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Abstract
Remote photoplethysmography (rPPG), which aims at

measuring heart activities and physiological signals from
facial video without any contact, has great potential in
many applications. Recent deep learning approaches fo-
cus on mining subtle rPPG clues using convolutional neu-
ral networks with limited spatio-temporal receptive fields,
which neglect the long-range spatio-temporal perception
and interaction for rPPG modeling. In this paper, we
propose the PhysFormer, an end-to-end video transformer
based architecture, to adaptively aggregate both local and
global spatio-temporal features for rPPG representation
enhancement. As key modules in PhysFormer, the tempo-
ral difference transformers first enhance the quasi-periodic
rPPG features with temporal difference guided global at-
tention, and then refine the local spatio-temporal represen-
tation against interference. Furthermore, we also propose
the label distribution learning and a curriculum learning
inspired dynamic constraint in frequency domain, which
provide elaborate supervisions for PhysFormer and al-
leviate overfitting. Comprehensive experiments are per-
formed on four benchmark datasets to show our supe-
rior performance on both intra- and cross-dataset testings.
One highlight is that, unlike most transformer networks
needed pretraining from large-scale datasets, the proposed
PhysFormer can be easily trained from scratch on rPPG
datasets, which makes it promising as a novel transformer
baseline for the rPPG community. The codes are available
at https://github.com/ZitongYu/PhysFormer.

1. Introduction

Physiological signals such as heart rate (HR), respiration
frequency (RF), and heart rate variability (HRV) are impor-
tant vital signs to be measured in many circumstances, es-
pecially for healthcare or medical purposes. Traditionally,
the Electrocardiography (ECG) and Photoplethysmograph
(PPG) are the two most common ways for measuring heart
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Figure 1. The trajectories of rPPG signals around t1, t2, and t3
share similar properties (e.g., trends with rising edge first then
falling edge later, and relatively high magnitudes) induced by skin
color changes. It inspires the long-range spatio-temporal attention
(e.g., blue tube around t1 interacted with red tubes from intra- and
inter-frames) according to their local temporal difference features
for quasi-periodic rPPG enhancement. Here ‘tube’ indicates the
same regions across short-time consecutive frames.

activities and corresponding physiological signals. How-
ever, both ECG and PPG sensors need to be attached to
body parts, which may cause discomfort and are inconve-
nient for long-term monitoring. To counter for this issue,
remote photoplethysmography (rPPG) [11, 35, 65] methods
are developing fast in recent years, which aim to measure
heart activity remotely without any contact.

In earlier studies of facial rPPG measurement, most
methods analyze subtle color changes on facial regions
of interest (ROI) with classical signal processing ap-
proaches [29, 48, 49, 54, 56]. Besides, there are a few
color subspace transformation methods [12, 58] which uti-
lize all skin pixels for rPPG measurement. Based on the
prior knowledge from traditional methods, a few learning
based approaches [24, 43, 44, 50] are designed as non-end-
to-end fashions. ROI based preprocessed signal represen-
tations (e.g., time-frequency map [24] and spatio-temporal
map [43, 44]) are generated first, and then learnable mod-
els could capture rPPG features from these maps. However,
these methods need the strict preprocessing procedure and
neglect the global contextual clues outside the pre-defined
ROIs. Meanwhile, more and more end-to-end deep learn-
ing based rPPG methods [10, 33, 52, 64, 66] are developed,
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which treat facial video frames as input and predict rPPG
and other physiological signals directly. However, pure end-
to-end methods are easily influenced by the complex sce-
narios (e.g., with head movement and various illumination
conditions) and rPPG-unrelated features can not be ruled
out in learning, resulting in large performance decrease [62]
in realistic datasets (e.g., VIPL-HR [44]).

Recently, due to its excellent long-range attentional mod-
eling capacities in solving sequence-to-sequence issues,
transformer [21, 31] has been successfully applied in many
artificial intelligence tasks such as natural language pro-
cessing (NLP) [55], image [14] and video [3] analysis. Sim-
ilarly, rPPG measurement from facial videos can be treated
as a video sequence to signal sequence problem, where the
long-range contextual clues should be exploited for seman-
tic modeling. As shown in Fig. 1, rPPG clues from different
skin regions and temporal locations (e.g., signal trajectories
around t1, t2, and t3) share similar properties (e.g., trends
with rising edge first then falling edge later and relative
high magnitudes), which can be utilized for long-range fea-
ture modeling and enhancement. However, different from
the most video tasks aiming at huge motion representation,
facial rPPG measurement focuses on capturing subtle skin
color changes, which makes it challenging for global spatio-
temporal perception. Furthermore, video-based rPPG mea-
surement is usually a long-time monitoring task, and it is
challenging to design and train transformers with long video
sequence inputs.

