

Précis: A Design-Time Precision Analysis Tool1

Mark L. Chang and Scott Hauck
Department of Electrical Engineering

University of Washington, Seattle, WA
{mchang,hauck}@ee.washington.edu

Abstract-Currently, few tools exist to aid the FPGA developer in
translating an algorithm designed for a general-purpose-
processor into one that is precision-optimized for FPGAs. This
task requires extensive knowledge of both the algorithm and the
target hardware. We present a design-time tool, Précis, which
assists the developer in analyzing the precision requirements of
algorithms specified in MATLAB. Through the combined use of
simulation, user input, and program analysis, we demonstrate a
methodology for precision analysis that can aid the developer in
focusing their manual precision optimization efforts.

I. INTRODUCTION

One of the most difficult tasks in implementing an
algorithm in an FPGA substrate is dealing with precision
issues. Typical general-purpose processor concepts such as
word size and data type are no longer valid in the FPGA
world, which is dominated by finer-grained computational
structures, such as look-up tables. Instead, the designer must
use and implement bit-precise data paths.

The difficulty is in the translation of a software algorithm
into a hardware implementation that is precision-optimized
for FPGAs. This task requires extensive knowledge of both
the algorithm and the target hardware. Unfortunately, there
are few tools that aid the would-be FPGA developer in this
translation. In this paper, we discuss our work in filling that
gap by introducing a developer-oriented tool for the design-
time analysis of the impact of precision on algorithm
implementation.

II. BACKGROUND

At the head of the development chain is the algorithm.
Often, the algorithm under consideration has been
implemented in some high-level language, such as
MATLAB, C, or Java, targeted to run on a general purpose
processor, such as a workstation or desktop personal
computer. The most compelling reason to utilize a high level
language running on a workstation is that it provides infinite
flexibility and a comfortable, rich environment in which to
rapidly prototype algorithms

1 This is an abstract of the full paper: M. L. Chang, S. Hauck,
“Précis: A Design-Time Precision Analysis Tool”, IEEE Symposium
on Field-Programmable Custom Computing Machines, 2002.

This tool flow requires the developer to first convert a
software prototyped algorithm into a hardware description.
From this hardware description language (HDL)
specification, various stages and intermediate tools are used
to perform simulation and generate target bitstreams, which
are then executed on reconfigurable logic.

A simple conversion without precision analysis would
most likely yield an unreasonably large hardware
implementation. On the other hand, if the algorithm actually
requires more precision for some data sets than the data path
provides, the results obtained from the algorithm could
potentially be incorrect due to unchecked overflow or
underflow conditions.

Therefore, within the HDL description, it is important that
the developer determine more accurate bounds on the data
path. Typically, this involves running a software
implementation of the algorithm with representative data sets
and performing manual fixed-point analysis. At the very
least, this requires the re-engineering of the software
implementation to record the ranges of variables throughout
the algorithm. From these results, the developer could infer
candidate bit-widths for their hardware implementation. Even
so, these methods are tedious and often error-prone.

Unfortunately, while many of the other stages of hardware
development have well-developed tools to help automate
difficult tasks, few tools can automate HDL generation from
a processor-oriented higher level language specification. And
while there are C-to-Verilog[1] and C-to-VHDL[2] tools in
existence, they do not offer such “designer aids” that would
help with precision analysis of existing algorithms
implemented in a high level language.

III. PRÉCIS

In order to fill this void in hardware development tools,
we are developing Précis, a design-time precision analysis
tool. Précis utilizes MATLAB as an input specification for
algorithms and is designed to interact with the developer in
order to assist them in making the best choices regarding data
path precision. Currently, Précis aids the developer by
providing a constraint propagation engine, simulation
support, range finding capabilities, and performing precision
slack analysis.

Précis is designed to complement the existing tool flow. It
is not meant to be an HDL generator, a MATLAB-to-HDL

converter, or an optimizing compiler of any sort. Instead, it is
meant to provide a convenient way for the user to interact
with the algorithm under consideration. Our goal is for the
knowledgeable user, after interacting with our tool, to have a
much clearer idea of the precision requirements of their data
path. It is our belief that the developer of the algorithm, with
suitable software assistance, can perform much better
precision analysis and optimization than a fully automated
tool could ever achieve.

In the following sections, we describe in brief detail the
constituent parts of Précis. We ask that readers refer to [12]—
a previously published paper—for a more detailed review of
our work.

A. MATCH front-end

The front-end of Précis comes from Northwestern
University in the form of a modified MATCH compiler[3,4].
The MATCH compiler understands a subset of the MATLAB
language and can transform it into efficient implementations
on FPGAs, DSPs, and embedded CPUs. It is used here
primarily as a pre-processor to parse MATLAB source. The
MATCH compiler was chosen as the basis for the MATLAB
code parsing because no official grammar is publicly
available for MATLAB. We are not constrained to using the
MATCH compiler, though, as our tool may be updated to
accommodate an alternate MATLAB-aware parser.

