
Domain Generalization via Shuffled Style Assembly for Face Anti-Spoofing

Zhuo Wang1 Zezheng Wang2* Zitong Yu3 Weihong Deng1*

Jiahong Li2 Tingting Gao2 Zhongyuan Wang2

1Beijing University of Posts and Telecommunications 2Kuaishou Technology 3CMVS, University of Oulu
{wz2019, whdeng}@bupt.edu.cn zitong.yu@oulu.fi

{wangzezheng, lijiahong, wangzhongyuan}@kuaishou.com tinagao2019@gmail.com

Abstract

With diverse presentation attacks emerging continually,
generalizable face anti-spoofing (FAS) has drawn growing
attention. Most existing methods implement domain gener-
alization (DG) on the complete representations. However,
different image statistics may have unique properties for the
FAS tasks. In this work, we separate the complete represen-
tation into content and style ones. A novel Shuffled Style
Assembly Network (SSAN) is proposed to extract and re-
assemble different content and style features for a stylized
feature space. Then, to obtain a generalized representa-
tion, a contrastive learning strategy is developed to empha-
size liveness-related style information while suppress the
domain-specific one. Finally, the representations of the cor-
rect assemblies are used to distinguish between living and
spoofing during the inferring. On the other hand, despite
the decent performance, there still exists a gap between
academia and industry, due to the difference in data quan-
tity and distribution. Thus, a new large-scale benchmark
for FAS is built up to further evaluate the performance of
algorithms in reality. Both qualitative and quantitative re-
sults on existing and proposed benchmarks demonstrate the
effectiveness of our methods. The codes will be available at
https://github.com/wangzhuo2019/SSAN.

1. Introduction
As the most successful computer vision technology, face

recognition (FR) [11, 51] has been widely employed in dif-
ferent application scenarios, such as mobile access control
and electronic payments. Despite great success, FR systems
may still suffer from presentation attacks (PAs), including
print attacks, video replay, and 3D masks. To tackle these
issues, a series of face anti-spoofing (FAS) methods have
been proposed, from hand-craft descriptors based methods
[9,38] to deep representation based ones [52,55,57,59,61].

* denotes the corresponding author.
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Figure 1. The illustration of style transfer using the method of [18]
when live face as content input and spoof face as style input.

The previous FAS methods have achieved promising per-
formance in intra-domain scenarios, but may encounter dra-
matic degradation under the cross-domain settings. The
major reason behind this lies in the conflict between the
limitations of training data and the capability of networks
[17, 32, 58], which makes the models trapped in dataset
bias [43] and leads to poor generalization toward new do-
mains. To address this problem, domain adaptation (DA)
techniques [23,49] are used to alleviate the discrepancy be-
tween source and target domains by using unlabeled target
data. However, in most real-world FAS scenarios, it is inef-
ficient to collect sufficient unlabeled target data for training.

Thus, domain generalization (DG) methods are proposed
to generalize well on the unseen target domain, which can
be coarsely classified into three categories: learning a com-
mon feature space [21, 41], learning for disentangled repre-
sentations [48], and learning to learn [40, 42]. These meth-
ods almost implement DG on the complete representations
from common modules (i.e., CNN-BN-ReLU), but ignore
fully taking advantage of subtle properties of global and lo-
cal image statistics in FAS. Specifically, different normal-
ization approaches lay stress on different statistics informa-
tion in FAS. For example, Batch Normalization (BN) [19]
based structures are usually used to summarize global im-
age statistics, such as semantic features and physical at-



tributes. Instance Normalization (IN) [45] based structures
focus on the specific sample for distinctive characteristics,
such as liveness-related texture and domain-specific exter-
nal factors. Thus, to mine different statistics in FAS, [30]
adopts an adaptive approach to adjust the ratio of IN and
BN in feature extraction. Differently, we adopt BN and IN
based structures to separate the complete representation into
global and local image statistics, denoted as content and
style features respectively, then implement specific mea-
sures on them for generalizable FAS.

Besides, style transfer [18] can be used to reassemble
the pairs of content features as global statistics and style
features as local statistics to form stylized features for spe-
cific supervision. As shown in Fig. 1, spoofing cues as style
input can be applied to live faces to generate the correspond-
ing spoof manipulations. Thus, [35, 54] directly utilize this
approach for data augmentation before the training in FAS.
However, these two-stage methods are inefficient in large-
scale training. Thus, an end-to-end approach is adopted
based on style transfer at the feature level in this work.

