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Abstract - The objective of this paper is to provide an
effective technique for accurate modeling of the external
input sequences that affect the behavior of Finite State
Machines (FSMs). The proposed approach relies on adaptive
modeling of binary input streams as Markov sour ces of fixed-
order. The input model itself is derived through a one-pass
traversal of the input sequence and can be used to generate
an equivalent sequence, much shorter in length compared to
the original sequence. The compacted sequence can be
subsequently used with any available simulator to derive the
steady-state and transition probabilities, and the total power
consumption in the target circuit. As the results demonstrate,
large compaction ratios of orders of magnitude can be
obtained without a significant loss (less than 3% on average)
in the accuracy of estimated values.

|. INTRODUCTION

In the last decade, probabilistic approaches have received a lot of
attention as a viable alternative to deterministic techniques for
analyzing complex digital systems. In particular, the behavior of
FSMs has been investigated using concepts from the Markov chain
theory. Studying the behavior of the Markov chain provides us
with different variables of interest of the origina FSM. In this
direction, [1][2] are excellent references where steady-state and
transition probabilities (as variables of interest) can be
successfully estimated in large FSMs. Both techniques are
analytical in nature and resort to some simplifying assumptions,
temporal independence on the primary inputs being the most
notable one. These assumptions, however, limit the applicability
and usefulness of the results. As a consequence, only logic
simulation of the actual set of inputs can finally assert the accuracy
of results.

Itis, however, impractical to simulate long sequences of vectors,
mostly when the target circuit is large or when many runs are
needed to evaluate a number of alternative designs. From this
perspective, a short/compact sequence of stimuli - which is
representative of the typical application data - would be desirable
to speed-up the simulation. Differently stated, the question to be
answered is. having a sequence S;, assumed representative of the
data applied to atarget sequential circuit, can we produce a shorter
sequence S, such that the steady-state and transition probabilities

of the signal lines are nearly preserved?

The aim of this paper is to address this issue and, based on a
new Markov model, to propose an effective way to solve it not
only for standard FSMs, but also for interacting FSMs. The
knowledge of steady-state and transition probabilities is a very
important topic by itself because both of them completely
characterize the FSM behavior. However, as a particular domain
where they have an immediate application, we chose the power
estimation area. Without loss of generality, we will consequently
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emphasize the applicability of the new results on sequence
compaction for power estimation.

Generating a minimal-length sequence of input vectors that

satisfies a prescribed set of statistics in not a trivia task. Two
effective techniques were recently presented in [3] [4] where the
authors succeed in compacting large sequences with very small
loss in accuracy. However, these approaches are suited only for
combinational circuits and consider only first-order temporal
effects (i.e. pairs of consecutive vectors) to perform sequence
compaction. As we will prove in this paper, in the case of FSMs,
this is insufficient for accurate estimation of transition
probabilities. Temporal correlations longer than one time step can
affect the overall behavior of the FSM and therefore, result in very
different power consumptions. Let us illustrate this point using a
simple example.
Example 1: Let S; and S, be two 4-bit sequences of length 26, as
shown in Fig.1a. These two sequences have exactly the same set of
first-order temporal statistics as shown in Fig. 1b. In thisfigure, we
provide the wordwise transition graph for these two sequences.
Each node in the graph represents to a distinct pattern which
occurs in S and S, (the topmost bit is the most significant one,
€0.inS;, vy =V, =1, v3="2",..., vog = ‘9"). Each edge represents
a valid trangition between two patterns and has a nonzero
probability associated with it. For instance, the pattern ‘13’ in S;
and S, is aways followed by ‘5 (thus the edge between nodes
‘13 and ‘5’ has the probability 1) whereas it is equally likely to
have either ‘3 or ‘7' after ‘2" (thus the outgoing edges from node
‘3’ have probability 0.5). We consider the graph in Fig.1b as a
compact, canonical, characterization of sequences S; and S,.
Suppose now that S; and S, are input to the benchmark s8 taken
from the menc’91 sequential suite. Looking at different internal
nodes of the circuit, we see that the total number of transitions
made by each node is very different when the circuit is simulated
with S; or S,. Moreover, the total power consumption at 20 MHz
is 384uW and 476uW, respectively, showing a difference of more
than 24% even for this small circuit. A natural question is then,
why does this difference appear, in spite of the fact that S; and S,
have the same characteristic graph plotted in Fig.1b.
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Thereasonisthat S; and S, have a different set of second-order
statistics that is, the sets of triplets (three consecutive patterns) are
different. For instance, thetriplet (1,2,7) in S, does not occur in Sy;
the same observation applies to the triplet (5,2,3) in S,. The
conclusion to note isthat having the same set of one-step transition
probabilities does not imply that the set of second-order or higher-
order statistics are identical and, as it was just illustrated in this



