Deep Reinforcement Learning for Practical Phase
Shift Optimization in RIS-assisted Networks over
Short Packet Communications

Ramin Hashemi, Samad Ali, Ehsan Moeen Taghavi, Nurul Huda Mahmood, and Matti Latva-aho

Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland,
Emails: {ramin.hashemi, samad.ali, seyed.moeentaghavi, nurulhuda.mahmood, matti.latva-aho} @oulu.fi

Abstract—We study the practical phase shift design in a
non-ideal reconfigurable intelligent surface (RIS)-aided ultra-
reliable and low-latency communication (URLLC) system under
finite blocklength (FBL) regime by leveraging a novel deep
reinforcement learning (DRL) algorithm named as twin-delayed
deep deterministic policy gradient (TD3). First, assuming indus-
trial automation system with multiple actuators, the signal-to-
interference-plus-noise ratio (SINR) and achievable rate in FBL
regime are identified for each actuator in terms of the phase shift
configuration matrix at the RIS. The channel state information
(CS]) variations due to feedback delay are also considered that
result in channel coefficients’ obsolescence. Then, the problem
framework is proposed where the objective is to maximize the
total achievable FBL rate in all ACs, subject to the practical
phase shift constraint at the RIS elements. Since the problem
is intractable to solve using conventional optimization methods,
we resort to employing an actor-critic policy gradient DRL
algorithm based on TD3, which relies on interacting RIS with FA
environment by taking actions which are the phase shifts at the
RIS elements, to maximize the expected observed reward, which
is defined as the total FBL rate. The numerical results show that
optimizing the practical phase shifts in the RIS via the proposed
TD3 method is highly beneficial to improve the network total
FBL rate in comparison with typical DRL methods.

Index Terms—Block error probability, deep reinforcement
learning (DRL), finite blocklength (FBL), factory automation, re-
configurable intelligent surface (RIS), twin delayed DDPG (TD3),
ultra-reliable low-latency communications (URLLC).

I. INTRODUCTION

Industrial wireless systems involving devices, actuators
(AC) and robots that require ultra-reliable and low-latency
communications (URLLC) is anticipated to grow in the future
6th generation of wireless communications (6G) [1]. Indus-
trial Internet of things (IIoT) is the industrial application of
IoT connectivity along with networking and cloud comput-
ing based on data analytic collected from IoT devices. The
industrial environments are very diverse and heterogeneous
as they are characterized by a large number of use-cases
and applications. An underlying commonality among these
diverse applications is that the wireless industrial automation
connectivity solutions envisioned in Industry 4.0 (initialized in
5G) [2] will leverage cloud computing and machine learning
throughout the manufacturing process. The expected URLLC
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key performance indicators (KPIs) are reliability in the order
of 1-1079, latency around 0.1 ~ 1 ms round-trip time and
Jjitter in the order of 1 s for industrial control networks [1].
There is also high data rate demand due to increased number
of sensors and their resolution, e.g., for robots. In URLLC
both the data and meta data sizes are small while both parts
need to be very robust and have minimal error [3]. Thus, joint
encoding of data and meta data is beneficial in terms of coding
gain [4]. In addition, as the packets in URLLC are usually
short-length, the finite blocklength (FBL) theory is leveraged
to investigate the penalty term in the achievable rate due to
coding in FBL regime [5].

Recently, re-configurable intelligent surface (RIS) has been
introduced as a promising technology to enhance the energy
efficiency, and spectral efficiency of wireless communications
[6]. An RIS is composed of meta-materials where the phase
and amplitude of each element can be adjusted. This allows
the reflected signal to have a desired effect, e.g., enhance
the received signal-to-interference-plus-noise ratio (SINR) at
a given location. Because of this feature, the distribution of
the received signal, when only the reflected channel through
the RIS is available due to blockage in the presence of
obstacles, will be as deterministic as possible depending on
the quantization levels at each phase shift element or circuitry
impairments [7]. Thus, the application of the RIS technology
in factory automation (FA) environments in order to ensure
high reliable and low-latency links due to no processing
overhead is very promising.