Combined with the abovementioned viewpoints, we pro-
pose a novel framework, called shuffled style assembly net-
work (SSAN), based on style transfer at the feature level.
Specifically, a two-stream structure is utilized to extract
content and style features, respectively. For content infor-
mation, they mainly record some global semantic features
and physical attributes, thus a shared feature distribution is
easily acquired by using adversarial learning. For style in-
formation, they preserve some discriminative information
that is beneficial to enhance the distinction between liv-
ing and spoofing. Different from the image-to-image style
transfer proposed in [18], we stack up successive shuffled
style assembly layers to reassemble various content and
style features for a stylized feature space. Then, a con-
trastive learning strategy is adopted to enhance liveness-
related style information and suppress domain-specific one.
Lastly, our end-to-end architecture and training approach
are more suitable for large-scale training in reality.

Due to the data distribution difference between academic
and industrial scenarios, previous evaluation protocols are
limited to reflect the genuine performance of algorithms in
reality. Thus, to simulate the data quantity and distribution
in reality, we combine twelve datasets to build a large-scale
evaluation benchmark and further verify the effectiveness of
algorithms. Specifically, the TPR@FPR at specific values
as the metrics are utilized to evaluate the performance of
different models on each dataset, where all live samples as
negative cases and partial spoof samples as positive cases.

The main contributions of this work are four-fold:
• To utilize the global and local statistics separately for

their unique properties, we propose a novel architecture
called shuffled style assembly network (SSAN) for gener-
alizable face anti-spoofing.

• To enhance liveness-relative style information and sup-
press domain-specific one, we adopt a contrastive learning
approach to control the stylized features close or far from
the anchor feature. The corresponding loss function is uti-
lized to supervise our network.

• Based on the real-world data distribution, we com-
bine twelve public datasets into a large-scale benchmark
for face anti-spoofing in reality. The metric of single-side
TPR@FPR is proposed for a comprehensive assessment.

• Our proposed methods achieve the state-of-the-art per-
formance on existing and proposed benchmarks.

2. Related Work
Face Anti-Spoofing. Traditional methods usually ex-

tract hand-crafted features such as LBP [9] and SIFT [38]
to split living and spoofing. In the era of deep learning, [55]
trains CNNs to learn a binary classifier. Auxiliary infor-
mation such as depth map [2], reflection map [56], and
rPPG [25] is utilized to explore additional details for FAS.

To make the algorithm generalize well to unseen scenar-
ios, domain adaptation (DA) and domain generation (DG)
techniques are developed. [23] minimizes MMD [15] to
pull close between different distributions. [47] leverages ad-
versarial domain adaptation to learn a shared embedding
space. [41] utilizes multiple domain discriminators to learn
a generalized feature space. [21] forms single-side adver-
sarial learning to further improve the performance. [48, 63]
utilize disentangled representation learning to isolate the
liveness-related features for classification. To obtain gen-
eral learning, meta-learning based methods [6,39,40,42,50]
are introduced and developed for regular optimization.

Different from previous DG methods, we split the com-
plete representation into content and style ones with various
supervision. Then, a generalized feature space is obtained
by resembling features under a contrastive learning strategy.

Normalization and Style Transfer. Normalization lay-
ers are essential in deep networks to eliminate covariate
shifts and accelerate training. Batch Normalization (BN)
[19] utilizes the statistics of the mini-batch to induce uni-
versal characteristics. Differently, Instance Normalization
(IN) [45] is proposed to exploit stylized characteristics for
specific samples. Thus, the former lays stress on the global
statistics and the latter emphasizes specific ones. [18] pro-
poses Adaptive Instance Normalization (AdaIN) for style
transfer by utilizing target samples to control the scaling
and shifting of source image normalized features. This style
manipulation is widely used in generative tasks for texture
synthesis [37] and style transfer [22]. Observing its effect
on texture patterns, our method adopts this module to FAS.

Different from previous methods [30, 35, 54] operat-
ing on normalization and image-level transformation, our
method adopts AdaIN based layers to assemble different
content and style features for a generalized feature space.
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Figure 2. The overall architecture of our shuffled style assembly network (SSAN). Firstly, RGB images from different domains are fed
into the feature generator to obtain feature embeddings. Then, the feature extractor with GRL is trained to make the content feature
indistinguishable for different domains by using adversarial learning. Meanwhile, another feature extractor collects multi-scale generated
features to capture coarse-to-fine style information. Furthermore, to refine the style information related to FAS, a cascade of style assembly
layers (SAL) are utilized to reassemble different content and style features when the corresponding contrastive learning strategy is designed.

