power, 
and performance can be considered gain. Through careful 
analysis of the slack at a node, we can calculate how much 
gain can be achieved by manipulating the precision between 
these two bounds. Additionally, by performing this analysis 
independently for each node with slack, we can generate an 
ordered list of “tuning points” that the user should consider. 

For this paper, we consider the reduction of the area 
requirement of a circuit to be gain. In order to compute the 
gain of a node with respect to area, power and performance, 
we need to develop basic hardware models to capture the 
effect of precision changes upon these parameters. One 
simple implementation that we have utilized is to provide 
simple weighting parameters for different operator types. 
Thus, for example, if an adder has an area model of x, it 
indicates that as the precision decreases by one bit, the area 
reduces linearly and the gain increases linearly. In contrast, a 
multiplier has an area model of x^2, indicating that the area 
reduction and gain achieved are proportional to the square of 
the word size. Intuitively, this would give a higher overall 
gain value for bit reduction of a multiplier than of an adder. 
Using these parameters, our approach can more effectively 
choose the nodes with the most possible gain to suggest to the 
user. We detail our methodology in the next section. 

A. Performing slack analysis 

For each node that has slack, we set the precision to the 
range-find value, the lower bound. Then, we propagate the 
impact of that change over all nodes and calculate the overall 
gain for the change, system-wide. We record this value as the 
effective gain as a result of modifying that node. We then 
reset all nodes and repeat for the remaining nodes that have 
slack. We then order the resultant list of gain values in 
decreasing order and present this information to the user in a 
dialog window. The user then can see which nodes to change 
to get the highest gain and in what order. It is then up to the 
designer to consider these nodes and determine which, if any, 
should actually be more tightly constrained. 

V. BENCHMARKS 

In order to determine the effectiveness of our slack 
analysis methodology, we allowed the tool to perform slack 
analysis with propagated and range-found values. To gauge 
how effective the suggestions were, we constrained the 
variables the tool suggested in the order they were suggested 
to us, and calculated the resulting area. The area was 
determined utilizing the same area model discussed in 
previous sections. 

A. Wavelet Transform 

The first benchmark we present is the wavelet transform. 
Further details can be found in [12]. The results of the slack 
analysis are shown in Figure 4. 
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Figure 4. Wavelet area vs. number of suggestions implemented. 

These results are normalized to the lower bound obtained 
by setting all variables to their lower bound constraints and 
computing the resulting area. This graph shows that between 
the upper bound and lower bound, there is a theoretical area 
difference of about four orders of magnitude. The slack 
analysis results suggested constraining the input image, then 
the low pass filter coefficients, and then the high pass filter 
coefficients. By taking the suggested moves in order and 
recomputing the order at each step, we were able to reach 
within 15 percent of the lower bound area of the system in 
three moves and within three percent of the lower bound in 
seven moves. At this point a typical user may choose to stop 
optimizing the system. 

In order to determine the quality of our slack analysis, we 
chose five sequences of five random moves and plotted the 
average of the resultant area. As can be seen in the graph, our 
slack analysis achieves a much better result.  

B. Probabilistic Neural Network: PNN 

Another benchmark we investigated was a multi-spectral 
image-processing algorithm designed for NASA satellite 
imagery that is similar to clustering analysis or image 
compression. More details can be found in [7], and a full 
description of the benchmarking results can be found in [12]. 

Again, all results were normalized to the lower bound 
area. As shown in Figure 5, the tool behaved similarly to the 
wavelet benchmark in that it was able to reach within five 
percent of the lower bound within six moves, where after 
additional moves serve to make only minor improvements in 
area. 
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Figure 5. PNN area vs. number of suggestions implemented. 

VI. CONCLUSIONS 

In this paper we have demonstrated the need for precision 
analysis tools in the development cycle of software to 
hardware mapping. To direct the developer’s efforts in hand-
optimizing the precision of algorithms mapped to hardware, 
we have developed and demonstrated a tool, Précis, which 
allows the user to automate many tasks necessary for 
effective precision analysis. We have demonstrated how our 
tool can aid the developer in simulation of fixed-point math 
with automatic annotated MATLAB code generation. We 
have also developed MATLAB scripts that support range 
analysis of a user’s MATLAB code in order to deduce a 
theoretical lower bound to the precision of selected variables. 
We have also presented a framework for propagation of 
precision range information over a MATLAB program. 
Finally, we have described our methodology of slack analysis 
and have shown how the suggestions provided by this 
methodology can be helpful in guiding the user in their 
manual precision optimization on real-world benchmarks.  
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