Several existing works such as [8]-[12] have studied deep
reinforcement learning (DRL) applications in phase shift
design at the RIS. In [8] the secrecy rate of a wireless
channel with RIS technology was maximized with quality of
service (QoS) constraints on the secrecy rate and data rate
requirements of the users. The resulting problem is solved
by a novel DRL algorithm based on post-decision state and
prioritized experience replay methods. The authors in [9]
considered a downlink multiple-input single-output (MISO)
system to adjust the RIS phase shifts as well as the coordinate
of the flying UAV and transmit power via a decaying deep Q
network (DQN) algorithm. A novel actor-critic DRL algorithm
named as deep deterministic policy gradient (DDPG) that is
a model-free and off-policy method for learning continuous



actions is employed in [10] to maximize the secrecy rate in a
downlink MISO system via adjusting the phase shifts at the
RIS. The work in [11] studied maximizing the total achievable
rate in infinite blocklength regime over a multi-hop multi-user
RIS-aided wireless terahertz (THz) communication system.
The maximization of the mmWave secrecy rate by jointly
optimizing the UAV trajectory, beamforming vectors and RIS
phase shift is conducted in [12] where two independent DDPG
networks, i.e., twin DDPG were leveraged to allocate the
action strategies.

The resource allocation problems in RIS-assisted URLLC
systems over short packet communications is a relatively new
topic and have only been investigated in a few papers [13]-
[16]. In [13] the authors studied an optimization problem for
beamforming and phase shift control in a RIS-enabled orthog-
onal frequency division multiple access (OFDMA) URLLC
systems where the cooperation of a set of base stations
(BSs) to serve the URLLC traffic was discussed. In [14]
the UAV trajectory and channel blocklength in FBL regime
as well as phase shift optimization in a RIS-aided network
to minimize the total error probability was investigated. In
[15] the user grouping, channel blocklength and the reflective
beamforming optimization in a URLLC system was studied
where a dedicated RIS assists the BS in transmitting short
packets in FBL scenario. The proposed optimization problem
was tackled by semi-definite relaxation (SDR) method and
the user grouping problem is solved by a greedy algorithm.
The authors in [16] studied the applicability of the RIS in
joint multiplexing of enhanced mobile broadband (eMBB) and
URLLC traffic to optimize the admitted URLLC packets while
minimizing the eMBB rate loss to ensure the quality of service
of the two traffic types by designing RIS phase shift matrices.

Despite the interesting results in the aforementioned works
on the phase shift control in RIS-aided communications, the
performance of a URLLC system over finite blocklength
regime as well as assessing the impact of quantization at
the RIS has not been investigated before. In other words,
most of the prior studies, assumed that the RIS is ideal
and the scenario is infinite blocklength regime. Moreover,
the exploited DRL algorithm in the aforementioned papers is
typically DDPG which has issues that are addressed in recent
studies on machine learning literature as twin delayed DDPG
(TD3) method [17]. Motivated by the compelling works on
resource allocation via DRL methods in RIS communications,
we aim to elaborate the phase shift control problem where the
objective is to maximize the total FBL rate in a factory au-
tomation scenario with multiple actuators subject to practical
phase shift constraints. Moreover, the proposed DRL algorithm
is robust to channel variations over different time-slots due to
being outdated because of feedback delay which deteriorates
the performance.

In this paper, h ~ CN(0xnx1,Cnxn) denotes circularly-
symmetric (central) complex normal distribution vector with
zero mean 0y, and covariance matrix C. The operations [-]H,
[-]T denote the transpose and conjugate transpose of a matrix
or vector, respectively. In Section II, the system model and

the FBL rate is proposed, then the optimization framework of
phase shift design at the RIS is presented. In Section III the
DRL solution approach is reviewed and the considered method
is analyzed. The numerical results are presented in Section IV.
Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

Consider the downlink (DL) of an RIS-assisted wireless
network in a factory setting which consists of a BS with
M = M, x M, uniform planar array (UPA) antennas and K
ACs. The RIS which has N = N, x N, phase shift elements
constructs a communication channel between the ACs and
multi-antenna BS. The total channel response between the
BS and an AC consists of a reflected path from the RIS as
illustrated in Fig. 1 since the direct paths between BS and the
ACs are blocked due to obstacles. The channel matrix between
BS and the RIS is denoted as