Protocols for Face Anti-Spoofing. To evaluate the ef-
fectiveness of FAS methods, various protocols have been
established, including intra-dataset intra-type protocol [4,
32], cross-dataset intra-type protocol [23], intra-dataset
cross-type protocol [14, 33], and cross-dataset cross-type
protocol [1, 60]. Especially, most protocols are merely con-
stituted of single or double datasets, which may limit their
evaluation capabilities for multiply data distributions. Thus,
protocol OCIM [41, 42] is used to evaluate their domain-
generalization performance across multiple domains.

Moreover, due to the limited amount of data, [8] pro-
poses an open-source framework to aggregate heteroge-
neous datasets for specific evaluation. Differently, we focus
on the real-world data distribution, and more complex do-
main fields with different data distributions are obtained by
fusing twelve different datasets including image and video
formats. Thus, the merged dataset contains more sophis-
ticated attack types, such as print, replay, mask, makeup,
waxworks, etc. Besides, the evaluations under intra- and
cross- domain scenarios among multiple datasets have been
investigated by using the metric of single-side TPR@FPR,
which is more suitable for realistic spectacles.

3. Proposed Approach

In this section, we introduce our shuffled style assem-
bly network (SSAN) shown in Fig. 2. Firstly, we present
the two-stream part in our network for content and style in-

formation aggregation. Secondly, a shuffled style assem-
bly approach is proposed to recombine various content and
style features for a stylized feature space. Then, to suppress
domain-specific style information and enhance liveness-
related ones, contrastive learning is used in the stylized fea-
ture space. Lastly, the overall loss is integrated to optimize
the network for stable and reliable training.

3.1. Content and Style Information Aggregation

Content information is usually represented by common
factors in FAS, mainly including semantic features and
physical attributes. Differently, style information describes
some discriminative cues that can be divided into two parts
in FAS tasks: domain-specific and liveness-related style in-
formation. Thus, content and style features are captured
in the two-stream paths separately in our network. Specifi-
cally, the feature generator as a shallow embedding network
captures multi-scale low-level information. Then, content
and style feature extractors collect different image statistics
by using specific normalization layers (i.e., BN and IN).

For content information aggregation, we conjecture that
small distribution discrepancies exist in different domains,
based on the following facts: 1) Considering samples from
various domains, they both contain facial areas, thus share
a common semantic feature space; 2) Whether bona fide or
attack presentation, their physical attributes such as shape
and size are often similar. Therefore, we adopt adversarial
learning to make generated content features indistinguish-



able for different domains. Specifically, the parameters of
the content feature generator are optimized by maximizing
the adversarial loss function while the parameters of the do-
main discriminator are optimized in the opposite direction.
Thus, this process can be formulated as follows:

min
D

max
G

Ladv (G,D) =

− E(x,y)∼(X,YD)

∑M

i=1
1 [i = y] logD (G (x)) ,

(1)

where YD is the set of domain labels and M is the number of
different data domains. G and D represent the content fea-
ture generator and domain discriminator, respectively. To
optimize G and the D simultaneously, the gradient reversal
layer (GRL) [13] is used to reverse the gradient by multiply-
ing it by a negative scalar during the backward propagation.

For style information aggregation, we collect multi-layer
features along with the hierarchical structure in a pyramid-
like [26] approach, due to the different scales of style char-
acteristics. For example, the brightness of scenes is mainly
implicated in broad-scale features, while the texture of pre-
sentation materials usually focuses on local-scale regions.

3.2. Shuffled Style Assembly

Adaptive Instance Normalization (AdaIN) [18] is an
adaptive style transfer method, which can assemble a con-
tent input x and a style input y, as follows:

AdaIN (x, γ, β) = γ

(
x− µ(x)

σ(x)

)
+ β, (2)

where µ(·) and σ(·) represent channel-wise mean and stan-
dard deviation respectively, γ and β are affine parameters
generated from the style input y.

In this work, to combine content feature fc and style fea-
ture fs, style assembly layers (SAL) are built up by using
AdaIN layers and convolution operators with residual map-
ping, described as below:

γ, β = MLP [GAP (fs)] ,

z = ReLU [AdaIN(K1 ⊗ fc, γ, β)] ,

SAL (fc, fs) = AdaIN(K2 ⊗ z, γ, β) + fc,

(3)

where K1 and K2 are 3 × 3 convolution kernels, ⊗ is the
convolution operation, and z is the intermediate variable.

