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Abstract—In this paper we describe a flexible infrastructure
that can directly interface unmodified application executables
with FPGA hardware acceleration IP in order to 1), facilitate
faster computer architecture simulation, and 2), to prototype
microarchitecture or accelerator IP. Dynamic binary modification
tool plugins are directly interfaced to the application under
evaluation via flexible software interfaces provided by a userspace
hardware control library that also manages access to a parame-
terised Bluespec IP library. We demonstrate the potential of our
infrastructure with two use cases with unmodified application
executables where, 1), an executable is dynamically instrumented
to generate load/store and program counter events that are sent to
FPGA hardware accelerated in-order microarchitecture pipeline,
and memory hierarchy models, and 2), the design of a branch
predictor is prototyped using an FPGA. The key features of
our infrastructure are the ability to instrument at instruction
level granularity, to code exclusively at the user level, and to
dynamically discover and use available hardware models at run
time, thus, we enable software developers to rapidly investi-
gate and evaluate parameterised Bluespec microarchitecture and
accelerator IP models. We present a comparison between our
system and GEMS, the industry standard ARM architecture
simulator, to demonstrate accuracy and relative performance;
even though our system is implemented on an Xilinx Zynq 7000
FPGA board with tightly coupled FPGA and ARM Cortex A9
processors, it outperforms GEMS running on a Xeon with 32GBs
of RAM (400x vs 700x slowdown over native execution).

I. INTRODUCTION

Computer architects rely extensively on simulators, in order
to evaluate, and identify, the key software and hardware
aspects, affecting the performance, and power consumption
of future architectures, on current, and emergent application
use-cases. System call emulation mode simulation of user-level
application code is sufficiently accurate for many application
use cases, such as the SPEC CPU benchmarks [1], where user-
level application code execution dominates behaviour, and OS
kernel level code can largely be ignored. The need to be able
to study large realistic application use-cases within reasonable
time-frames has led to the use of reduced accuracy [2], or
analytical [3] models of microarchitecture and memory sys-
tems hierarchy in order to reduce computational complexity.
Notable simulation systems include [4], [5], [6], [2], [7], [8],
[9].

Computer architects need to incorporate accelerator IP into
their simulation system, preferably using the synthesised IP
hardware itself, as interfacing a functional model of IP to
a traditional software based simulator such as GEMS5 [9]
increases the possibility that design errors will not be caught

early in the development cycle. Unfortunately, the software
simulation of synthesisable register transfer level (RTL) is
very slow, and initial testing of accelerator IP using RTL
simulation is often limited to traces captured from real ap-
plication executions that may not be representative of all
input data sets. Further, compiler and toolchain developers
require facilities for fast simulation and testing of accelerator
IP that modifies the instruction set architecture (ISA) and/or,
the internal microarchitecture, because their toolchains must
generate optimal code sequences to exploit new instructions
and internal microarchitecture functionality.

In this paper we present a methodology to combine the
accuracy of synthesised IP hardware models with the flexibility
to simulate arbitrary binaries using software based simulators.
Here, we fully decouple functional simulation from the timing
models used to produce performance information. Dynamic bi-
nary instrumentation of an unmodified application executable
is used to generate an event stream comprised of the addresses
of data loaded and stored, along with the program control
flow addresses taken by native execution of user-level threads.
The event stream is consumed by timing models that are
implemented in Bluespec and synthesised to an FPGA. Our
current system targets in-order ARMv7 ISAs using a Xilinx
Zynq board with dual-core Cortex A9 processor cores and
a tightly coupled Xilinx FPGA. Our system could easily be
retargeted to X86 ISAs by using an additional level of dynamic
binary translation, or by directly exploiting Intel’s Pin tool
for dynamic binary translation of the X86 ISA using the
Intel Xeon Accelerator Platform, where X86 cores are tightly
coupled with an Altera FPGA. In our system, accelerator IP
can be directly plugged into the simulation system in the
form of a synthesisable model encapsulated in Bluespec, thus
we are able to directly test the overall system performance
on an unmodified application executable. Note, if the IP
concerns support for a modified ISA with new instructions,
then the application executable must be compiled to exploit
the modified ISA, and a dynamic binary modification plugin
needs to be developed to interface the new instructions to the
Bluespec encapsulated IP.