H = Hyos + Hypos = [R, ... W] e CVM (1)

where the column vector hi;,‘f = \/C%Hl:: + 4 /C%fl:: for

VYm € {1,..,M} which h,. ~ CN(Op1,B™), B™ =
diag (i, ..., Bi) denotes the covariance matrix of non-line-
of-sight (NLoS) path containing the pathloss coefficients from
BS to the RIS. Additionally, the line-of-sight (LoS) chan-
nel Hy,s is defined as Hpog = \/WaH(qﬁ‘f,gb“{,Nr,Ny) x
a(¢s, 95, M, M) where ¢’11/ ¢ denote the azimuth (elevation)
angle of a row (column) of the UPA at the RIS and the
projection of the transmit signal from BS to the RIS on the
plane of the UPA at the RIS. Similarly, gbg/ © shows the azimuth
(elevation) angle between the direction of a row (column) of
the UPA at BS and the projection of the signal from BS to
the RIS on the plane of the UPA at BS. In addition [18]

a(m, Y, N17 NQ) =rvec ((ejg(w’%nhnz))n1=1727~,.-,N1,) ) (2)
ng=1,2,...,Na

where rvec(-) denotes the row vectorization of a matrix and
d
G(x,y,n1,n2) = 27TX [(n1—1)cosz + (ng — 1) sinz]siny,

in which A is the operating wavelength, and d is the an-
tenna/element spacing. Similarly, the channel between RIS

RIS RIS ~RIS
and AC k as hllzls = % P /ﬁhk where the
RIS

Rician parameter ;> controls the proportion of LoS to the
none—I§OS power in AC k. The NLoS channel is distributed
~RI
ashy, ~CN Oy, B;°) and B = diag(By"™, ..., By>") is
the covariance matrix containing the ]gathloss coefficients from
—R

RIS to AC k. The LoS channel h;, € CV*! is modeled by
by =\/BRSa(¢%", 5%, Ny, N,) for V¥ in which ¢, ¢S
are the azimuth/elevation angles between RIS and the AC k.

The complex reconfiguration matrix @y is denoted by

®N><N = diag(ﬁlejelvﬁ2ej927 "'7BN€jGN)7 vn EN (3)
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Fig. 1: The considered system model.
where 0, € [-7,7), B, € [0,1], and N = {1,2,..., N}. Note

that in our model we have assumed that the RIS elements have
no coupling or there is no joint processing among elements
[6]. Furthermore, the phase shifts of the RIS are picked up
from

0,=900,)e®={-m,-7+A,...,-m+(Q-1)A}, VneN

“4)

where Q(-) denotes the quantizer system response and Q = 2°
is the number of quantization levels, b denotes the number
of bits assigned to a discrete and quantized phase and A =
5ot 1S the quantization step. Through this process, a phase
error e distributed uniformly over —A <e< é appears which
deteriorates the system performance In practrcal RIS, phase
shifters have phase-dependent amplitude response expressed

as [19]

ﬂn(en) = (1 - 5min) (W) + Bminv (5)

where Suyin > 0 (minimum amplitude), « > 0 (the steepness)
and ¢ > 0 (the horizontal distance between —7 and SByi,) are
circuit implementation parameters. Note that, Sy, = 1 results
in an ideal phase shifter.

For the considered system model, the received signal at the
AC k is

Actuator k signal

ui[t] =(FS" OH) sy 1] ©)

H K
+(nfSTOR) Y st + nilt],
i=1,izk

Interference plus noise

where s, is the beamforming vector applied at the transmitter
to the symbol x5, ~ CN'(0, 1) of AC k with ||sg||3 = px in which
px is the transmit power allocated for AC k, and n[t] is the
additive white Gaussian noise with E[|n[t]|*] = NoW = o2
where Ny, W are the noise spectral density and the system
bandwidth, respectively.

Based on the received signal at actuator k, linear minimum
mean square error (MMSE) signal detection is performed

to maximize the output SINR. Thus, the linear receiver
is represented by vector sY™MSE = Ri'hy(t) where R =

oy + YK, ek Di h;(t)h}! (t) is the covariance matrix of the
interference plus noise signal. By substituting SYMSE 1o the
received signal in (6), the corresponding SINR achieved at
time instance ¢ is simplified as

-1
K

T+ Y pihi(t)h?(t)) hy (1),
i=1,i%k

@)

where hy, () = H (£)@" (£)h}' (¢) and ©(t) e CV*N denotes
the reconfiguration phase matrix and ¢ is the time index.

In practice, the channel estimates become outdated after
a delay time T, which results in imperfect CSI. To model
the channel variations, delayed feedback is expressed as
hi(t + Ty) = pahi(t) + er(t) where Ty is the feedback

delay, ey (t) ~ CN(0,y/1-p3ly;) and pg = %
is the normalized correlation coefficient between the cur-
rent and the outdated channel response [12]. According to
Clarke’s fading spectrum model for band-limited channels
pa = Jo(27Ts f4T;)" in which f; is Doppler frequency and
T is the symbol block duration.