However, fs contains not only liveness-related informa-
tion, but also domain-specific one that may cause domain
bias during network optimization. To alleviate this prob-
lem, the shuffled style assembly method is proposed to form
auxiliary stylized features for domain generalization.

Given an input sequence of length N in a mini-batch,
xi represents the input sample, where i ∈ {1, 2 . . . N}. Its
content feature can be expressed as fc(xi) while the style
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Figure 3. The illustration of the contrastive learning be-
tween self-assembly and shuffle-assembly features. Different
shapes represent data from different domains: round=domain
1, square=domain 2. Different colors represent different live-
ness information: green=living, red=spoofing. Lastly, the dotted
line represents style information while the interior solid represents
content information.

feature as fs(xi). Thus, the corresponding assembled fea-
ture space S(xi, xi) can be formulated as follows:

S (xi, xi) = SAL (fc (xi) , fs (xi)) , (4)

which represents the process of style assembly using paired
content and style features of input sample xi. Therefore,
S (xi, xi) can be denoted as self-assembly features.

Furthermore, to exploit liveness-related style features,
we synthesize an auxiliary feature space by shuffling the
original pairs of fc(xi) and fs(xi) randomly, as follows:

S (xi, xi∗) = SAL (fc (xi) , fs (xi∗)) ,

i∗ ∈ random {1, 2, . . . , N} ,
(5)

where random means a uniformly chosen permutation.
S (xi, xi∗) can be denoted as shuffle-assembly features.

3.3. Contrastive Learning for Stylized Features

From the view of style features, a major obstacle is
that domain-specific style features may conceal liveness-
related ones in cross-domain scenarios, which may cause
mistakes in judgment. To solve this problem, we propose a
contrastive learning approach to emphasize liveness-related
style features as well as suppress domain-specific ones.

After combining content and style features, we obtain
self-assembly features S(xi, xi) and shuffle-assembly fea-
tures S(xi, xi∗). For S(xi, xi), we input them to the clas-
sifier and supervise them using our binary ground-truth sig-
nals with the loss function Lcls. For S(xi, xi∗), we measure
their difference with S(xi, xi) by using cosine similarity:

Sim (a, b) = − a

∥a∥2
· b

∥b∥2
, (6)

where ∥·∥2 is l2-norm, a and b represent two compared fea-
tures. This is equivalent to the mean squared error of l2-
normalized vectors [16].

As shown in Fig. 3, self-assembly features S(xi, xi) are
set as anchors in the stylized features space. Inspired by



[5], a stop-gradient (stopgrad) operation is implemented on
S(xi, xi) to fix their position in the feature space. Then, the
shuffle-assembly features S(xi, xi∗) are guided to go close
or far toward their corresponding anchors S(xi, xi) accord-
ing to the liveness information. During the process, back-
propagation is applied through the shuffle-assembly fea-
tures but not through self-assembly ones, and the liveness-
intensive style information is further aggregated. Thus, the
contrastive loss Lcontra can be formulated as follows:

Lcontra =
∑N

i=1
Eq (xi, xi∗)·Sim (stopgrad(a), b) , (7)

where a = S(xi, xi) and b = S(xi, xi∗). Eq(xi, xi∗) mea-
sures the consistency of the liveness labels between xi and
xi∗ , which can be formulated as follows:

Eq (xi, xi∗) =

{
+ 1, label(xi) == label(xi∗),

− 1, otherwise.
(8)

Finally, The whole process of our framework can be de-
scribed in Algorithm 1 in detail.

Algorithm 1 The optimization strategy of SSAN.

Input: Mixture domain dataset Ds = {xs
i , y

s
i }

ns

i=1, initial-
ized CNN model Φ0(·).

Output: Final CNN model parameter ΦT (·).
1: while not end of iteration do
2: Shuffle the input sequence for the permuted sequence

{xi∗ | i∗ = random [1, 2, . . . , N ]}.
3: Input xi for content feature fc(xi) and style feature

fs(xi). Input xi∗ for style feature fs(xi∗).
4: Input fc(xi) to the discriminator and compute the ad-

versarial loss Ladv based on Eqn. (1).
5: Assemble fc(xi) and fs(xi) to get self-assembly fea-

tures S(xi, xi). Assemble fc(xi) and fs(xi∗) to get
shuffle-assembly features S(xi, xi∗).

6: Input S(xi, xi) to the classifier and compute the clas-
sification loss Lcls.