In this paper we detail the following contributions:

« We outline the design, flexible modelling capabilities, and
performance of our dynamic binary instrumentation based
simulation system that is constructed using a Bluespec
library of composable timing models and the open source
MAMBO [10] dynamic binary instrumentation system.



We present relative performance information that com-
pares our system to GEMS5’s system call emulation mode.

+« We demonstrate, using a prototype branch predictor ex-
ample, how our infrastructure enables accelerator IP to be
directly integrated with our simulation system, in order
to evaluate its performance on real application executions
without the need to generate traces.

In section II we review related simulation techniques. In
section III we introduce the design and methodology of
the infrastructure. Sections IV and V outline use cases and
implementation issues respectively. Section VI presents the
experimental method and an evaluation of the results produced.
Section VII discusses conclusion and future work.

II. RELATED WORK

In this section we discuss the approaches of GEMS, Sniper,
7ZSim that are software based, and FAST and HAsim that
utilise FPGA based, or assisted simulation systems for mi-
croarchitecture. An in-depth survey of FPGA accelerated sim-
ulation of computer systems is contained in [11].

A. Software only simulation

GEMS [9] is currently the de-facto standard for archi-
tecture simulations, and the only open source simulator for
ARM based systems. GEMS5 provides a highly configurable
simulation infrastructure handling multiple ISAs, and CPU
models (ranging from functional-only atomic models to cycle-
detailed out-of-order (OOO) models) in conjunction with a
detailed and flexible memory hierarchy providing support for
multiple cache coherency protocols and interconnect models.
The simulation mode can be either system call emulation (SE)
mode, concentrating on the simulation of user-level application
code, or, full-system (FS) mode, where hardware devices are
modelled and unmodified operating systems are booted, here,
both user and kernel-level instructions are simulated. SE mode
is suitable for workloads and benchmarks where user-level
computation dominates. FS mode is suitable for cases where
OS services, or access to I/O devices have a significant impact
on overall application performance.

Sniper & ZSim [6], [12], [3] both utilise Intel’s Pin
infrastructure to dynamically rewrite the code executed by
X86 applications using a pintool. Sniper and ZSim use cus-
tom pintools to implement their simulation infrastructures by
extracting key information from an appplication’s execution.
ZSim decodes instructions to p-ops related to the pipelined
microarchitecture under simulation. A core’s pipeline stages
are simulated and evaluated at each p-op. Sniper uses interval
simulation based on high-abstraction analytical models of
core performance. A core’s instruction stream is divided into
timing intervals delineated by miss events, such as branch
mispredictions, and cache misses. An interval’s performance
is determined by analysing all of its instructions, and the
penalty of its terminating miss event. In [3] a sampling based
methodology is used to reduce the amount of time spent
simulating an application in detail to less than 10% of the
total application runtime by identifying the periods when

faster less accurate simulation models may be applied without
significantly affecting accuracy.

B. FPGA-based simulation

FAST’s [13], [14] key contribution is that it was one of the
first systems to use FPGA accelerated timing models imple-
mented in Bluespec, that are driven by speculative functional
execution of full-system simulation using modified QEMU
software. QEMU determines the dynamic instruction trace
passed to the timing models. However, at program execution
points where a branch mis-speculation occurs, functionally
incorrect instructions will be fetched in a real processor until
a mis-speculation is resolved, then the functionally correct
branch path is followed. Therefore, the modified QEMU
software must use costly check-pointing at places where such
mis-speculations can occur, and roll-backs to a checkpointed
state when a mis-speculation occurs in order to follow mis-
speculated instruction traces until they are resolved. Such
modifications further slow down the execution of a vanilla
QEMU that is already significantly slower than other dynamic
binary instrumentation tools such as MAMBO and Pin. It is
important to note that FS simulation is unnecessary for many
applications, and that the infrastructure described in this paper
enables significantly more flexible interfacing to timing models
than FAST, as well as the integration of accelerator IP.

HAsim [8] is a novel FPGA-based simulator that simu-
lates multicore architectures using a highly-detailed processor
pipeline, cache hierarchy and detailed on-chip network using
a single FPGA. Its main contribution is the use of fine-grain
multiplexing of pipeline models to support detailed timing for
multicore processors. Internal core state such as the PC and
register file is duplicated but the combinational logic used to
simulate each pipeline stage is not. HAsim’s timing models
track how many FPGA clock cycles represent a single target
machine cycle for a given operation. In this scenario, structures
such as cache memories that do not map efficiently to FPGA
resources, are implemented using FPGA efficient features
(such as Block-RAMs), and multiple FPGA clock cycles
then represent a single target machine cycle. A port based
connection model is used to resolve the total target machine
cycles when interactions between different microarchitectural
timing models are necessary.