The MATCH compiler remains a work in progress and is
currently being marketed by AccelChip[5].

B. Précis application

The main Précis application is written in Java, in part, due
to its relative platform independence and ease of graphical
user interface creation. Précis takes the parsed MATLAB
code output generated from the MATCH compiler and
displays a GUI that formats the code into a tree-like
representation of statements and expressions. An example of
the GUI in operation is shown in Figure 1.

Figure 1. Screen capture of the Précis GUI.

The left half of the interface is the tree representation of
the MATLAB code. The user may click on any node and,
depending on the node type, receive more information in the
right panel. The right panel displayed in the figure is an
example of the entry dialog that allows the user to specify
fixed-point precision parameters, such as range and type of
truncation. With this graphical display the user can then
perform the various tasks described in the following sections.

C. Propagation engine

A core component of the Précis tool is a constraint
propagation engine. The propagation engine simulates the
effects of using fixed-point numbers and fixed-point math in
hardware. This is done by allowing the user to (optionally)
constrain variables to a specific precision by specifying the
bit positions of the most significant bit (MSB) and least
significant bit (LSB). Variables that are not manually
constrained begin with a default width of 64 bits. Typically, a
user should be able to provide constraints easily for at least
the circuit inputs and outputs.

The propagation engine traverses the expression tree and
determines the resultant ranges of each operator expression
from its child expressions. This is done by implementing a set
of rules governing the change in resultant range that depend
upon the input operand(s) range(s) and the type of operation
being performed. For example, in the statement a=b+c, if b
and c are both constrained by the user to a range of 2^15 to
2^0, 16 bits, the resulting output range of a would have a
range of 2^16 to 2^0, 17 bits, as an addition conservatively
requires one additional high order bit for the result in the case
of a carry-out from the highest order bit. Similar rules apply
for all supported operations in both the forward and backward
directions. A more complete study of propagation and its
effects upon hardware synthesis can be found in [6]. We plan
to continue development of our own propagation tool to a
similar extent.

The propagation engine can be used to get a provable
upper bound of the growth rate of variables through the
algorithm. This will allow the user to see a conservative
estimate of how the input bit width affects the size of
operations down stream.

D. Simulation support

As previously mentioned, a typical step in precision
analysis is the actual running of the algorithm in a fixed-point
environment. Précis can automatically generate annotated
MATLAB code to aid in fixed-point simulation of the user’s
algorithm. The user simply selects variables to constrain and
requests that MATLAB simulation code be generated. The
code generated by the tool includes calls to MATLAB helper
functions that we developed to simulate a fixed-point
environment. The simulation flow is shown in Figure 2.

Matlab
Code Précis Annotated

Matlab Matlab Program
Output

Figure 2. Code generation for simulation.

The purpose of these simulations is to determine the
effects of constraining variables on the correctness of the
implementation. Not only might the eventual output be
erroneous, but the algorithm may also fail to operate entirely
due to the effects of precision constraints.

Note that it is typically not sufficient to merely test
whether the fixed precision results are identical to the
unconstrained precision results, as this is too restrictive. In
situations such as image processing, lossy compression, and
speech processing, users may be willing to trade some result
quality for a more efficient hardware implementation. Précis,
by being a designer assistance tool, allows the designer to
create their own “goodness” function, and make this tradeoff
as they see fit. With the Précis environment, this iterative
development cycle is shortened, as the fixed-point simulation
code can be quickly generated.

E. Range finding

While the simulation support described above is very
useful on its own for fixed-point simulation, it is only truly
useful if the user can accurately identify the variables that
they feel can be constrained. If the user does not really have
an idea of where to begin, one place to start is utilizing the
Précis range finding capability. The development cycle
utilizing range finding is shown in Figure 3.

Matlab
Code Précis Annotated

Matlab Matlab

Variable
Stats

Program
Output

Figure 3. Development cycle for range finding analysis.

After the MATLAB code is parsed into the tool, the user
can select variables they are interested in monitoring.
Variables are targeted for range analysis and annotated
MATLAB is generated, much like the simulation code is
generated in the previous section. Instead of fixed-point
simulation, though, Précis annotates the code with another
MATLAB support routine that monitors the range of the
values that the variables under question take on.

The user can then load the resultant range values
discovered back into the Précis tool and (optionally) constrain
the variables. The user now has an idea of what precision
each variable requires for the sample data. Propagation can
now be performed to determine the effect these precisions
have on the rest of the system.