Motivated by the discussions above, we propose an end-
to-end video transformer architecture, namely PhysFormer,
for remote physiological measurement. On one hand, the
cascaded temporal difference transfomer blocks in Phys-
Former benefit the rPPG feature enhancement via global
spatio-temporal attention based on the fine-grained tempo-
ral skin color differences. On the other hand, to alleviate
the interference-induced overfitting issue and complement
the weak temporal supervision signals, elaborate supervi-
sion in frequency domain is designed, which helps Phys-
Former learn more intrinsic rPPG-aware features.

The contributions of this work are as follows:
• We propose the PhysFormer, which mainly consists

of a powerful video temporal difference transformer
backbone. To our best knowledge, it is the first time
to explore the long-range spatio-temporal relationship
for reliable rPPG measurement.

• We propose an elaborate recipe to supervise Phys-
Former with label distribution learning and curriculum
learning guided dynamic loss in frequency domain to
learn efficiently and alleviate overfitting.

• We conduct intra- and cross-dataset testings and show
that the proposed PhysFormer achieves superior or on
par state-of-the-art performance without pretraining on
large-scale datasets like ImageNet-21K.

2. Related Work

Remote physiological measurement. An early study
of rPPG-based physiological measurement was reported
in [56]. Plenty of traditional hand-crafted approaches have
been developed on this field since then. Selective merg-
ing information from different color channels [29,48,49] or
different ROIs [26, 29] are proven to be efficient for sub-
tle rPPG signal recovery. To improve the signal-to-noise-
ratio of the recovered rPPG signals, several signal decom-
position methods such as independent component analy-
sis (ICA) [26, 48, 49] and matrix completion [54] are also
proposed. In recent years, deep learning based approaches
dominate the field of rPPG measurement due to the strong
spatio-temporal representation capabilities. On one hand,
facial ROI based spatial-temporal signal maps [39, 40, 43,
45,46] are developed, which alleviate the interference from
non-skin regions. Based on these signal maps, 2D-CNNs
are utilized for rPPG feature extraction. On the other hand,
end-to-end spatial networks [10, 52] and spatio-temporal
models [19,33,34,47,62,64,66] are developed, which could
recover rPPG signals from the facial video directly. How-
ever, previous methods only consider the spatio-temporal
rPPG features from adjacent frames and neglect the long-
range relationship among quasi-periodic rPPG features.

Transformer for vision tasks. Transformer [31] is pro-
posed in [55] to model sequential data in the field of
NLP. Then vision transformer (ViT) [14] is proposed re-
cently by feeding transformer with sequences of image
patches for image classification. Many other ViT variants
[8, 13, 21, 22, 25, 37, 53, 59, 69] are proposed from then,
which achieve promising performance compared with its
counterpart CNNs for image analysis tasks [6, 23, 73]. Re-
cently, some works introduce vision transformer for video
understanding tasks such as action recognition [1, 3, 4, 15,
20, 38, 41], action detection [36, 57, 61, 72], video super-
resolution [5], video inpainting [32, 70], and 3D anima-
tion [9]. Some works [20, 41] conduct temporal contextual
modeling with transformer based on single-frame features
from pretrained 2D networks, while other works [1, 3, 4,
15, 38] mine the spatio-temporal attentions via video trans-
former directly. Most of these works are incompatible for
long-video-sequence (>150 frames) signal regression task.
There are two related works [34, 63] using ViT for rPPG
feature representation. TransRPPG [63] extracts rPPG fea-
tures from the preprocessed signal maps via ViT for face 3D
mask presentation attack detection [67]. Based on the tem-
poral shift networks [30,33], EfficientPhys-T [34] adds sev-
eral swin transformer [37] layers for global spatial attention.
Different from these two works, the proposed PhysFormer
is an end-to-end video transformer, which is able to capture
long-range spatio-temporal attentional rPPG features from
facial video directly.
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Figure 2. Framework of the PhysFormer. It consists of a shallow stem, a tube tokenizer, several temporal difference transformers, and a
rPPG predictor head. The temporal difference transformer is formed from the Temporal Difference Multi-head Self-attention (TD-MHSA)
and Spatio-temporal Feed-forward (ST-FF) modules, which enhances the global and local spatio-temporal representation, respectively.
‘TDC’ is short for the temporal difference convolution [62, 68].

3. Methodology
We will first introduce the architecture of PhysFormer in

Sec. 3.1, then introduce label distribution learning for rPPG
measurement in Sec. 3.2, and at last present the curriculum
learning guided dynamic supervision in Sec. 3.3.