ITII. INFRASTRUCTURE DESIGN &
METHODOLOGY

In this paper we present the APTSim simulator for ARM
architectures. APTSim is able to simulate arbitrary ARMv7
binaries using hardware models for memory system hierar-
chies and microarchitecture pipelines. It is built from two
main components: our novel simulation infrastructure MAST,
and the dynamic binary modification tool MAMBO. Fig-
ure 1 overviews the main components of the simulation
infrastructure, and how it generates performance estimates
and statistics from a simulation. MAMBO [10] is an open
source dynamic binary modification tool for ARMv7, that
we extended with custom plugins to implement a functional
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Fig. 1. APTSim Overview.

simulation of an ARM application execution; our custom
plugins generate streams of events (memory accesses and
PC-altering instructions), that feed MAST memory system
and pipeline models. MAST enables Bluespec IP hardware
models to be managed by a flexible userspace software driver
library written in C++. The advantage of this approach is that
it is feasible to deliver cycle level accurate timing at high
performance, because the most significant cause of slowdown
is limited by dynamic instrumentation overheads rather than
the timing emulation overheads on the FPGA that are minimal
in comparison. Moreover, by keeping the functional model in
software, decoupled from the hardware IP, the infrastructure
is flexible and easy to extend. In the rest of this section, we
describe the IP library, the software userspace library, and
MAMBO-based instrumentation.

A. MAST BLUESPEC IP LIBRARY

MAST uses Bluespec to facilitate the rapid construction of
highly parametrised models with well defined interfaces. Cur-
rently the library consists of a number of high level models and
a selection of lower level IP blocks that aid model implementa-
tion, for example ARM’s AXI IP, that enables straightforward
creation of IP blocks with Xilinx Vivado, using AXI as the
default network protocol. Most MAST models have a single
AXI interface, controlled by a library IP block that handles
its identification, and locking. Identification currently uses a
32-bit word consisting of 20 bits for a model “type”, 4 bits to
specify a version and 8 bits to identify model specific features;
which can be used to control how the derivative models can
accessed by a common software driver. Bluespec’s atomic rule
based coding style enables the synthesis of control systems
that would be complex to specify using RTL languages. A
MAST compliant IP component must adhere to a low-level

IP interface containing identification, locking, data movement
and IO features such as burst controllers for fetching data
from processor memory, and file based reading/writing IP. The
high level models are currently: a Basic Cache Model, Snoop
Controller, Cache Systems, and a Pipeline Model.

a) Basic Cache Model: gathers statistics about the be-
haviour of a cache system. It is not a functional model, i.e.
it does not store data, only address tags and states for cache
lines, this allows the behaviour of a cache to be evaluated
whilst the area of the model remains manageable. The model
always features an AXI slave that is used to lock the model
to an application (the simulator), and to read back statistics;
additionally, an optional ACP interface may be also included,
for burst transfers from the CPU, snooping and requesting
data from other caches. The cache model parameters specified
at generation time determine features such as cache size,
associativity and block-size. Each cache is constructed of a
number of way models, each using a separate block RAM.
When an address is sent to the model, from any port, each way
is accessed in parallel to see if the address is present, if it is,
a hit is counted and the relevant row in each way is updated
to keep track of the order in which they have been accessed.
Should a miss occur, a free way will be used if possible, or
one of the ways will be evicted, based on the replacement
algorithm (the least recently used or a random selection),
configured at run time. Misses and evictions are typically
referred out from the cache model to a snoop controller,
or a higher level cache. Statistics are maintained for more
detailed analysis. To gather statistics for an L1 cache, we
need to provide the model with a sequence of addresses, each
corresponding to a memory access, along with the type of
access. For higher level caches all information flows from
the L1 caches, so the CPU does not need to provide any
input, although statistics are read directly from that model. The
model also includes a TLB per cache, a feature of ARM A7
in-order cores (and other ARM designs). The current version
of the cache models a write-back policy.