7: Utilize S(xi, xi) and S(xi, xi∗) to compute the con-
trastive loss Lcontra based on Eqn. (7).

8: Compute Loverall = Lcls+λ1 ·Ladv +λ2 ·Lcontra.
Make gradient back propagation and update the
model parameters Φ(·).

9: end while
10: Evaluate ΦT (·) on the testing data Dt.

3.4. Loss Function

After describing the operating of our network, we col-
lect the overall loss function Loverall for stable and reliable
training, which can be formulated as follows:

Loverall = Lcls + λ1 · Ladv + λ2 · Lcontra, (9)

where λ1 and λ2 are two hyper-parameters to balance the
proportion of different loss functions.

Table 1. The datasets and their corresponding numbers we use in
the large-scale benchmark.

Dataset Number Dataset Number
CASIA-MFSD [66] D1 Rose-Youtu [23] D7

REPLAY-ATTACK [7] D2 WFFD [20] D8
MSU-MFSD [53] D3 CelebA-Spoof [65] D9

HKBU-MARs V2 [29] D4 CASIA-SURF [64] D10
OULU-NPU [4] D5 WMCA [14] D11

SiW [32] D6 CeFA [27] D12

4. Large-Scale FAS Benchmarks

There exists a gap between academia and industry, which
can be summarized as the following two aspects.

Data Quantity. Compared with the authentic scenarios,
the amount of data in academia is still too small, which may
cause overfitting of the model and limit the development of
the algorithm. To overcome this problem, we merge twelve
datasets then design corresponding intra- and inter- dataset
testing protocols to further evaluate our method.

Data Distribution and Evaluation Metrics. In real-
world data distribution, live faces usually account for the
majority. However, most existing evaluation protocols col-
lect almost equivalent live and spoof faces as the testing set
to calculate their average error rate for evaluation, which
may disagree with the reality. Besides, data in reality usu-
ally consists of multiple fields with different distributions.
Nevertheless, academic datasets usually contain fewer data
domains. To reduce the above inconsistencies, multiple
datasets are used as training and testing sets simultaneously
in our protocols. Specifically, in the training stages, all of
the training data are used to optimize our models. In the
testing stages, due to the similar distribution of live faces
[3, 21], we gather all live data from each testing dataset as
the negative cases, then partial spoof data in the current test-
ing dataset is arranged as positive cases. Lastly, the mean
and variance of true positive rate (TPR) of false-positive rate
(FPR) are computed along with each testing dataset for an
overall evaluation.

Twelve datasets are used in the large-scale FAS Bench-
marks, which are numbered as shown in Table 1. The eval-
uation protocols are designed as follows:

• Protocol 1. This protocol is implemented in an intra-
dataset evaluation scenario. Specifically, all datasets are
used as training and testing sets, simultaneously.

• Protocol 2. This protocol is implemented in a cross-
domain evaluation scenario by dividing these datasets into
two piles: P1: {D3, D4, D5, D10, D11, D12}, P2: {D1,
D2, D6, D7, D8, D9}. Thus, there contain two sub-
protocols: protocol 2 1: training on P1 and testing on P2;
Protocol 2 2: training on P2 and testing on P1. Note that
the cross-domain protocols are more challenging as the test-
ing set covers more unseen datasets and more complex un-
known attacks, which are correlated to real-world scenarios.

More details are provided in supplementary materials.



Table 2. The results of cross-dataset testing on OULU-NPU, CASIA-MFSD, Replay-Attack, and MSU-MFSD.

Method
O&C&I to M O&M&I to C O&C&M to I I&C&M to O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)
MMD-AAE [24] 27.08 83.19 44.59 58.29 31.58 75.18 40.98 63.08

MADDG [41] 17.69 88.06 24.50 84.51 22.19 84.99 27.98 80.02
SSDG-M [21] 16.67 90.47 23.11 85.45 18.21 94.61 25.17 81.83

DR-MD-Net [48] 17.02 90.10 19.68 87.43 20.87 86.72 25.02 81.47
RFMeta [42] 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16

NAS-FAS [60] 19.53 88.63 16.54 90.18 14.51 93.84 13.80 93.43
D2AM [6] 12.70 95.66 20.98 85.58 15.43 91.22 15.27 90.87
SDA [50] 15.40 91.80 24.50 84.40 15.60 90.10 23.10 84.30