3.1. PhysFormer

As illustrated in Fig. 2, PhysFormer consists of a shal-
low stem Estem, a tube tokenizer Etube, N temporal differ-
ence transformer blocks Ei

trans (i = 1, ..., N ) and a rPPG
predictor head. Inspired by the study in [60], we adopt
a shallow stem to extract coarse local spatio-temporal fea-
tures, which benefits the fast convergence and clearer subse-
quent global self-attention. Specifically, the stem is formed
by three convolutional blocks with kernel size (1x5x5),
(3x3x3) and (3x3x3), respectively. Each convolution op-
erator is cascaded with a batch normalization (BN), ReLU
and MaxPool. The pooling layer only halves the spatial
dimension. Therefore, given an RGB facial video input
X ∈ R3×T×H×W , the stem output Xstem = Estem(X),
where Xstem ∈ RD×T×H/8×W/8, and D, T , W , H indicate
channel, sequence length, width, height, respectively. Then
Xstem would be partitioned into spatio-temporal tube tokens
Xtube ∈ RD×T ′×H′×W ′

via the tube tokenizer Etube. Subse-
quently, the tube tokens will be forwarded with N temporal
difference transformer blocks and obtain the global-local re-
fined rPPG features Xtrans, which has the same dimensions
with Xtube. Finally, the rPPG predictor head temporally up-
samples, spatially averages, and projects the features Xtrans

to 1D signal Y ∈ RT .
Tube tokenization. Here the coarse feature Xstem would
be partitioned into non-overlapping tube tokens via
Etube(Xstem), which aggregates the spatio-temporal neigh-
bor semantics and reduces computational costs for the sub-
sequent transformers. Specifically, with the targeted tube
size Ts × Hs × Ws (the same as the partition step size
in non-overlapping setting), the tube token map Xtube ∈
RD×T ′×H′×W ′

has length, height and width

T ′ =

⌊
T

Ts

⌋
, H ′ =

⌊
H/8

Hs

⌋
,W ′ =

⌊
W/8

Ws

⌋
. (1)

Please note that there are no position embeddings after the
tube tokenization as the stem at early stage already captures
relative spatio-temporal positions.

Temporal difference multi-head self-attention. In self-
attention mechanism [14, 55], the relationship between the
tokens is modeled by the similarity between the projected
query-key pairs, yielding the attention score. Instead of
point-wise linear projection, we utilize temporal difference
convolution (TDC) [62, 68] for query (Q) and key (K) pro-
jection, which could capture fine-grained local temporal dif-
ference features for subtle color change description. TDC
with learnable w can be formulated as
TDC(x) =

∑
pn∈R

w(pn) · x(p0 + pn)︸ ︷︷ ︸
vanilla 3D convolution

+θ · (−x(p0) ·
∑

pn∈R′
w(pn))︸ ︷︷ ︸

temporal difference term

,

(2)



where p0, R and R′ indicate the current spatio-temporal
location, sampled local (3x3x3) neighborhood and sampled
adjacent neighborhood, respectively. Then query and key
are projected as

Q = BN(TDC(Xtube)),K = BN(TDC(Xtube)). (3)

For the value (V ) projection, point-wise linear projection
without BN is utilized. Then Q,K, V ∈ RD×T ′×H′×W ′

are flattened into sequence, and separated into h heads
(Dh = D/h for each head). For the i-th head (i ≤ h),
the self-attention (SA) can be formulated

SAi = Softmax(QiK
T
i /τ)Vi, (4)

where τ controls the sparsity. We find that the default set-
ting τ =

√
Dh in [14, 55] performs poorly for rPPG mea-

surement. According to the periodicity of rPPG features,
we use smaller τ value to obtain sparser attention activa-
tion. The corresponding study can be found in Table 6. The
output of TD-MHSA is the concatenation of SA from all
heads and then with a linear projection U ∈ RD×D

TD-MHSA = Concat(SA1; SA2; ...; SAh)U. (5)

As illustrated in Fig. 2, residual connection and layer nor-
malization (LN) would be conducted after TD-MHSA.

Spatio-temporal feed-forward. The vanilla feed-forward
network consists of two linear transformation layers, where
the hidden dimension D′ between two layers is expanded to
learn a richer feature representation. In contrast, we intro-
duce a depthwise 3D convolution (with BN and nonlinear
activation) between these two layers with extra slight com-
putational cost but remarkable performance improvement.
The benefits are two-fold: 1) as a complementation of TD-
MHSA, ST-FF could refine the local inconsistency and parts
of noisy features; 2) richer locality provides TD-MHSA suf-
ficient relative position cues.