b) Snoop Controller (SCU): takes input requests from a
number of cache models, and ensures coherency is maintained
between them, currently using the MESI protocol. This in-
volves snooping other L1 caches, and updating their coherence
state where required. The model passes transactions up to
higher level caches if the data required is not present in any
L1 cache. The model determines if the hierarchy is inclusive
or exclusive. An SCU is not owned by a specific application, it
accepts data from any attached caches, and does not maintain
state or counters, hence it does not require interaction from the
CPU and has no AXIT port. Statistics related to the coherency
protocol are maintained in the L1 caches indicating how often
the cache has been snooped, and if the snoop has impacted on
its state.

c) Cache Systems: facilitate the simulation of large mem-
ory hierarchies. There is, currently, a hardware restriction of a
maximum of four master models per system, a cache system
model can contain many caches but is a single master model.
Two common cache structures are included as additional
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models in the library. The first is a dual L1 cache, with a
shared L2 cache, common in Intel-type multicore systems.
The second is a cluster cache hierarchy, with a parameterised
number of core caches (L1 instruction + L1 data) coupled
via an SCU to an L2 cache, this is the structure found in
ARM’s big.LITTLE style architecture. The advantage of these
combined models is that their components share a common
ACP port, allowing larger memory systems to be configured
on a device, they do however have a significant disadvantage
in that as our methodology involves creating IP blocks it is
not possible to probe within running models and this makes
IP block debugging more challenging.

d) Pipeline Model: consists of an ARMv7 instruction
decoder, and a model of the pipeline for an in-order ARM
Cortex-A7 dual-issue processor, with five functional units.
Additionally it contains a number of block RAMs which are
used to cache pages of program memory. The model does not
functionally model the pipeline, i.e. it is not a functioning
processor, it simply decodes instructions, counting individual
instruction types, and registers used, and allocates instructions
to a processor pipeline to obtain timing and utilisation statis-
tics. The model avoids hazards by tracking register reads and
writes, and the progress of the instructions on functional unit
pipelines. The in-order issue logic stalls if necessary. The
model currently streams instructions from the block RAMs,
being given a start address by the host CPU, and continuing
evaluating instructions until a branch is hit, or the next address
is not stored in the model (a local page fault), at which point
it waits for the CPU to provide the jump address, or a new
page of instruction data. The pipeline model can communicate
with a cache model to provide requests to the instruction
cache. To gather statistics from the executing program we need
to provide the model with addresses, typically this is done
from a dynamically instrumented executable, although we may
provide them from a trace file. This functionality enables the
debugging and validation of our infrastructure against traces
from other simulators such as GEMS5. The model currently
counts over 350 ARM and Thumb mode instructions types, all

register accesses and various other microarchitectural features,
each with a 64-bit counter; these counters are implemented
using the LUT’s shift registers for higher order bits, and
counters for lower order bits, such that each LUT stores a
single bit for up to 32 counters giving a relatively compact
design but allowing for all counters to be updated at any time.
These counters are mainly used to validate the accuracy of
the simulator, and they can be removed to build smaller faster
models.

Figure 2 shows an example system with instances of both
cache systems (cluster cache hierarchy, on the top left, and
Intel-like on the bottom left). The system also includes a
pipeline model together with an isolated cache. Finally, this
example also illustrates how MAST can be extended with new,
custom models, as we describe in Section IV.

The flexibility of our Bluespec library is enhanced by a
set of scripts that import Bluespec compiler produced Verilog
directly into Vivado IP-XACT IP blocks; these blocks can be
easily combined with a simple command to produce systems
which monitor various architectural features of the modelled
CPU. For the purpose of debugging we can automatically set
up probing of AXI buses in the network.

B. MAST USERSPACE DRIVER LIBRARY

The hardware is managed by a C++ software library which
acts as an entirely userspace driver for any IP blocks con-
figured onto the FPGA. The library is able to recognise any
IP blocks that are present, and to enable the appropriate
plugins in MAMBO, allowing that correct instrumentation to
be performed during program execution. It consists of two
main classes which are used within any application accessing
the FPGA, as shown in Figure 1. SimCtrl is responsible for
managing the system as a whole and SimObject for controlling
an IP block. The SimCtrl has a number of features allowing
easy system development. On creation the object probes the
FPGA to ascertain what hardware is configured on it; it creates
a SimObject derived object for each IP block, which allows
that IP block to be used by the application. The application
can request access to a specific IP from the SimCtrl which
will return, if available, an appropriate SimObject; the IP is
deemed to be available if it is not locked or it is locked by a
process/thread which is no longer running. The application is
then able to gain ownership of IP by using the SimObject to
lock the IP block to either its process or specific thread; this
lock is stored in the hardware. Other applications, or threads,
are unable to update the state of any IP blocks that they do
not own, except to lock a free block.