small example, for FSMs higher order statistics can make a
significant difference in total power consumption. The initia
problem of compacting an initial input sequence so as to preserve
the set of steady-state and transition probabilities of the FSM can
be now cast in terms of power asfollows: can we transform agiven
input sequence into a shorter one, such that the new body of datais
a good approximation of the initial sequence as far as total power
consumption is concerned?

Addressing these issues, the present paper improves the state-of -
the-art in two ways. Firgt, it shows the effect of finite-order
statistics of the input sequence on FSMs behavior. Second, based
on the vector compaction paradigm, it provides an original
solution for power estimation problem in FSMs and interacting
FSMs. Among the theoretical results provided here, three are
noteworthy for probabilisic FSM anaysis. First, under the
stationarity and ergodicity assumptions, completely capturing the
characteristics of the external inputs of the FSM is sufficient to
jointly characterize the input and state lines. Second, if the
sequence feeding the target circuit has order k, then alag-k Markov
chain model of the sequence will suffice to model correctly the
joint transition probabilities of the primary inputs and internal
states in the target circuit. Lastly, if the input sequence has order
two or higher, then modeling it as a lag-one Markov Chain cannot
exactly preserve the first-order joint transition probabilities
(primary inputs and internal states) in the target circuit.

The foundation of our approach is probabilistic in nature; it
relies on adaptive (dynamic) modeling of binary input streams as
first-order and higher-order Markov sources of information. The
adaptive modeling technique itself (best known as Dynamic
Markov Chain or DMC modeling) was used very recently for
power estimation [4]. However, this formulation is not completely
satisfactory for our purpose; in order to capture high-order
temporal effects, we thus extend the initial formulation to handle
groups of more than two consecutive input vectors.

The paper is organized as follows: section Il formalizes the
power-oriented vector compaction problem. Next, based on
Markovian information sources, we present in section 111 the main
results about the effect of finite-order statistics on FSM and
interacting FSM behavior. Section IV introduces a DMC-based
procedure for vector compaction. In section V we present some
experimental results and finally, we conclude by summarizing our
main contribution.

II. DATA COMPACTION FOR POWER ESTIMATION

Assuming that a gate level implementation is available, one can
estimate the total power dissipation by summing over al the gates
in the circuit the average power dissipation due to the capacitive
f
switching currents, that is. P, 4 = %‘k - VED - Z(Cn “SW,)
n

where fg is the clock frequency, Vpp is the supply voltage, C,
and swj, are the capacitance and the average switching activity of
gate n, respectively. From here, the average switching activity per
node is the key parameter that needs to be correctly determined.
However, this parameter is highly sensitive to the input statistics,
namely it depends significantly on transition probabilities among
different signal lines. As shown in the previous section, high-order
information sources make a significant difference in power
consumption for sequential machines.

The vector compaction problem for FSMs is formulated as
follows: for any sequence of length L, find another sequence of
length L « Lg (consisting of a subset of vectors from the original
sequence), such that the average joint transition probability on the
primary inputs and present state lines is preserved wordwise, for
k+ 1 consecutive time steps. More formally, the following holds:

P(XySnXn—1Sh— 1+ Xn—kSh—K)~ <e D

- p(annxn—lsn—l'"Xn—ksn—k)

where p and p’ are the probabilities in the original and compacted
sequences, respectively. This condition simply requires that the
joint transition probability for inputs and states (x;S;) is preserved
within a given level of error for k + 1 consecutive time steps.
Before going further, we note the particular case when k = 1,
which is the theoretical basis of vector compaction techniques
recently published in [3][4].

I1l. MARKOVIAN SOURCES OF INFORMATION

A. Finite-order memory models

Without loss of generality, we restrict ourselves to finite binary
strings, that is, finite sequences consisting only of O'sand 1's. The
set of events of interest isthe set Sof al finite binary sequences on
b bits. A particular sequence S; in Sconsists of vectorsvy, vs,..., Vy,
(which may be distinct or not), each having a positive occurrence
probability. An attractive subclass of information sources is the
class of Markov sources which can be conveniently modeled as
Markov chains of finite-order.