The results from this range finding method, however, are
data set dependent. If the user is not careful to use

representative data sets, the final hardware implementation
could still generate erroneous results if the data sets were
significantly different in precision requirements, even on the
same algorithm. For this reason we will consider range-
gathered precision information to be a lower bound. Given
that the precisions obtained from propagation are a
conservative upper bound, manipulating the difference
between these two bounds leads us to another method of
precision analysis—slack analysis.

IV. SLACK ANALYSIS

One of the goals of this tool is to provide the user with
“hints” as to where the developer’s manual precision analysis
and hardware tuning efforts should be focused. Ultimately, it
would be extremely helpful for the developer to be given a
list of “tuning points” in decreasing order of potential overall
reduction of circuit size. This way, the developer could start a
hardware implementation using more generic data path
precision and iteratively optimize code sections that would
give them the most benefit to meet constraints, such as time,
cost, area, performance, or power. We believe this type of
“tuning list” would give a developer a head start on precision
analysis and put them on the right path of development faster
than non-automated techniques.

As mentioned earlier, if the user performs range finding
analysis and propagation analysis on the same set of
variables, the tool would obtain what would amount to a
lower bound from range analysis and an upper bound from
propagation. We consider the range analysis a lower bound
because it is the result of true data sets. While other data sets
may require even lower amounts of precision, we know we
need at least the ranges gathered from the range analysis.
Further testing with other data sets may show that some
variables would require more precision. Thus, if we
implement the design with the precision found, we might
encounter errors on output, thus the premise that this is a
lower bound.

On the other hand, propagation analysis is very
conservative. For example, in the statement a=b+c, where b
and c have been constrained to be 16 bits wide by the user,
the resultant bit width of a may be up to 17 bits due to the
addition. But in reality, both b and c may be well within the
limits of 16 bits and an addition might never overflow into
the 17th bit position. For example, if c=λ-b, the range of
values a could ever take on is governed by λ. To a person
investigating section of code, this seems very obvious when c
is substituted into a=b+c, but these types of more
“macroscopic” constraints in algorithms can be difficult or
impossible to find automatically. It is because of this that we
can consider propagated range information to be an upper
bound.

Given a lower and upper bound on the bit width of a
variable, we can consider the difference between these two
bounds to be the slack. The actual precision requirement is

most likely to lie between these two bounds. Manipulating
the precision of nodes with slack can net gains in precision
system-wide, as changes in any single node may impact many
other nodes within the circuit. The reduction in precision
requirements and the resultant improvements in area, power,
and performance can be considered gain. Through careful
analysis of the slack at a node, we can calculate how much
gain can be achieved by manipulating the precision between
these two bounds. Additionally, by performing this analysis
independently for each node with slack, we can generate an
ordered list of “tuning points” that the user should consider.

For this paper, we consider the reduction of the area
requirement of a circuit to be gain. In order to compute the
gain of a node with respect to area, power and performance,
we need to develop basic hardware models to capture the
effect of precision changes upon these parameters. One
simple implementation that we have utilized is to provide
simple weighting parameters for different operator types.
Thus, for example, if an adder has an area model of x, it
indicates that as the precision decreases by one bit, the area
reduces linearly and the gain increases linearly. In contrast, a
multiplier has an area model of x^2, indicating that the area
reduction and gain achieved are proportional to the square of
the word size. Intuitively, this would give a higher overall
gain value for bit reduction of a multiplier than of an adder.
Using these parameters, our approach can more effectively
choose the nodes with the most possible gain to suggest to the
user. We detail our methodology in the next section.

A. Performing slack analysis

For each node that has slack, we set the precision to the
range-find value, the lower bound. Then, we propagate the
impact of that change over all nodes and calculate the overall
gain for the change, system-wide. We record this value as the
effective gain as a result of modifying that node. We then
reset all nodes and repeat for the remaining nodes that have
slack. We then order the resultant list of gain values in
decreasing order and present this information to the user in a
dialog window. The user then can see which nodes to change
to get the highest gain and in what order. It is then up to the
designer to consider these nodes and determine which, if any,
should actually be more tightly constrained.

V. BENCHMARKS

In order to determine the effectiveness of our slack
analysis methodology, we allowed the tool to perform slack
analysis with propagated and range-found values. To gauge
how effective the suggestions were, we constrained the
variables the tool suggested in the order they were suggested
to us, and calculated the resulting area. The area was
determined utilizing the same area model discussed in
previous sections.

A. Wavelet Transform

The first benchmark we present is the wavelet transform.
Further details can be found in [12]. The results of the slack
analysis are shown in Figure 4.

Wavelet: Area of Guided vs. Random Moves

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12

Moves selected

L
o

g
 o

f
N

o
rm

a
li

z
e

d
 a

re
a

Guided
Random

Figure 4. Wavelet area vs. number of suggestions implemented.