SimObject is a base class used to access registers within
an IP block. We derive from this class to form a specific IP
abstraction layer between the hardware and the application
developer; the base class allows only discovery, locking and
low level access to registers on the IP; typically the driver
developer for an IP block will add helper functions to wrap
sequences of accesses to provide more accessible functions to
the specific features of the IP block targeted. SimObjects can
lookup physical addresses from virtual addresses using the



SimCtrl object, this allows IP blocks featuring AXI master
ports to access processor memory directly, as FPGA TP can
only directly use physical addresses. To send a data buffer to
an IP block we can either send data a word at a time from the
host ARM processor, or for increased performance, we send
the physical address and size of a block to the IP, and allow it
to directly access the processor memory, in a cache coherent
fashion, via the ACP port. The use of the hardware IP master
allows for dramatic performance increases over CPU managed
transfer, whilst the ability to use an arbitrary block of memory
makes the migration of CPU based code to FPGA accelerators
a straightforward task, without having to deal with kernel level
drivers.

C. MAMBO Instrumentation

MAMBO [10] is an efficient dynamic binary modification
tool for ARM architectures that transparently modifies the ma-
chine code of 32 bit and 16 bit instructions during execution.
Its performance is 2.8 times faster on average than Valgrind,
and 14.9 times faster than QEMU. MAMBO is designed for
behavioural transparency, meaning that it only implements the
types and degrees of transparency required to correctly execute
typical workloads that follow the platform ABI, use standard
system libraries and do not depend on undefined behaviour
as described in [15]. It is currently capable of running a
wide range of unmodified applications, including the SPEC
CPU2000/CPU2006, PARSEC multithreaded benchmark suite
as well as large applications such as LibreOffice 4.2 and GIMP
2.8.

MAMBO operates by modifying program code at run time.
Under MAMBO, applications execute from a software code
cache populated at runtime/on-demand with the modified code.
If execution starts at a point not present in the code cache
then a basic block, i.e. a single-entry single-exit contiguous
sequence of instructions, is translated from the original loaded
program into the code cache; the next address will be a new
basic block and the process repeats. When MAMBO populates
the code cache it can modify the code in an arbitrary way thus
allowing additional functionality to code execution.

To drive our hardware models we use MAMBO plugins,
a flexible interface to add new functionality; these consist of
a set of callbacks which are executed at various points of
program execution. An initialisation function is used to assign
end user provided functions to MAMBO events, in the case
of APTSim we also use it to call SimCtrl to ensure that we
have any hardware required by the plugin and thus enable
plugin events. A pre-instruction callback is called before
an instruction is inserted into the code cache, typically we
would use this to insert a call to a function used to control
hardware; for example, if the instruction is the first in a basic
block we would call a function which sends the pipeline
driver a jumpAddress (xptr) to the source address, in
the original code, for that instruction. Thus, every time a
branch is seen in the functional model, the PC of the successor
(either the target or the fall-through path) is pushed to the
timing model. We also capture all memory accesses from

load/store instructions. If the simulator is used only to study a
single subsystem in isolation, a single stream of load-store
accesses or branches can be generated. Else, both streams
are created by the instrumentation tool. We might also remap
instructions, for example if we try to execute a GEMS special
instruction, which would ordinarily cause a native application
to terminate with an illegal instruction; in this case we have
inserted an instruction handler to make APTSim execute an
equivalent function, e.g. reset or dump statistics, and remove
the “illegal” instruction from the executing code. Instruction
remapping can be used to support ISA modifications, where
MAMBO plugins, and the userspace driver cooperate with
accelerator/new instruction IP added to the Bluespec library
in order to enable seamless execution (to the user) of new
instructions and accelerator functional units.

IV. USE-CASES

We present two additional use cases that demonstrate the
inherent flexibility of the infrastructure to undertake more use-
cases than just simulation by leveraging MAST.