Based on the received SINR at AC k the number of infor-
mation bits that can be transmitted through m; channel uses
over a quasi-static additive white Gaussian channel (AWGN)

is given by [5]
Li =Vie(©) - Q7 (ex)Wi(©) + O (logy(mi)),  (8)

where Vi (®) = miC(SINRy) in which C(z) = log,(1 + )
is the Shannon capacity term defined in infinite blocklength
regime, Wy, (©) = /my V(SINR,) where the channel disper-
sion is defined as V(z) = (1n2)2(1 (1+1w)2), and ¢, is the
target error probablhty for AC k. Also, Q71(.) is the inverse
of Q-function®. Also, note that from (8) when the blocklength
my asymptotically goes infinity the achievable rate will be
simplified to the conventional Shannon capacity formula. By
solving (8) in order to find the decoding error probability ¢y,
at the AC k it yields e = Q (f(SINRy)) such that

f(SINRy,) =, /W(logz(l +SINRy) - —) 9)

B. Problem Formulation

SINR;, = p;hl(2) (a

The optimization problem for each transmission time to
optimize total FBL rate of the ACs by configuring the phase
matrix of the RIS is formulated as:

K
P1 max Lt(®) = Y [Vi(©) - Q7 (ef)Wi(O) ]
k=1
s.t. Ci: 0, €d, Vn,
C2: ﬂn(en) = (1 - /Bmin) (m(engﬁb)ﬁ) + Bmim V’fl,

130(-) is the zeroth order of the Bessel function of the first kind.
2 — 1 oo -v%)2
As usual Q(z) = T [ e dv.



where the objective is to maximize the total number of infor-
mation bits across all ACs in FBL regime while ensuring the
block error probability at a target value £ Vk e {1,2,..., K},
and the variables are the reflective phase shift matrix ® at the
RIS. In P1 the constraint C; denotes that the phase adjustment
variable is selected from the discrete set ® given in (4), and
C, implies the practical phase shift model which affects the
amplitude response at the RIS. P1 belongs to a class of mixed-
integer nonlinear combinatorial problems that are difficult to
solve with optimization methods. It is rational to use DRL for
such problems since in DRL, the solution to the problem is the
output of the forward pass to the neural network, which is a
computationally simple process since it is often a set of simple
operations. Further, the training of the neural networks that is
done in different steps is performed in the background. Once
the training is completed, the neural networks are updated.
Therefore, the process to find the optimized phase shifts in
our problems is the inference of the neural networks that
can be done in real-time [10]. Such a real-time solution
cannot be obtained using optimization methods. Consequently,
we employ a model-free DRL algorithm based on the TD3
algorithm described in the following section.

III. DRL-BASED FORMULATION

The goal of the agent in reinforcement learning (RL) is to
learn to find an optimal policy that maps states to actions based
on its interaction with the environment so that the accumulated
discounted reward function over a long time is maximized. A
state contains all useful information from the sequence of the
observations, actions and rewards. These kind of problems are
tackled by representing them as Markov decision processes
(MDP). An MDP is characterized by (S, A, R,Ps_s) in
which S is the set of environment states, A denotes the set of
possible actions that is defined in terms of the RIS phase shift
values, R is the reward function, and P,_ is the transition
probabilities from state s to s’, Vs,s’ € S. Mathematically,
a Markov property means that the probability of next state
(future state) is independent of the past given the present state.
In RL algorithms, the environment can be fully observable
where the agent directly observes the environment or partially
observable [20]. The aim of the agent is to find an optimal
policy to maximize the accumulated and discounted reward
function over time-steps, i.e., to find 7* in which the set of
states S is mapped into the set of actions A as 7% : S - A.
The optimal policy 7* maximizes the action-value function
defined as Q(s,a) =E, [ZZO Vrens1|Se = 5, Ap = a] where
the variable 0 <y < 1 is the discount factor to uncertainty of
future rewards and r; is the acquired reward in step .