These results are normalized to the lower bound obtained
by setting all variables to their lower bound constraints and
computing the resulting area. This graph shows that between
the upper bound and lower bound, there is a theoretical area
difference of about four orders of magnitude. The slack
analysis results suggested constraining the input image, then
the low pass filter coefficients, and then the high pass filter
coefficients. By taking the suggested moves in order and
recomputing the order at each step, we were able to reach
within 15 percent of the lower bound area of the system in
three moves and within three percent of the lower bound in
seven moves. At this point a typical user may choose to stop
optimizing the system.

In order to determine the quality of our slack analysis, we
chose five sequences of five random moves and plotted the
average of the resultant area. As can be seen in the graph, our
slack analysis achieves a much better result.

B. Probabilistic Neural Network: PNN

Another benchmark we investigated was a multi-spectral
image-processing algorithm designed for NASA satellite
imagery that is similar to clustering analysis or image
compression. More details can be found in [7], and a full
description of the benchmarking results can be found in [12].

Again, all results were normalized to the lower bound
area. As shown in Figure 5, the tool behaved similarly to the
wavelet benchmark in that it was able to reach within five
percent of the lower bound within six moves, where after
additional moves serve to make only minor improvements in
area.

PNN Standard
Area vs. Number of suggestions taken

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of suggestions taken

N
or

m
al

iz
ed

 A
re

a

Standard area
Lower Bound

Figure 5. PNN area vs. number of suggestions implemented.

VI. CONCLUSIONS

In this paper we have demonstrated the need for precision
analysis tools in the development cycle of software to
hardware mapping. To direct the developer’s efforts in hand-
optimizing the precision of algorithms mapped to hardware,
we have developed and demonstrated a tool, Précis, which
allows the user to automate many tasks necessary for
effective precision analysis. We have demonstrated how our
tool can aid the developer in simulation of fixed-point math
with automatic annotated MATLAB code generation. We
have also developed MATLAB scripts that support range
analysis of a user’s MATLAB code in order to deduce a
theoretical lower bound to the precision of selected variables.
We have also presented a framework for propagation of
precision range information over a MATLAB program.
Finally, we have described our methodology of slack analysis
and have shown how the suggestions provided by this
methodology can be helpful in guiding the user in their
manual precision optimization on real-world benchmarks.

VII. ACKNOWLEDGEMENTS

This research was supported by contracts with NASA and
DARPA, and a grant from NSF. Scott Hauck was supported
in part by an NSF CAREER award and a Sloan Research
Fellowship.

VIII. REFERENCES

[1] Synopsis CoCentric SystemC Compiler.
http://www.synopsys.com/products/cocentric_systemC/co
centric_systemC_ds.html

[2] Celoxia Handel-C Compiler.
http://www.celoxica.com/products/technical_papers/datas
heets/DATHNC002_0.pdf

[3] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C.
Bachmann, M. Chang, M. Haldar, P. Joisha, A. Jones, A.
Kanhare, A. Nayak, S. Periyacheri, M. Walkden.
“MATCH: A MATLAB Compiler for Configurable
Computing Systems.” Technical report CPDC-TR-9908-
013, submitted to IEEE Computer Magazine, August
1999.

[4] P. Banerjee, A. Choudhary, S. Hauck, N. Shenoy. “The
MATCH Project Homepage”.
http://www.ece.nwu.edu/cpdc/Match/Match.html (1 Sept.
1999).

[5] AccelChip, info@accelchip.com,
http://www.accelchip.com.

[6] Mark Stephenson. “Bitwise: Optimizing Bitwidths Using
Data-Range Propagation.” Master's thesis. Massachusetts
Institute of Technology. May 2000.

[7] Mark L. Chang. “Adaptive Computing in NASA Multi-
Spectral Image Processing.” Master’s Thesis.
Northwestern University, Evanston, IL. December 1999.

[8] Thomas W. Fry. “Hyperspectral Image Compression on
Reconfigurable Platforms.” Master’s Thesis. University of
Washington, Seattle, IL. May 2001.

[9] A. Nayak, M. Haldar, A. Choudhary, P. Banerjee,
“Precision and error analysis of MATLAB applications
during automated hardware synthesis for FPGAs,” Proc.
Design Automation and Test in Europe (DATE 2001),
Berlin, Germany. Mar. 2001.

[10] Kiran Bondalapati and Viktor K. Prasanna, “Dynamic
precision management for loop computations on
reconfigurable architectures,” IEEE Symposium on Field-
Programmable Custom Computing Machines, April 1999.

[11] George A. Constantinides, Peter Y.K. Cheung, Wayne
Luk, “The multiple wordlength paradigm,” IEEE
Symposium on Field-Programmable Custom Computing
Machines, April 2001.

[12] Mark L. Chang and Scott Hauck, “Précis: a design-time
precision analysis tool,” IEEE Symposium on Field-
Programmable Custom Computing Machines, April 2002,
in press.