3.2. Label Distribution Learning

Similar to the facial age estimation task [17, 18] that
faces at close ages look quite similar, facial rPPG signals
with close HR values usually have similar periodicity. In-
spired by this observation, instead of considering each facial
video as an instance with one label (HR), we regard each
facial video as an instance associated with a label distribu-
tion. The label distribution covers a certain number of class
labels, representing the degree that each label describes the
instance. Through this way, one facial video can contribute
to both targeted HR value and its adjacent HRs.

To consider the similarity information among HR classes
during the training stage, we model the rPPG-based HR es-
timation problem as a specific L-class multi-label classifi-
cation problem, where L=139 in our case (each integer HR
value within [42, 180] bpm as a class). A label distribu-
tion p = {p1, p2, ..., pL} ∈ RL is assigned to each facial

video X . It is assumed that each entry of p is a real value
in the range [0,1] such that

∑L
k=1 pk = 1. We consider the

Gaussian distribution function, centred at the ground truth
HR label YHR with the standard deviation σ, to construct the
corresponding label distribution p.

pk =
1√
2πσ

exp

(
− (k − (YHR − 41))2

2σ2

)
. (6)

The label distribution loss can be formulated as LLD =
KL(p,Softmax(p̂)), where divergence measure KL(·) de-
notes the Kullback-Leibler (KL) divergence [16], and p̂ is
the power spectral density (PSD) of predicted rPPG signals.

Please note that the previous work [42] also considers
the distribution learning for HR estimation. However, it is
totally different with our work: 1) the motivation in [42] is
to smooth the temporal HR outliers caused by facial move-
ments across continuous video clips, while our work is more
generic, aiming at efficient feature learning across adjacent
labels under limited-scale training data; 2) the technique
used in [42] is after a post-HR-estimation for the hand-
crafted rPPG signals, while our work is to design a reason-
able supervision signal LLD for PhysFormer.

3.3. Curriculum Learning Guided Dynamic Loss

Curriculum learning [2], as a major machine learning
regime with philosophy of easy-to-hard curriculum, is uti-
lized to train PhysFormer. In the rPPG measurement task,
the supervision signals from temporal domain (e.g., mean
square error loss [10], negative Pearson loss [64, 66]) and
frequency domain (e.g., cross-entropy loss [45, 62], signal-
to-noise ratio loss [52]) provide different extents of con-
straints for model learning. The former one gives signal-
trend-level constraints, which is straightforward and easy
for model convergence but overfitting after that. In con-
trast, the latter one with strong constraints on frequency do-
main enforces the model learning periodic features within
target frequency bands, which is hard to converged well
due to the realistic rPPG-irrelevant noise. Inspired by the
curriculum learning, we propose the dynamic supervision
to gradually enlarge the frequency constraints, which alle-
viates the overfitting issue and benefits the intrinsic rPPG-
aware feature learning gradually. Specifically, exponential
increment strategy is adopted, and comparison with other
dynamic strategies (e.g., linear increment) will be shown in
Table 7. The dynamic loss Loverall can be formulated as

Loverall = α · Ltime︸ ︷︷ ︸
temporal

+β · (LCE + LLD)︸ ︷︷ ︸
frequency

,

β = β0 · (η(Epochcurrent−1)/Epochtotal),

(7)

where hyperparameters α, β0 and η equal to 0.1, 1.0 and
5.0, respectively. Negative Pearson loss [64, 66] and fre-
quency cross-entropy loss [45, 62] are adopted as Ltime and



LCE, respectively. With the dynamic supervision, Phys-
Former could perceive better signal trend at the beginning
while such perfect warming up facilitates the gradually
stronger frequency knowledge learning later.

4. Experimental Evaluation
Experiments of rPPG-based physiological measurement

for three types of physiological signals, i.e., heart rate (HR),
heart rate variability (HRV), and respiration frequency (RF),
are conducted on four benchmark datasets (VIPL-HR [44],
MAHNOB-HCI [51], MMSE-HR [54], and OBF [28]).

4.1. Datasets and Performance Metrics

VIPL-HR [44] is a large-scale dataset for remote phys-
iological measurement under less-constrained scenarios. It
contains 2,378 RGB videos of 107 subjects recorded with
different head movements, lighting conditions and acqui-
sition devices. MAHNOB-HCI [51] is one of the most
widely used benchmark for remote HR measurement evalu-
ations. It includes 527 facial videos of with 61 fps framerate
and 780x580 resolution from 27 subjects. MMSE-HR [54]
is a dataset including 102 RGB videos from 40 subjects, and
the raw resolution of each video is at 1040x1392. OBF [28]
is a high-quality dataset for remote physiological signal
measurement. It contains 200 five-minute-long RGB videos
with 60 fps framerate recorded from 100 healthy adults.