DRDG [31] 12.43 95.81 19.05 88.79 15.56 91.79 15.63 91.75
ANRL [30] 10.83 96.75 17.83 89.26 16.03 91.04 15.67 91.90

SSAN-M (Ours) 10.42 94.76 16.47 90.81 14.00 94.58 19.51 88.17
SSDG-R [21] 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54

SSAN-R (Ours) 6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63

5. Experiments
5.1. Implementation Details

Data Preparation. The datasets shown in Table 1 con-
tain image and video data. For image data, we utilize all im-
ages of them. For video data, we extract frames of them at
specific intervals. After obtaining data in image format, we
adopt MTCNN [62] for face detection, then crop and resize
faces to 256 × 256 as RGB input. Moreover, a dense face
alignment approach (i.e., PRNet [12]) is used to generate
the ground-truth depth maps with size 32 × 32 for genuine
faces, while spoof depth maps are set to zeros.

Network Setting. Similar to [21], two structures are
established, denoted as SSAN-M and SSAN-R. Specifi-
cally, SSAN-M adopts the embedding part of DepthNet [32]
while SSAN-R adopts that of ResNet-18 [17] for feature
generation. More details are in supplementary materials.

Training Setting. Due to the limit of the GPU mem-
ory size, the batch size is set to 16 for SSAN-M and set to
256 for SSAN-R. Different ground-truth are used as super-
vision signals: depth maps for SSAN-M and binary labels
for SSAN-R. Therefore, their corresponding Lcls are mean-
squared and cross-entropy loss, respectively. λ1 and λ2 are
set to 1 in training. The Adam optimizer with the learning
rate (lr) of 1e-4 and weight decay of 5e-5 is used in the ex-
periments on OCIM. The SGD optimizer with the momen-
tum of 0.9 and weight decay of 5e-4 is used in the exper-
iments on proposed protocols. Its initial lr is 0.01 and de-
creases by 0.2 times every two epochs until the 30th epoch.

Testing Setting. In testing, we calculate the final classi-
fication score to separate bona fide and attack presentations.
Specifically, the mean value of the predicted depth map is
the final score for SSAN-M, while the value of the sigmoid
function on living is the final score for SSAN-R.

5.2. Experiment on OCIM

Four datasets are used to evaluate the performance of
SSAN in different cross-domain scenarios following the im-
plementation of [41]: OULU-NPU [4] (O), CASIA-MFSD
[66] (C), Replay-Attack [7] (I), and MSU-MFSD [53] (M).

Experiment in Leave-One-Out (LOO) Setting. For an
overall evaluation, we conduct cross-dataset testing by us-
ing the LOO strategy: three datasets are selected for train-
ing, and the rest one for testing. We compare our models
with the recent SOTA methods, as shown in Table 2. It can
be observed that our SSAN-M shows the best performance
on protocols of O&C&I to M, O&M&I to C, O&C&M
to I, and the competitive performance on the protocol of
I&C&M to O. These results demonstrate the domain gener-
alization capacity of our method. Moreover, when we adopt
the ResNet18-based network denoted as SSAN-R, its per-
formance obtains an excellent improvement and exceeds the
model SSDG-R proposed in [21] with similar settings. The
above phenomenon indicates our network SSAN-R is more
effective in the cross-dataset scenario, thus will be further
measured in the large-scale protocols we propose.

Table 3. Comparison results on limited source domains.

Method
M&I to C M&I to O

HTER(%) AUC(%) HTER(%) AUC(%)
MS-LBP [34] 51.16 52.09 43.63 58.07

IDA [53] 45.16 58.80 54.52 42.17
LBP-TOP [10] 45.27 54.88 47.26 50.21
MADDG [41] 41.02 64.33 39.35 65.10
SSDG-M [21] 31.89 71.29 36.01 66.88

DR-MD-Net [48] 31.67 75.23 34.02 72.65
ANRL [30] 31.06 72.12 30.73 74.10

SSAN-M (Ours) 30.00 76.20 29.44 76.62

Experiment on Limited Source Domains. We also
evaluate our method when extremely limited source do-
mains are available. Specifically, MSU-MFSD and Replay-
Attack are selected as the source domains for training and
the remaining two (i.e., CASIA-MFSD and OULU-NPU)
will be used as the target domains for testing respectively.
As shown in Table 3, our method achieves the lowest HTER
and the highest AUC despite limited source data, which
proves the modeling efficiency and generalization capabil-
ity of our network in a challenging task.