One of the efficient model-free and off-policy actor-critic
methods that deals with the continuous action-space is DDPG
[20]. In this algorithm, four deep neural networks (DNNs)
are employed, two of them are for actor-critic networks and
the other two are called target networks. The actor network
directly gives the action by importing the states through a
DNN with parameter set £, i.e., a = pu(s;£*') where pu(-)
denotes the deterministic policy meaning that the output is

a value instead of a distribution. The critic network that has
a DNN with £ weights evaluates the action-value function
based on the action given by the policy network and the current
state. The other two networks which are named as target
networks give the target action-values in order to minimize
the mean-squared Bellman error (MSBE) which is defined as

target value

2
L(E™,B) = E[(Q(s,a; €)= (r+ vnggx@(s',a';sﬂ‘))) ]
(10)

where B is the experience replay memory which has stored
the set of states, actions, rewards and the next states as a
tuple (s,a,r,s") over previous steps. From (10) the next
optimal action a’ is calculated by the target actor network
with parameter set £“**" where a’ = p(s’;£“**") and the
corresponding action-value Q(s’,a’; €“*°™) is then evaluated
using the target critic network with weights £“*°™. The two
networks weights are usually just copied over from the main
network by polyak averaging which is

étarg-act - Tgact + (1 _ T)Etarg-act’

Etarg—crit - 7_Scrit + (1 _ 7_)gtarg—cﬁt’

(1)
(12)

where 7 << 1 is the soft update hyperparameter used to control
the updating procedure.

Before proceeding with TD3 method, we restate the follow-
ing Lemma from [17]:

Lemma 1. For the true underlying action-value function
which is not known during the learning process, i.e., Qr(s,a)
and the estimated Q(s,a; &™) the following inequality holds

E[Q(s,a=p(s:“);€)] 2 E[Qx (5,0 = p(s: €)1,

Based on Lemma 1, as the DDPG algorithm leverages
the typical Q-learning methods, it overestimates the Q-values
during the training which propagates throughout the next
states and episodes. This resultant deteriorates the policy
network which utilizes the Q-values to update its weights and
hyperparameters and results in poor policy updates. As seen
in Algorithm 1, the TD3 introduces the followings to address
the challenges [17]:

o TD3 recruits two DNNs for estimating the action-value
function in the Bellman equation, then the minimum
value of the output of Q-values is used in the (10).

« In this method, the target and policy networks are being
updated less frequently than critic networks.

« A regularization of the actions that can incur high peaks
and failure to the Q-value in DDPG method is leveraged
so that the policy network will not try these actions in the
next states. Therefore, the action will be chosen based on
adding a small amount of clipped random noise to the
selected action as given by

a’ = clip(pu(s’; €Y + clip(k, —c, +¢), arow, QHigh ),
(13)



Algorithm 1: Twin Delayed DDPG (TD3) Algorithm

TABLE I: Simulation parameters.

1 Initialization: Initial values for £, £ and £5, E, T, d,
empty replay memory 3. Let £ « £, 5‘;"’;’““ < gt
1€ {1,2}, and policy update iteration d;

2 fore=1,2,....,E do

3 Randomly initialize the phase matrix at the RIS;

4 fort=1,2,..., T do

5 Collect current CSI {hy(t),h2(t),...,hx (t)};

6 Select action a = clip(p(s; €*") + K, aLow, GHigh )

where x ~ N(0,07);

7 Observe next state s’ and the reward value r;

8 Store the tuple (s,a,s’,r) in B;

9 Sample mini-batch from replay buffer B c B;

10 Compute target actions from (13);

11 Compute tt =7 +ymin;eq 23 Q(s,a’;€*™) and

update the critic networks by performing gradient
descent for 7 € {1,2} by computing

ivg‘%ri‘ S (Qs, a6 —tt)”;
|B| " (s,a,r)eB
if ¢t mod d then
12 Compute Ve ¥ oep Q(s, 1(s5;€);€™) and
update the policy network;

13 Update the target networks via (11), (12);
14 end
15 end
16 end

Output: Trained agent with DNNs’ weights.

where x ~ N(0,5%) is the added normal Gaussian noise
and apow = —7, Guigh = + are the lower and upper limit
value for the selected action at the RIS elements that is
clipped to ensure a feasible action due to added noise.
Also, the constant ¢ truncates the added noise at first
stage to keep the target close to the original action.

A preliminary step to solve the problem P1 with TD3 is to
map the components and properly define the algorithm states,
actions and the reward function as follows:

1) States: The agent interacts with the environment to
optimize the FBL rate performance while ensuring a target
block error probability. Hence, the agent only has knowledge
about the local information, e.g., the channels’ response. Con-
sequently, the DRL agent state space is defined as the aggrega-
tion of the real and imaginary parts of the total channel coef-
ficients (hy, V&), thus, we have s; = UK, {h;fal(t),h‘kmag (t)}

2) Actions: The action is determined as the value of phase
shift of each element (6,,(¢), Vn) and the action space set is
given by a; = UY_, {#,(¢)} such that each element value is
chosen in the interval 6,,(t) € [-m, 7], Vn.