Average HR estimation task is evaluated on all four
datasets while HRV and RF estimation tasks on high-quality
OBF [28] dataset. Specifically, we follow existing meth-
ods [40, 45, 66] and report low frequency (LF), high fre-
quency (HF), and LF/HF ratio for HRV and RF estimation.
We report the most commonly used performance metrics
for evaluation, including the standard deviation (SD), mean
absolute error (MAE), root mean square error (RMSE), and
Pearson’s correlation coefficient (r).

4.2. Implementation Details

Our proposed method is implemented with Pytorch. For
each video clip, we use the MTCNN face detector [71]
to crop the enlarged face area at the first frame and fix
the region through the following frames. The videos in
MAHNOB-HCI and OBF are downsampled to 30 fps for ef-
ficiency. The settings N=12, h=4, D=96, D′=144 are used
for PhysFormer while θ=0.7 and τ=2.0 for TD-MHSA. The
targeted tube size Ts ×Hs ×Ws equals to 4×4×4. In the
training stage, we randomly sample RGB face clips with
size 160×128×128 (T×H×W ) as model inputs. Random
horizontal flipping and temporally up/down-sampling [62]
are used for data augmentation. The PhysFormer is trained
with Adam optimizer and the initial learning rate and weight
decay are 1e-4 and 5e-5, respectively. We cannot find ob-
vious performance improvement using AdamW optimizer.
We train models with 25 epochs with fixed setting α=0.1

Table 1. Intra-dataset testing results on VIPL-HR [44]. The sym-
bols ▲, ♦ and ⋆ denote traditional, non-end-to-end learning based
and end-to-end learning based methods, respectively. Best results
are marked in bold and second best in underline.

Method
SD ↓
(bpm)

MAE ↓
(bpm)

RMSE ↓
(bpm)

r ↑

Tulyakov2016 [54]▲ 18.0 15.9 21.0 0.11
POS [58]▲ 15.3 11.5 17.2 0.30
CHROM [12]▲ 15.1 11.4 16.9 0.28

RhythmNet [44]♦ 8.11 5.30 8.14 0.76
ST-Attention [46]♦ 7.99 5.40 7.99 0.66
NAS-HR [39]♦ 8.10 5.12 8.01 0.79
CVD [45]♦ 7.92 5.02 7.97 0.79
Dual-GAN [40]♦ 7.63 4.93 7.68 0.81

I3D [7]⋆ 15.9 12.0 15.9 0.07
PhysNet [64]⋆ 14.9 10.8 14.8 0.20
DeepPhys [10]⋆ 13.6 11.0 13.8 0.11
AutoHR [62]⋆ 8.48 5.68 8.68 0.72
PhysFormer (Ours)⋆ 7.74 4.97 7.79 0.78

for temporal loss while exponentially increased parameter
β ∈ [1, 5] for frequency losses. We set σ=1.0 for label dis-
tribution learning. The batch size is 4 on one 32G V100
GPU. In the testing stage, similar to [44], we uniformly sep-
arate 30-second videos into three short clips with 10 sec-
onds, and then video-level HR is calculated via averaging
HRs from three short clips.

4.3. Intra-dataset Testing

HR estimation on VIPL-HR. In these experiments,
we follow [44] and use a subject-exclusive 5-fold cross-
validation protocol on VIPL-HR. As shown in Table 1, all
three traditional methods (Tulyakov2016 [54], POS [58]
and CHROM [12]) perform poorly due to the complex sce-
narios (e.g., large head movement and various illumination)
in the VIPL-HR dataset. Similarly, the existing end-to-end
learning based methods (e.g., PhysNet [64], DeepPhys [10],
and AutoHR [62]) predict unreliable HR values with large
RMSE compared with non-end-to-end learning approaches
(e.g., RhythmNet [44], ST-Attention [46], NAS-HR [39],
CVD [45], and Dual-GAN [40]). Such the large perfor-
mance margin might be caused by the coarse and overfit-
ted rPPG features extracted from the end-to-end models. In
contrast, all five non-end-to-end methods first extract fine-
grained signal maps from multiple facial ROIs, and then
more dedicated rPPG clues would be extracted via the cas-
caded models. Without strict and heavy preprocessing pro-
cedure in [39, 40, 44–46], our proposed PhysFormer can be
trained from scratch on facial videos directly, and achieves
comparable performance with state-of-the-art non-end-to-
end learning based method Dual-GAN [40]. It indicates
that PhysFormer is able to learn the intrinsic and periodic
rPPG-aware features automatically.



Table 2. Performance comparison of HR and RF measurement as well as HRV analysis on OBF [28].