5.3. Experiment on Proposed Benchmarks

To further evaluate the performance of our method in re-
ality, we conduct the experiments on the large-scale FAS



benchmark we proposed, as shown in Table 4. Different net-
work structures (i.e., CNN [17] and Transformer [44]) and
some recent SOTA methods (i.e., CDCN [61] and SSDG
[21]) are also conducted in their default settings for com-
parison. From the evaluation results, we can observe that
our method achieves the best performance, exceeding that
of other compared methods, which proves the effectiveness
of our SSAN in real-world data distribution. It is worth not-
ing that some methods have achieved excellent performance
on existing protocols, but may suffer an acute degeneration
in the large-scale benchmarks. This phenomenon further re-
veals the mismatch between academia and industry in FAS.
More detailed analyses are in supplementary materials.

Table 4. The results on the large-scale FAS benchmarks.

Prot. Method
TPR@FPR(%)

10% 1% 0.1%

1

ResNet18 [17] 96.04±11.96 89.32±26.08 69.10±34.34
Deit-T [44] 97.75±5.70 90.38±16.08 73.42±30.00
CDCN [61] 92.59±15.99 84.40±31.93 71.54±32.05

SSDG-R [21] 96.48±10.37 89.13±25.59 68.12±39.12
SSAN-R (Ours) 98.31±4.19 90.51±22.31 78.45±31.98

2 1

ResNet18 [17] 55.64±22.05 17.53±13.44 3.64±3.93
Deit-T [44] 44.03±17.77 10.15±6.08 1.25±1.04
CDCN [61] 55.92±21.45 11.07±8.21 0.69±0.74

SSDG-R [21] 53.44±19.23 3.27±3.09 0.06±0.06
SSAN-R (Ours) 63.61±21.69 25.56±18.07 6.58±5.56

2 2

ResNet18 [17] 63.38±27.54 41.53±30.41 19.00±14.79
Deit-T [44] 63.29±13.39 30.46±19.15 11.30±9.45
CDCN [61] 20.97±25.23 3.58±4.83 0.58±0.88

SSDG-R [21] 41.13±28.45 7.19±8.73 1.94±2.35
SSAN-R (Ours) 64.54±28.36 47.07±33.71 31.61±23.33

5.4. Ablation Study

To verify the superiority of our SSAN as well as the con-
tributions of each component, multiple incomplete models
are built up by controlling different variables. All results
are measured in the same manner, as shown in Table 5.

Effectiveness of Different Components. To verify the
effectiveness of generalized content feature space, we con-
duct the experiments of SSAN w/o Ladv . Specifically, con-
tent features usually record some common patterns in FAS,
which is easier to reduce their domain difference, compared
to directly operating on the complete features. Besides, to
make assembly between arbitrary combinations of content
and style features for domain generalization, stripping do-
main distinction from content information is indispensable.

On the other hand, to prove the importance of contrastive
learning for shuffled stylized features, the experiments of
SSAN w/o Lcontra are implemented for comparison. The
quantitative results indicate that the style assembly guided
by liveness-intensive cues is beneficial to improve the per-
formance for cross-domain FAS tasks.

Impact of the Stop-Gradient Operation. In contrastive
learning for stylized features, the self-assembly features
adopt the approach of stop-gradient to fix their position in
the feature space as an anchor. Then, their correspond-
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Figure 4. The comparison curves between SSAN-M and SSAN-
M w/o stop-grad under protocol O&C&I to M. The x-axis repre-
sents the number of epochs while the y-axis records the value of
AUC(%) the HTER(%), as shown in the legend.

ing shuffle-assembly features obeying on the liveness infor-
mation to go close or far toward them. The ablation ex-
periment of SSAN w/o stop-grad shows its effectiveness
of feature aggregation in contrastive learning for empha-
sizing liveness-related style information and suppressing
domain-specific ones. Besides, from the continuous evalu-
ation curves shown in Fig. 4, it can be summarized that the
stop-gradient operation will contribute to stable training.

Comparison Between the Hard and Soft Supervision.
The relative movement approach in contrastive learning we
adopt can be regarded as soft supervision in stylized fea-
ture space, compared to the direct supervision using the
ground-truth. To investigate their different efficiency, we
conduct the experiment of w/ hard-sup for an ablation study
between them, as shown in Table 5. The declining perfor-
mance shows the soft supervision method is more suitable
for our networks under the cross-domain testing scenarios.