Definition 1. (lag-k Markov chain) A discrete stochastic process
{Vn} n>1 issaid to be alag-k Markov chain if a any time step n >

k1 p(Vy|Vn_1Vno2:--V1) = P(V|Vn_1Vn_2-+-Vn_k) @

In particular, any lag-one Markov source, is characterized by
the set of states (nodes in the corresponding graph representation)
and the set of transition probabilities p;; from state v; to the next
state v;. We note that any lag-k Markov chain can be reduced to a
lag-one Markov chain using the following (all proofsarein [8]):
Proposition 1. If {up}, >1 is alag-k Markov chain then {vp}p 51
where vV, = (Up, Unttres Uniker)s 1S @ multivariate first-order
Markov chain.

B. The effect of finite-order statistics on FSM behavior

Now we turn our attention from the input sequence to the circuit
and investigate the effect of input statistics on the transition
probabilities (primary inputs and present state lines) in the target
circuit. As shown in Fig.2, we model the ‘tuple’ (input_sequence,
FSM) by the ‘tuple’ (Markov_chain, FSM), where Markov_chain
models the input_sequence and FSM is the sequential machine
where the transition probabilities have to be determined. In what
follows, X, S, will denote the inputs and states of the target
sequential machine; p(x,s,) is the probability that the input is x,
and the stateis s, at time step n.

input target
@& -
Xn

2, = OUt(Xn,Sy)

Sh S 1 = NeXt(Xy,Sn)

Fig.2: The tuple (Markov-Chain, FSM)

We are interested in defining the joint probabilities p(x,s,) and
P(XnSh*n-1Sn-1) because, as we can see in Fig.2, they capture the
characteristics of the input (primary inputs and present state lines)
that feeds the next state and the output logic of the target circuit.
Under the general assumptions of stationarity and ergodicity, we
can prove the following result:

|
I
Markov chain | PCnsh) Logic
|
|




Theorem 1. If the input X,, applied to a target sequential circuit

can be modeled by alag-k Markov chain then, for any n > k+1 the
following holds:

p(xnsn_k‘xn_lxn_z...xn_k) = 2
= p(xn‘xn—lxn—z"'xn—k) ' p(sn—k‘xn—lxn—Z"'Xn—k)

Theorem 2. If the sequence feeding a target sequentia circuit has
order k, then a lag-k Markov chain which correctly models the
input seguence, aso correctly models the k-step conditional
probabilities of the primary inputs and internal states, that is
P(XSn1Xn-15n-1%n-25h-2+Xn-kSn-k) = P(XnlXn-1%n-2-+Xn-1)-

We note therefore that preserving order-k statistics implies also
that order-k statistics will be captured for inputs and states. In
general, modeling a k-order source with a lower order model may
introduce accumulative inaccuracies. From a practical point of
view, this means that underestimating a high-order source, one
may end up not preserving correctly even the first-order transition
probabilities. In terms of power consumption, this will adversely
affect the quality of the results. However, we will show later that
increasing the order of the input model will decrease the error in
correctly capturing the joint transition probabilities for inputs and
states.

C.Interacting FSMs and high-order information sources

Modern designs where interacting finite state machines are present
offer a good example where high-order information sources have
found applicability. As presented in [5], the decomposition of large
FSMs into smaller, interacting FSMs may be useful for both area
and performance reasons. In practice, three options are available:
parallel decomposition (both submachines are supplied with the
same input sequence, but operate independently), cascade
decomposition (one submachine has information about the internal
state of the another one) and finaly, a type of complex
decomposition where each submachine is provided with
information about the current state of the other submachine.
Having on inputs a Markov source of order k, any of the
aforementioned topologies may increase the order of the source at
the output. However, we may assume a finite-order Markov source
for the output, since for a given level of accuracy, there exists a
genera result that guarantees the existence of a finite limit in the
resulting order:
Theorem 3. [6] Let P = (pjj)1 <, j < n be the transition probability
matrix of alag-one Markov chain { X}, >, with N states. If p;; >0
foranyi,jand A = mini’j’kyl—;&
N™-pjj - Py
function z, = f (x,,) the following holds V k and X,...1 # X n-k-ll:
p(zn‘zn—l'“zn—kxn—k—l) -

_p(zn‘zn—l“'Zn—kxln—k—l)

In other words, this theorem states that even if the output is not

of finite order, it can be approximated as such up to a bounded
error. Based on this result, we can prove the following:
Corallary 2. Assume that the input of the FSM can be written as x,,
= f(w,)) where f is an arbitrary function and {w}, »1 is a lag-one
Markov chain. If the order of the Markov model used to represent
the input is increased, then the error for estimating the joint
transition probabilities for inputs and states decreases.