HR(bpm) RF(Hz) LF(u.n) HF(u.n) LF/HF

Method SD RMSE r SD RMSE r SD RMSE r SD RMSE r SD RMSE r

ROI green [28]▲ 2.159 2.162 0.99 0.078 0.084 0.321 0.22 0.24 0.573 0.22 0.24 0.573 0.819 0.832 0.571
CHROM [12]▲ 2.73 2.733 0.98 0.081 0.081 0.224 0.199 0.206 0.524 0.199 0.206 0.524 0.83 0.863 0.459
POS [58]▲ 1.899 1.906 0.991 0.07 0.07 0.44 0.155 0.158 0.727 0.155 0.158 0.727 0.663 0.679 0.687

CVD [45]♦ 1.257 1.26 0.996 0.058 0.058 0.606 0.09 0.09 0.914 0.09 0.09 0.914 0.453 0.453 0.877

rPPGNet [66]⋆ 1.756 1.8 0.992 0.064 0.064 0.53 0.133 0.135 0.804 0.133 0.135 0.804 0.58 0.589 0.773
PhysFormer (Ours)⋆ 0.804 0.804 0.998 0.054 0.054 0.661 0.085 0.086 0.912 0.085 0.086 0.912 0.389 0.39 0.896

Table 3. Intra-dataset results on MAHNOB-HCI [51].

Method
SD ↓
(bpm)

MAE ↓
(bpm)

RMSE ↓
(bpm)

r ↑

Poh2011 [48]▲ 13.5 - 13.6 0.36
CHROM [12]▲ - 13.49 22.36 0.21
Li2014 [29]▲ 6.88 - 7.62 0.81
Tulyakov2016 [54]▲ 5.81 4.96 6.23 0.83

SynRhythm [43]♦ 10.88 - 11.08 -
RhythmNet [44]♦ 3.99 - 3.99 0.87

HR-CNN [52]⋆ - 7.25 9.24 0.51
rPPGNet [66]⋆ 7.82 5.51 7.82 0.78
DeepPhys [10]⋆ - 4.57 - -
AutoHR [62]⋆ 4.73 3.78 5.10 0.86
Meta-rPPG [27]⋆ 4.9 3.01 3.68 0.85
PhysFormer (Ours)⋆ 3.87 3.25 3.97 0.87

HR estimation on MAHNOB-HCI. For the HR esti-
mation tasks on MAHNOB-HCI, similar to [66], subject-
independent 9-fold cross-validation protocol is adopted. In
consideration of the convergence difficulty due to the low
illumination and high compression videos in MAHNOB-
HCI, we finetune the VIPL-HR pretrained model on
MAHNOB-HCI for further 15 epochs. The HR estimation
results are shown in Table 3. The proposed PhysFormer
achieves the lowest SD (3.87 bpm) and highest r (0.87)
among the traditional, non-end-to-end learning, and end-to-
end learning methods, which indicates the reliability of the
learned rPPG features from PhysFormer under sufficient su-
pervision. Our performance is on par with the latest end-to-
end learning method Meta-rPPG [27] without transductive
adaptation from target frames.

HR, HRV and RF estimation on OBF. We also conduct
experiments for three types of physiological signals, i.e.,
HR, RF, and HRV measurement on the OBF [28] dataset.
Following [45, 66], we use a 10-fold subject-exclusive pro-
tocol for all experiments. All the results are shown in Ta-
ble 2. From the results, we can see that the proposed ap-
proach outperforms the existing state-of-the-art traditional
(ROI green [28], CHROM [12], POS [58]) and end-to-end
learning (rPPGNet [66]) methods by a large margin on all
evaluation metrics for HR, RF and all HRV features. The
proposed PhysFormer also gives more accurate estimation

Table 4. Cross-dataset results on MMSE-HR [54].

Method
SD ↓
(bpm)

MAE ↓
(bpm)

RMSE ↓
(bpm)

r ↑

Li2014 [29]▲ 20.02 - 19.95 0.38
CHROM [12]▲ 14.08 - 13.97 0.55
Tulyakov2016 [54]▲ 12.24 - 11.37 0.71

ST-Attention [46]♦ 9.66 - 10.10 0.64
RhythmNet [44]♦ 6.98 - 7.33 0.78
CVD [45]♦ 6.06 - 6.04 0.84

PhysNet [64]⋆ 12.76 - 13.25 0.44
TS-CAN [33]⋆ - 3.85 7.21 0.86
AutoHR [62]⋆ 5.71 - 5.87 0.89
EfficientPhys-C [34]⋆ - 2.91 5.43 0.92
EfficientPhys-T1 [34]⋆ - 3.48 7.21 0.86
PhysFormer (Ours)⋆ 5.22 2.84 5.36 0.92

in terms of HR, RF, and LF/HF compared with the prepro-
cessed signal map based non-end-to-end learning method
CVD [45]. These results indicate that PhysFormer could
not only handle the average HR estimation task but also give
a promising prediction of the rPPG signal for RF measure-
ment and HRV analysis, which shows its potential in many
healthcare applications.