3) Reward Function: The objective function in P1 is con-
sidered as the step-reward function which is to be maximized
over time-steps ¢, i.e., 14 = Lo (O(t)).

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the proposed
phase shift optimization problem by using the proposed DRL
method. Table I shows the considered parameters selected
for the network. Since, the components and robots in an FA

Parameter Default value
BS transmit power (p) 20 mW
Number of ACs (K) 3

Number of BS antennas (M) 4

Number of RIS elements (V) 25

Rician factors (¢ and (RS Vk) 10

Target error probability (z—:}?, vk) 1077
faTaTs 0.1

Outdated CSI coefficient (pg) 0.9

Noise power density (/Np) -174 dBm/Hz
Channel blocklength (M) 60

Bandwidth (W) 1 MHz
Carrier frequency 1900 MHz
5min =06
RIS phase shifter parameters a=1.6
¢ =0.4371

environment are in almost fixed position, we considered three
ACs in a factory environment located in 2D-plane coordinates
as at [60,30], [30,60] and [15,45] where a BS is positioned
at [0,0] and the RIS is located in the edge side of the factory
at [75,75]. The large scale path loss for the reflected channels
is modeled as PL(dB),.; = =30 — 22log;,(D[m]) where D is
the distance between the transmitter and the receiver.

The learning rate in actor networks of TD3 agent is set
to 10* and for the critic networks is 1072, The activation
functions in all hidden layers are considered as ReLU(-)
except for the last layer in which for the actor network is
assumed to be tanh(-) to provide better gradient. The expe-
rience replay buffer capacity is 5000 with batch size 32 such
that the samples are uniformly selected from the buffer data.
The number of steps in an episode is set to 200. Furthermore,
the exploration noise in TD3 actor networks which is a zero-
mean normal random variable has 0.1 x 7 variance. The target
actor/critic networks’ soft update coefficient is 7 = 0.005.
During the updating procedure, the policy network is being
updated every two steps.

In Fig. 2 the average FBL rate for continuous phase shift
control is illustrated for TD3 and DDPG methods. The curves
plot the mean and standard deviation of the FBL rate through-
out episodes while filling the space between the positive and
negative mean error using a semi-transparent background. As
observed, the TD3 has fewer fluctuations in terms of the FBL
rate compared to the DDPG algorithm which is shown as
shaded region around the curves. In addition, TD3 outperforms
DDPG method in both final performance and learning speed in
phase control. This observation highlights the applicability of
proposed TD3 algorithm in phase matrix optimization of RIS-
aided networks toward realizing reliable and robust wireless
links over short packet communications.

In Fig. 3 the network sum rate is assessed in terms of
increasing the total number of reflective elements at the RIS. A
gap is also observed between the upperbound performance and
lowerbound case which demonstrates that the system actual
performance will lie between these two curves. Another result
from these curves, is that the total achievable rate in all cases
increases with the number of RIS elements, i.e., with/without
ideal/non-ideal RIS or with quantized phase shifts. The similar
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Fig. 3: The effect of increasing number of the RIS elements
on the total achievable rate of the system.

performance is also shown in FBL and Shannon rates. On the
other hand, the slopes of the curves are quite similar when the
number of RIS elements start to increase which additionally
shows the practicality of the proposed TD3 algorithm in
ideal/non-ideal reflective phase shift design problems.

V. CONCLUSION

In this paper, we have studied the reflective phase shift
design problem by a novel and efficient DRL algorithm in
RIS-aided URLLC systems over short packet communications.
First, the problem framework with the objective of maximizing
total FBL rate of ACs in a factory environment has been
proposed where the constraints are the discrete selection of
each phase value due to quantization process. Moreover,
the channel coefficients’ uncertainty due to transmission and
processing delay which leads to feedback delay has been
taken into account in the proposed formulations. Since the
proposed problem is challenging to solve via optimization-
based algorithms that are usually computationally inefficient,
we have introduced a policy gradient DRL framework based
on unsupervised actor-critic methods to optimize the phase

shifts which concurrently learns a Q-function and a policy.
The utilized DRL method, i.e., TD3 has addressed the issues in
the conventional DDPG method that dramatically overestimate
action-value function, which then leads to the policy breaking.
The numerical results demonstrate the applicability of the
proposed DRL method in RIS phase shift design problems
in short packet communications underlying URLLC systems.
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