Thus, the error of using a finite-order model for a non-finite
order discrete process decreases exponentialy with the order
used. Hence, the larger the order, the better we approximate the
model on the input and also the joint transition probabilities for
inputs and states.

, then for any arbitrary

<(1-1)" 3

11t can also be shown that A is less than one. The result may be extended to Markov
chains of order greater than one.

IV. HIGH-ORDER DYNAMIC MARKOV MODELS

Dynamic Markov Chain (DMC) technique was introduced in the
literature of data compression few years ago and used recently to
adaptively compact data for power simulators [4]. The structure
DMT; used by authors in [4] is general enough to capture
completely the correlations among al bits of the same input vector
and also between two successive input patterns. However, it has
conceptually no inherent limitation to be further extended to
capture temporal dependencies of higher orders.

p(vi@ 7 DM T,
] DMT,

p(Vk|ViVj)$

Fig.3: A high-order Markov tree
For instance, if we continue to define recursively DMT, (as a
function of DMT,), we can basicaly capture second-order
temporal correlations. For any sequence where v;, v;, v are three
consecutive vectors (that is, v; — v; — V), the tree DMT, looks

likein Fig.3.

The following result, gives the theoretical basis for using the
DMC technique to capture high-order temporal correlations.
Theorem 3. The genera structure DMT, and its parameters
completely capture spatial and temporal correlations of order k.

In practice, we can imagine the following simple procedure for
vector compaction: during a one-pass traversal of the original
sequence (when we extract the bit-level satistics of each
individual vector vq,vs...,v,, and those corresponding to p < k+1
consecutive  vectors  (ViVo..Vp), (VoVz..Vpiq),.) We  grow
simultaneously the tree DMT, up to the end of the origina
sequence. This is followed by a generation phase driven by the
user-specified compaction parameter ratio that is, atotal of m=n/
ratio vectors are generated. The generation procedure uses a
modified version of the dynamic weighted selection algorithm [7].
The pseudocode for the generation procedure and a detailed
example can be found in [8]. We note that this strategy does note
alow ‘forbidden’ vectors that is, those combinations that did not
occur in the original sequence, will not appear in the final
compacted sequence either. This is an essential capability needed
to avoid ‘hang-up’ (‘forbidden’) states of the sequential circuit
during simulation process for power estimation.

DMT,

V. EXPERIMENTAL RESULTS
The overal strategy is depicted in Fig.4.
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Fig.4: Experimental setup
We assume that the input data is given in the form of a sequence of
binary vectors. Starting with an k-bit input sequence of length n,
we perform a one-pass traversal of the original sequence and
simultaneously build the basic tree DMT,; during this process, the
frequency counts on DMT|’s edges are dynamically updated. The




next step in Fig.4 does the actual generation of the output sequence
(of length m). If the initial sequence has the length n and the new
generated sequence has the length m < n then the outcome of this
process is acompacted sequence, equivalent to theinitial one asfar
astotal power consumption is concerned; we say that a compaction
ratio of r = n/mwas achieved. Finaly, avalidation step isincluded
in the strategy; we have used an in-house gate-level logic simulator
developed under SIS. The total power consumption of some
menc'91 and 1SCAS 89 benchmarks has been measured for the
initial and the compacted sequences, making it possible to assess
the effectiveness of the compaction procedure (under both zero-
and real-delay models).

In Table 1, we provide only the real-delay power dissipation
results for different initial sequences of 4,000 vectors for menc' 91
circuits and 10,000 vectors for ISCAS 89 circuits. These sequences
were produced using a second order information source based on
the Fibonacci series. As shown in Table 1, the sequences were
compacted with two different compaction ratios (namely r =5 and
10) using two Markov models: one of order one and ancther one
having order two. We give in this table the total power dissipation
measured for the initiadl sequence (column 3) and for the
compacted sequence using both models (columns 4-7). On a Sparc
20 workstation with 64 Mbytes of memory, the time necessary to
read and compress data was less than 5 sec. for both models. Since
the compaction with DMC modeling is linear in the number of
nodes in the structure DMT,,, these time values are far less than the

actual time needed to simulate the whole sequence. During these
experiments, the number of nodes allowed in the Markov model
was on average 10,000 for mcnc'91 circuits and 200,000 for
ISCAS 89 circuits.