A. MICROARCHITECTURAL PROTOTYPING

It is often unnecessary to implement (or use) a complete
simulator for the purpose of prototyping microarchitecture, as
it is only necessary to support the specific features that are
not currently provided. For example, a researcher exploring
design options for a branch predictor need only model the pre-
dictor’s performance, or it may be of interest to prototype an
altered ISA supporting new instructions. As mentioned earlier,
instruction remapping using MAST with MAMBO plugins
can enable the new/modified functionality ISA instructions to
be seamlessly executed using new hardware, modelled in the
FPGA, whilst the remaining code runs natively.

The single major advantage is the ability to use arbitrary
binaries to test and evaluate prototype hardware, rather than
using testbeds created from traces. Further, the reduced area
requirements in comparison to a complete simulator, make it
feasible to model #» multiple alternative designs of the microar-
chitecture in parallel during a single application execution.
This is a significant advantage for design space exploration,
effectively dividing by n the time required, or multiplying by
n the number of design points that are explored. We illustrate
this use case in Section VI-C where we model four different
implementations of a branch predictor unit in parallel.

B. ACCELERATOR PROTOTYPING

MAST hardware and software libraries are not exclusively
applicable to binary instrumented designs. It is easy to im-
plement more conventional accelerators, such as image pro-
cessing filters, and access these from regular applications. For
example, we have implemented the front-end filter stages of a
KFusion SLAM application [16] using Bluespec. Images are
passed to and from the main applications using the SimCtrl
unit to map pages from virtual to physical addresses and
storing page mappings on the FPGA, as a translation lookaside
buffer (TLB). This use-case demonstrates that only user-space



coding is required. Furthermore the application can check
for the presence of the accelerator at run time and use it if
available; in principle the application might reconfigure the
FPGA, assuming that the SimCtrl reported no other IP blocks
were in use.

V. IMPLEMENTATION AND FRAMEWORK DESIGN
ISSUES

APTSim uses a Xilinx ZC706 evaluation board running
Ubuntu 14.04 with 1GB DRAM (no swap), a Zyng-7000
XC7Z045, and dual 667MHz ARM Cortex-A9 processors.
Reduced size datasets are used for some benchmarks, as we
must fit our simulation runtime infrastructure within the 1GB
RAM space.

For an end user of APTSim the process of running a
simulation is slightly more complicated than for a conventional
simulator as they must also produce a hardware configuration
to match their desired memory hierarchy and pipeline models.
Assuming that the model has not been created before, the
user must first make specialised models for their system; since
typically the generic component exists in the MAST library,
this is a relatively straight forward process, for example the
code below will create a 2 core cluster with the caches: L1
32K 4-way with an 8-entry 1-way TLB and L2 512K §-way
with a 32-entry 4-way TLB.

import mast::x
(# synthesize x)
module myCluster (AxiACP\_ifc);
AxiACPbigLITTLEClusterPoly_ifc# (
2, //2cores
32768, 4, 8, 1, //L1 Instruction Cache
32768, 4, 8, 1, //L1 Data Cache

52488, 8, 32, 4,//L2 Cache

32, 32, //32 bit data/address

32 //32 byte cache lines

) ¢ <- bigLITTLEClusterModel () ;

interface sread = c.sread;

interface swrite = c.swrite;

interface mread = c.mread;

interface mwrite = c.mwrite;
endmodule

Running the source through the Bluespec compiler will
produce a Verilog file which is suitable for creating a Vivado
IP block. To produce a system containing the cluster IP and
two pipeline models the following can be loaded into Vivado;
additional models can be instantiated by adding them to the
model list.

source ${MAST_HOME}/../tools/vivado/mast.tcl

mast: :package_ip myCluster.v

mast::test_ip {myCluster pipelineModel
pipelineModel} 75 simple

For the purposes of this evaluation we constructed the
system described above. Table I shows the utilisation reported
by Vivado after the implementation step.