4.4. Cross-dataset Testing
Besides of the intra-dataset testings on the VIPL-HR,

MAHNOB-HCI, and OBF datasets, we also conduct cross-
dataset testing on MMSE-HR [54] following the protocol
of [44]. The models trained on VIPL-HR are directly tested
on MMSE-HR. All the results of the proposed approach and
the state-of-the-art methods are shown in Table 4. It is clear
that the proposed PhysFormer generalizes well in unseen
domain. It is worth noting that PhysFormer achieves the
lowest SD (5.22 bpm), MAE (2.84 bpm), RMSE (5.36 bpm)
as well as the highest r (0.92) among the traditional, non-
end-to-end learning and end-to-end learning based meth-
ods, indicating 1) the predicted HRs are highly correlated
with the ground truth HRs, and 2) the model learns domain-
invariant intrinsic rPPG-aware features. Compared with the
spatio-temporal transformer based EfficientPhys-T1 [34],
our proposed PhysFormer is able to predict more accurate
physiological signals, which indicates the effectiveness of
the long-range spatio-temporal attention.



Table 5. Ablation of Tube Tokenization of PhysFormer. The three
dimensions in tensors indicate length× height×width.

Inputs
[Stem]

Feature Size
[Tube Size]

Token Numbers
RMSE ↓

(bpm)

160× 128× 128
[×]

160× 128× 128

[4× 32× 32]
40× 4× 4

10.62

160× 128× 128
[
√

]
160× 16× 16

[4× 4× 4]
40× 4× 4

7.56

160× 96× 96
[
√

]
160× 12× 12

[4× 4× 4]
40× 3× 3

8.03

160× 128× 128
[
√

]
160× 16× 16

[4× 16× 16]
40× 1× 1

10.61

160× 128× 128
[
√

]
160× 16× 16

[2× 4× 4]
80× 4× 4

7.81

Table 6. Ablation of TD-MHSA and ST-FF in PhysFormer.

MHSA τ Feed-forward RMSE (bpm) ↓
- - ST-FF 9.81
TD-MHSA

√
Dh ≈ 4.9 ST-FF 9.51

TD-MHSA 2.0 ST-FF 7.56
vanilla MHSA 2.0 ST-FF 10.43
TD-MHSA 2.0 vanilla FF 8.27

Table 7. Ablation of dynamic loss in the frequency domain. The
temporal loss Ltime is with fixed α=0.1 here. ‘CE’ and ‘LD’ de-
note cross-entropy and label distribution, respectively.

Frequency loss β Strategy RMSE (bpm) ↓
LCE + LLD 1.0 fixed 8.48
LCE + LLD 5.0 fixed 8.86
LCE + LLD [1.0, 5.0] linear 8.37
LCE + LLD [1.0, 5.0] exponential 7.56
LCE [1.0, 5.0] exponential 8.09
LLD [1.0, 5.0] exponential 8.21
LLD (real distribution) [1.0, 5.0] exponential 8.72

4.5. Ablation Study

We also provide the results of ablation studies for HR
estimation on the Fold-1 of the VIPL-HR [44] dataset.

Impact of tube tokenization. In the default setting of
PhysFormer, a shallow stem cascaded with a tube tokeniza-
tion is used. In this ablation, we consider other four tok-
enization configurations with or w/o stem. It can be seen
from the first row in Table 5 that the stem helps the Phys-
Former see better [60], and the RMSE increases dramati-
cally (+3.06 bpm) when w/o the stem. Then we investigate
the impacts of the spatial and temporal domains in tube to-
kenization. It is clear that the result in the fourth row with
full spatial projection is quite poor (RMSE=10.61 bpm), in-
dicating the necessity of the spatial attention. In contrast,
tokenization with smaller tempos (e.g., [2x4x4]) or spatial
inputs (e.g., 160x96x96) reduces performance slightly.

Impact of TD-MHSA and ST-FF. As shown in Table 6,
both the TD-MHSA and ST-FF play vital roles in Phys-
Former. The result in the first row shows that the per-
formance degrades sharply without spatio-temporal atten-
tion. Moreover, it can be seen from the last two rows

Figure 3. Testing results of fixed and dynamic frequency supervi-
sions on the Fold-1 of VIPL-HR.

that without TD-MHSA/ST-FF, PhysFormer with vanilla
MHSA/FF obtains 10.43/8.27 bpm RMSE. One important
finding in this research is that, the temperature τ influ-
ences the MHSA a lot. When the τ =

√
Dh like previ-

ous ViT [1, 14], the predicted rPPG signals are unsatisfied
(RMSE=9.51 bpm). Regularizing the τ with smaller value
enforces sparser spatio-temporal attention, which is effec-
tive for the quasi-periodic rPPG task.