Analysis of Contrastive Learning. Existing works
[28, 36] implement classical supervised contrastive learn-
ing (SCL) on the complete representation in FAS. Differ-
ently, our method conducts contrastive learning between
self-assembly and shuffle-assembly features. To make a
comparison between them, the experiment of w/ SCL is
conducted by implementing contrastive learning on self-
assembly directly. The final results demonstrate the ef-
ficiency of the auxiliary features in contrastive learning,
which are built in a shuffle-then-assembly approach.

5.5. Visualization and Analysis

Features Visualization. To analyze the feature space
learned by our SSAN method, we visualize the distribution
of different features using t-SNE [46], as shown in Fig. 5.
For content features, it can be observed that their distribu-
tion is more compact and mixed, though they may belong to
multiple databases or various liveness attributions. For style
features, there exists a coarse boundary between living and
spoofing along with a narrow distribution, despite no direct
supervision on them. This phenomenon indicates that our



Table 5. Evaluations of different components of the proposed method with different architectures.

Method
O&C&I to M O&M&I to C O&C&M to I I&C&M to O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)
SSAN-M w/o Ladv 10.42 94.83 24.44 81.60 24.75 83.01 27.11 80.41

SSAN-M w/o Lcontra 12.50 93.59 17.59 89.33 14.75 92.67 22.47 85.79
SSAN-M w/o stop-grad 12.50 93.33 20.93 85.02 16.38 89.78 23.65 83.14
SSAN-M w/ hard-sup 12.08 93.42 28.89 77.70 20.61 86.46 24.83 82.39

SSAN-M w/ SCL 12.92 92.50 23.70 84.67 18.75 87.28 25.45 82.03
SSAN-M (Ours) 10.42 94.76 16.47 90.81 14.00 94.58 19.51 88.17

SSAN-R w/o Ladv 10.83 94.08 14.26 94.48 12.25 94.93 14.27 92.83
SSAN-R w/o Lcontra 12.08 95.62 12.59 94.97 10.75 95.01 15.31 92.31
SSAN-R w/o stop-grad 11.25 93.46 11.30 95.11 9.00 96.03 14.06 93.14
SSAN-R w/ hard-sup 11.67 96.04 14.63 94.65 11.38 94.61 15.21 92.97

SSAN-R w/ SCL 11.25 94.00 12.04 94.91 12.50 95.34 15.80 92.95
SSAN-R (Ours) 6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63

(c) Stylized Features(b) Style Features(a) Content Features

Figure 5. The t-SNE [46] visualization of different features under protocol O&C&I to M. The graphs of (a), (b), and (c) describe the feature
distribution of content features, style features, and stylized features, respectively. Different colors indicate features from different domains:
green=O, blue=C, yellow=I, red=M. Different shapes represent different liveness information: point=living, cross=spoofing.

Live Spoof

(a)

(b)

(c)

Figure 6. Grad-CAM [67] visualizations of activation areas under
protocol O&M&I to C. (a): Original images. (b): Visualizations
for content features generation. (c): Visualizations for assembled
features (content + style) generation.

contrastive learning for stylized features is effective to em-
phasize liveness-related style features as well as suppress
other irrelevant ones, such as domain-specific information.
For stylized features, we combine the content and style in-
formation for the classification between living and spoofing.
The visualization results show that even though encounter-
ing an unknown distribution, our method still can generalize
well to the target domain.

Attention Visualization. To find the regions that led to
content feature extraction and liveness detection, we adopt
the Grad-CAM [67] to describe their activation maps upon
the original images, as shown in Fig. 6. It can be observed
that despite living and spoofing, their content features both
mainly focus on the landmark areas in faces that contain

abundant semantic features and physical attributes. Then,
after combined with the style information, the stylized fea-
tures for classification show different activation properties:
(1) For the live faces, our model lays the stress on the
face regions to seek cues for judgment; (2) For the spoof-
ing faces, some spoofing cues will be concentrated by our
method, such as the moire phenomenon in replay attacks
and the photo cut position in print attacks.

6. Conclusion
In this paper, we have proposed a novel shuffled style

assembly network (SSAN) for generalizable face anti-
spoofing (FAS). Different from the previous methods im-
plemented on the complete features, we operate on content
and style features separately due to their various proper-
ties. For content features, adversarial learning is adopted to
make them domain-indistinguishable. For style features, a
contrastive learning strategy is used to emphasize liveness-
related style information while suppress domain-specific
one. Then, the correct pairs of content and style features
are reassembled for classification. Moreover, to bridge the
gap between academia and industry, a large-scale bench-
mark for FAS is built up by aggregating existing datasets.
Experimental results on existing and proposed benchmarks
have demonstrated the superiority of our methods.
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