The current implementation used in this evaluation is fo-
cussed on validation rather than on performance or area. For

Component LUT/model | BRAM/model
L1 I+D cache models 6110%2 82
SCU 327 0
L2 Cache model 3228 16
Pipeline models 14904 x2 4%2
Network 5179 0
Utilisation 21.87% 5.13%
TABLE I

FPGA UTILISATION FOR THE EVALUATION SYSTEM.

example, the overall system of IP models currently run at a
relatively slow 75MHz. The critical timing path is limited by
counters for validation within the pipeline models. Currently,
we record statistics on approximately 350 different instruc-
tions, and the counters occupy a significant area. In most
simulation and modelling use-cases, most of the counters could
be removed, as total accumulated cycle time is more relevant.
However, the timers are essential to validate that the simulator
is correctly processing the executable. Further, addresses are
currently inefficiently transferred one by one to the memory
system models. This causes slow transfers that block the
processor for several cycles. The memory models have the
capability to act as masters, this allows for transactions to
be logged using double buffers, and DMA-ed from one buffer
whilst another is concurrently filled, with the additional benefit
of faster data transfers, and allowing the host CPU to continue
generating trace data whilst the models process the existing
data.

VI. EXPERIMENTAL EVALUATION

To evaluate the accuracy of the models we have two options:
we can compare against an existing simulator or we can
compare against performance counters on an existing proces-
sor. The latter is challenging on ARM due to the restricted
availability of such counters on most ARM SoCs. Thus, in
our system we use GEMS, the de facto standard simulator for
ARM, in system call emulation mode to generate statistics
and compare against APTSim; in particular we are using
the atomicSimple CPU model and, this combination provides
maximum performance. We are currently only evaluating
single threaded applications, whilst APTSim is able to handle
multiple threads, and the system implemented is multicore,
the complexity added to validation is excessive at this stage
of development. Whilst the use of GEMS in syscall mode
requires the use of static binaries this is not a prerequisite for
APTSim.

A. Validation

The initial phase of validation was focussed on resolving
issues with MAST hardware/software libraries, and MAMBO
plugin functionality, consequently we used benchmarks from
the Problem-Based Benchmark Suite [17] to provide small
targeted tests with relatively simple assembler structure. Later,
we have tested the accuracy of the infrastructure with larger
more complex programs from the standard SPEC CPU2006
benchmark suite [1].
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Fig. 3. Comparison of counter class between GEMS5 and APTSim for test
SPEC 2006 benchmarks.

Although the functional execution on APTSim matches
execution on GEMS5, we have observed minor divergences
in floating point code, and in time-dependent behaviour (e.g.
loops around load/store exclusive instructions). To minimise
unknowns from the comparison, we ran GEMS5 with a PC
tracker to produce a trace address after any potentially PC
changing event, that is to say jumps, branches and instructions
with PC as the target. This behaviour is the same as we
would expect from MAMBO except we have a guarantee
that the execution path is exactly the same as for GEMS5. We
then load the executable, using an ELF loader, and pass the
address events stream to the MAST library, whilst this does
not conduct a functional simulation it does provide the ability
to gather statistics on instruction mix, register usage, etc. Any
unexpected instruction encodings are easily detected, as the
instruction addresses are flagged to the MAST library and
recorded as an error. Using this method it was possible to
validate the instruction decoder aspects of the pipeline model.
Experiments were conducted using both ARM and Thumb
compiled code to ensure a wide instruction coverage using
a range of SPEC2006 benchmarks, repeated until there was
an exact match between GEMS5 and APTSim statistics. This
methodology shows the flexibility of MAST and the potential
to use it as an accelerator for other simulators.

On completion of the trace validation we returned to
executing various SPEC2006 benchmarks reassured that the
deviation in instruction counts is a function of varying in-
struction paths rather than errors in the models. We ran each
benchmark with test data, rather than full data sets, to maintain
reasonable simulation times and as the simulation platform has
insufficient memory for some of the tests. Figure 3 shows the
accuracy of the results, calculated as the sum of absolute error
for each instruction, grouped by category. Whilst the error is
typically less than 1% there is a tendency for APTSim to have
higher counts than GEMS, we believe this is a result of the
“ideal” nature of the GEMS configuration versus the more
realistic behaviour of APTSim, hence the larger discrepancy
in synchronisation instructions. We consider the discrepancy
between the results to be reasonable.

B. Performance

Our current work has been on accuracy of simulation, rather
than performance and there is significant scope for perfor-
mance improvement. Current simulation performance is shown
in Table II. For APTSim we have included performance for
the combined pipeline and cache system, but also for a system
only containing a memory system, this allows evaluation of
the memory hierarchy with a reduced performance penalty.
Results for GEMS were obtained with one of the simplest and
fastest models provided, on an Intel Xeon E3 3.2GHz with
32GB of RAM.