Impact of label distribution learning. Besides the tem-
poral loss Ltime and frequency cross-entropy loss LCE, the
ablations w/ and w/o label distribution loss LLD are shown
in the last four rows of Table 7. Although the LLD per-
forms slightly worse (+0.12 bpm RMSE) than LCE, the
best performance can be achieved using both losses, indi-
cating the effectiveness of explicit distribution constraints
for extreme-frequency interference alleviation and adjacent
label knowledgement propagation. It is interesting to find
from the last two rows that using real PSD distribution from
groundtruth PPG signals as p, the performance is inferior
due to the lack of an obvious peak and partial noise. We can
also find from the Fig. 4(a) that the σ ranged from 0.9 to 1.2
for LLD are suitable to achieve good performance.

Impact of dynamic supervision. Fig. 3 illustrates the
testing performance on Fold-1 VIPL-HR when training with
fixed and dynamic supervision. It is clear that with expo-
nential increased frequency loss, models in the blue curve
converge faster and achieve smaller RMSE. We also com-
pare several kinds of fixed and dynamic strategies in Ta-
ble 7. The results in the first four rows indicate 1) using
fixed higher β leads to poorer performance caused by the
convergency difficulty; 2) models with the exponentially in-
creased β perform better than using linear increment.

Impact of θ and layer/head numbers. Hyperparameter
θ tradeoffs the contribution of local temporal gradient in-
formation. As illustrated in Fig. 3(b), PhysFormer could
achieve smaller RMSE when θ=0.4 and 0.7, indicating the
importance of the normalized local temporal difference fea-
tures for global spatio-temporal attention. We also investi-
gate how the layer and head numbers influence the perfor-
mance. As shown in Fig. 5(a), with deeper temporal trans-



(a)

(b)

Figure 4. Impacts of the (a) σ in label distribution learning and
(b) θ in TD-MHSA.
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Figure 5. Ablation of the (a) layers and (b) heads in PhysFormer.

former blocks, the RMSE are reduced progressively despite
heavier computational cost. In terms of the impact of head
numbers, it is clear to find from Fig. 5(b) that PhysFormer
with four heads perform the best while fewer heads lead to
sharp performance drops.

4.6. Visualization and Discussion

We visualize the attention map from the last TD-MHSA
module as well as one example about the query-key interac-
tion in Fig. 6. The x and y axes indicate the attention con-
fidence from key and query tube tokens, respectively. From
the attention map, we can easily find periodic or quasi-
periodic responses along both axes, indicating the period-
icity of the intrinsic rPPG features from PhysFormer. To be
specific, given the 530th tube token (in blue) from the fore-
head (spatial face domain) and peak (temporal signal do-
main) locations as a query, the corresponding key responses
are illustrated at the blue line in the attention map. On one
hand, it can be seen from the key responses that dominant
spatial attentions focus on the facial skin regions and dis-
card unrelated background. On the other hand, the temporal
localizations of the key responses are around peak positions
in the predicted rPPG signals. All these patterns are rea-
sonable: 1) the forehead and cheek regions [56] have richer
blood volume for rPPG measurement and are also reliable
since these regions are less affected by facial muscle move-
ments due to e.g., facial expressions, talking; and 2) rPPG
signals from healthy people are usually periodic.

However, we also find two limitations of the spatio-
temporal attention from Fig. 6. First, there are still some
unexpected responses (e.g., continuous query tokens with
similar key responses) in the attention map, which might
introduce task-irrelevant noise and damage to the perfor-
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Figure 6. Visualization of the attention map from the 1st head
in last TD-MHSA module. Given the 530th tube token in blue as
a query, representative key responses are illustrated (the brighter,
the more attentive). The predicted downsampled rPPG signals are
shown for temporal attention understanding.

mance. Second, the temporal attentions are not always ac-
curate, and some are coarse with phase shifts (e.g., the first
vertical dotted line of the rPPG signals in bottom Fig. 6).

5. Conclusions and Future Work
In this paper, we propose an end-to-end video trans-

former architecture, namely PhysFormer, for remote phys-
iological measurement. With temporal difference trans-
former and elaborate supervisions, PhysFormer is able to
achieve superior performance on benchmark datasets. The
study of video transformer based physiological measure-
ment is still at an early stage. Future directions include:
1) Designing more efficient architectures. The proposed
PhysFormer is with 7.03 M parameters and 47.01 GFLOPs,
which is unfriendly for mobile deployment; 2) Exploring
more accurate yet efficient spatio-temporal self-attention
mechanism especially for long sequence rPPG monitoring.
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