Table 1: Total Power (UW@20MHz) for sequences of order 2

Power forr =5 Power forr =10
Circuit Inputs/ lP(‘Jvlver for Order 1 Order 2 Order 1 Order 2
FFs | initial seq.

bbara 4/4 747.10 838.12 748.22 866.76 744.99
dk17 2/3 1439.43 | 1281.30 | 1438.10 [ 1250.20 | 1438.00
mc 3/2 295.84 212.39 291.11 196.76 287.85
planet 716 8517.14 | 4649.90 | 8046.20 | 3596.80 | 7565.50
shiftreg | 173 144.60 115.26 144.22 109.73 143.84
s1196 | 14/18 | 7025.31 6842.34 7023.21 6668.36 6995.10
s1423 | 17/74 | 5624.64 | 5335.58 | 5557.52 | 5203.98 | 5489.51

s5378 | 357164 | 13826.55 | 13576.21 | 13812.21 | 13304.25 | 13762.15
s820 18/5 . 3839.72 | 4026.35 | 3668.74 | 4301.42
s9234 | 36/211 | 12531.45 | 12796.41 | 12334.32 | 13037.15 | 12271.23

Avg.% err. 14.55 1.29 17.47 2.44

As we can see, for the model of order 2, the quality of results
is very good even when the length of the initial sequence is
reduced by one order of magnitude. Thus, for bbara in Table 1,
instead of simulating 4,000 vectors with an exact power of
747.10uW, one can use only 800 vectors (r = 5) with an estimate
of 74822uW or just 400 vectors (r = 10) with power
consumption estimated as 744.99uW. This reduction in the
sequence length has a significant impact on speeding-up the
simulative approaches where the running time is proportional to
the length of the sequence which must be simulated. On the other
side, using a first-order model, the quality of the results can be
seriously impaired. For instance, in the case of benchmark planet,
we can erroneously predict a total power of 3596.80uW (57.78%
error) if r = 10. This is because for a sequence generated with a
second-order source, a model that considers only pairs of two
consecutive vectors cannot preserve correctly even the first-order
transition probabilities for the primary inputs and state lines.

We a so studied the sensitivity of the proposed approach to the
choice of initial seeds used for random excitation of the DMC
model. Using different seeds for the random number generator,
we run a set of 1,000 experiments for the DMC technique. In
amost al cases, the second-order model yielded errors less than
5% compared to the exact smulation. On the other hand, using a

first-order model significantly impaired the accuracy of the
results: for some circuits, more than 80% of the runs produced
results with more than 10% error compared to the original
sequence.

To assess the importance of correctly modeling the input
sequence, we give in Table 2 our results for cascade and complex
configurations with a compaction ratio of 5. In the first case we
cascaded benchmarks ex4 (from menc' 91 suite) and s1196 (from
ISCAS 89 suite) and we estimated the total power consumption
for both of them. In the second case, we used a complex topology
where benchmarks ex3 and planet interact. Looking at the results
in Table 2 we can conclude that only the second order model is
appropriate for this type of analysis.

Table 2: Total Power (UW@20MHz) for sequences of order 2 for interacting FSMs

} . Power for Power for Power for
Configuration Inputs/FFs initial seq. order 1 order 2
cascade 6/22 5762.03 6158.38 5772.68
interacting 6/10 11278.65 10290.09 11188.82
Avg.% err. 7.82 0.49

We note that using a lower order model than needed may also
significantly impair our ability to correctly estimate the switching
activity in anode-by-node analysis. Typical resultsare givenin [8].

V1. CONCLUSION

In this paper we investigated from a probabilistic point of view the
effect of finite-order statistics of the input sequence on FSM and
interacting FSM behavior. Based on dynamic Markov modeling,
we proposed an effective approach to compress an initial sequence
into a much shorter one such that the steady state and transition
probabilities (and therefore the total power consumption) in the
target circuit are preserved.

The mathematical foundation of this approach relies on adaptive
modeling of binary input streams as first- and higher-order Markov
sources of information. For the first time to our knowledge, the
effect of temporal correlations longer that one clock-cycle on the
power dissipation in FSMs and networks of interacting FSMs was
studied. As shown by the experimental results, large compaction
ratios can be obtained with less than 3% loss in accuracy for total
and node-by-node power consumption.

The results presented in this paper represent an important step
towards understanding the FSM behavior from a probabilistic
point of view.
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