There are significant opportunities for performance im-
provement. Firstly the use of page sized RAM buffers in the
timing model means that if code is not present in a RAM
buffer then an entire page is written to the FPGA RAM; in
many applications more than 4 pages of RAM will be used
in relatively tight blocks of code meaning time is wasted on
moving data to the FPGA. A logical alternative solution is to
directly access the specific memory over the ACP port, using
the processors cache as a code cache, this could significantly
reduce the amount of communications to main memory and
cause less pollution of the processors cache, both of which
should improve overall performance. Moreover, the memory
model is currently transferring accesses an address at a time
to the cache model, a more rapid solution would be to double
buffer these in the MAMBO plugin and allow the cache to
DMA them from the buffers as they become full; this would
allow overlap of cache modelling and data gathering and the
use of ACP offers around an order of magnitude in data
transfer rates compared with direct write.

Simulation method Slowdown factor
Native, on Zynq board 1

APTSim Cache+pipeline 400
APTSim Cache 250
GEMS syscall atomic 700

TABLE 11
RELATIVE SLOWDOWN FOR GEMS5 AND APTSIM.

C. Microarchitecture Prototyping

We implement and evaluate a branch predictor unit to
illustrate the potential of the infrastructure to prototype mi-
croarchitectural features and perform design space exploration.
Branch predictors are used in speculative execution processors
to predict the path taken by PC-altering instructions. Modern
microarchitectures, with long pipelines and out-of-order exe-
cution, may require a high number of cycles to resolve the
actual target of a branch instruction that should be executed
next. Once the target PC successor to a branch has been
speculated, then the instruction fetch unit can continue to
operate from the predicted PC, that is eventually compared
with the actual outcome, and on a misprediction, the fetched
instructions are discarded.

We study how the size of the prediction tables affect the
performance of a simple Bimodal branch predictor, and for
Tournament, a more complex branch predictor. Figure 4 shows
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Fig. 4. Misprediction rate of various branch predictors for test SPEC 2006
benchmarks.

the misprediction rate of various Bimodal and Tournament
branch predictor sizes. We present results for a subset of
the SPEC CPU 2006 benchmarks fitting within the available
memory footprint of the Zynq platform. To speed up design
space exploration, we grouped multiple predictors into a single
model. We tested all the predictors of one model simultane-
ously in a single run. Bimodal-n has an n-entry table of 2-
bit counters. EV6 replicates the configuration of the branch
predictor in the Alpha 21264 processor, with a 1024-entry
local history table, a 1024-entry local predictor with 3-bit
counters, a 4096-entry global predictor with 2-bit counters, and
a 4096-entry choice predictor with 2-bit counters, for a total
of 29Kbits. Other Tournament design points (see the figure
key) scale down or up the number of entries in the tables
accordingly.

We observe a wide range of behaviour for the different
benchmarks, with miss rates between 17.5% and 0.4%. Some
benchmarks benefit from larger tables, but not all of them.
Most benchmarks benefit from the ability of Tournament
to take into account history, although perl shows lower
misprediction rates for bimodal if using similar area budgets.
perl runs in a relatively short time, so it is plausible that
this happens because of the longer time required to warm
up Tournament’s more complex structures in comparison to
bimodal. Even such a limited exploration of the design space
shows how branch predictor units can have complex behaviour.
In future work, we plan to implement and study a wider
collection of designs (e.g. Perceptron or TAGE).

VII. CONCLUSIONS & FUTURE WORK

We have demonstrated the potential of combining a flexible
IP hardware library, a user-level driver library and dynamic
binary instrumentation for microarchitecture simulation and
prototyping. We exploit the advantages of FPGA SoC to
accelerate at a very fine granularity (instructions), rather than

large blocks of code. With this, we can benefit from the
accuracy and speed of FPGA-based modelling and the ability
to run arbitrary binaries. Moreover, this paper contributes the
first FPGA-based simulator for ARM, significantly extending
the options for simulating ARM processors.

As future work, we will implement the system on an
Ultrascale Zynq board. Its features (e.g. faster CPUs, im-
proved memory interface) make it an excellent platform to
evaluate the performance of the proposal on a modern FPGA.
Moreover, we plan to extend the models to include more mi-
croarchitectural features and alternatives (e.g. an out-of-order
pipeline). Finally, we will connect MAST with a modified Java
runtime that generates streams of events for the hot paths of
the running binary.
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