
Compact Bilinear Pooling

Yang Gao1, Oscar Beijbom1, Ning Zhang2∗, Trevor Darrell1 †
1EECS, UC Berkeley 2Snapchat Inc.

{yg, obeijbom, trevor}@eecs.berkeley.edu {ning.zhang}@snapchat.com

Abstract

Bilinear models has been shown to achieve impressive
performance on a wide range of visual tasks, such as se-
mantic segmentation, fine grained recognition and face
recognition. However, bilinear features are high dimen-
sional, typically on the order of hundreds of thousands to a
few million, which makes them impractical for subsequent
analysis. We propose two compact bilinear representations
with the same discriminative power as the full bilinear rep-
resentation but with only a few thousand dimensions. Our
compact representations allow back-propagation of classi-
fication errors enabling an end-to-end optimization of the
visual recognition system. The compact bilinear represen-
tations are derived through a novel kernelized analysis of
bilinear pooling which provide insights into the discrimina-
tive power of bilinear pooling, and a platform for further
research in compact pooling methods. Experimentation il-
lustrate the utility of the proposed representations for image
classification and few-shot learning across several datasets.

1. Introduction
Encoding and pooling of visual features is an integral

part of semantic image analysis methods. Before the in-
fluential 2012 paper of Krizhevsky et al. [17] rediscovering
the models pioneered by [19] and related efforts, such meth-
ods typically involved a series of independent steps: feature
extraction, encoding, pooling and classification; each thor-
oughly investigated in numerous publications as the bag of
visual words (BoVW) framework. Notable contributions in-
clude HOG [9], and SIFT [24] descriptors, fisher encod-
ing [26], bilinear pooling [3] and spatial pyramids [18],
each significantly improving the recognition accuracy.

Recent results have showed that end-to-end back-
propagation of gradients in a convolutional neural network

∗This work was done when Ning Zhang was in Berkeley.
†Prof. Darrell was supported in part by DARPA; AFRL; DoD MURI

award N000141110688; NSF awards IIS-1212798, IIS-1427425, and IIS-
1536003, and the Berkeley Vision and Learning Center.

sketch 1

sketch 2 *
compact featureactivation

 sum-pooled
compact feature

Figure 1: We propose a compact bilinear pooling method
for image classification. Our pooling method is learned
through end-to-end back-propagation and enables a low-
dimensional but highly discriminative image representation.
Top pipeline shows the Tensor Sketch projection applied to
the activation at a single spatial location, with ∗ denoting
circular convolution. Bottom pipeline shows how to obtain
a global compact descriptor by sum pooling.

(CNN) enables joint optimization of the whole pipeline, re-
sulting in significantly higher recognition accuracy. While
the distinction of the steps is less clear in a CNN than in a
BoVW pipeline, one can view the first several convolutional
layers as a feature extractor and the later fully connected
layers as a pooling and encoding mechanism. This has been
explored recently in methods combining the feature extrac-
tion architecture of the CNN paradigm, with the pooling &
encoding steps from the BoVW paradigm [23, 8]. Notably,
Lin et al. recently replaced the fully connected layers with
bilinear pooling achieving remarkable improvements for
fine-grained visual recognition [23]. However, their final
representation is very high-dimensional; in their paper the
encoded feature dimension, d, is more than 250, 000. Such
representation is impractical for several reasons: (1) if used
with a standard one-vs-rest linear classifier for k classes,
the number of model parameters becomes kd, which for
e.g. k = 1000 means > 250 million model parameters, (2)
for retrieval or deployment scenarios which require features
to be stored in a database, the storage becomes expensive;
storing a millions samples requires 2TB of storage at dou-

1

ar
X

iv
:1

51
1.

06
06

2v
2

 [
cs

.C
V

]
 1

2
A

pr
 2

01
6

ble precision, (3) further processing such as spatial pyramid
matching [18], or domain adaptation [11] often requires fea-
ture concatenation; again, straining memory and storage ca-
pacities, and (4) classifier regularization, in particular under
few-shot learning scenarios becomes challenging [12]. The
main contribution of this work is a pair of bilinear pool-
ing methods, each able to reduce the feature dimensionality
three orders of magnitude with little-to-no loss in perfor-
mance compared to a full bilinear pooling. The proposed
methods are motivated by a novel kernelized viewpoint of
bilinear pooling, and, critically, allow back-propagation for
end-to-end learning.

Our proposed compact bilinear methods rely on the exis-
tence of low dimensional feature maps for kernel functions.
Rahimi [29] first proposed a method to find explicit feature
maps for Gaussian and Laplacian kernels. This was later
extended for the intersection kernel, χ2 kernel and the ex-
ponential χ2 kernel [35, 25, 36]. We show that bilinear fea-
tures are closely related to polynomial kernels and propose
new methods for compact bilinear features based on algo-
rithms for the polynomial kernel first proposed by Kar [15]
and Pham [27]; a key aspect of our contribution is that we
show how to back-propagate through such representations.

Contributions: The contribution of this work is three-
fold. First, we propose two compact bilinear pooling meth-
ods, which can reduce the feature dimensionality two orders
of magnitude with little-to-no loss in performance com-
pared to a full bilinear pooling. Second, we show that
the back-propagation through the compact bilinear pool-
ing can be efficiently computed, allowing end-to-end op-
timization of the recognition network. Third, we provide
a novel kernelized viewpoint of bilinear pooling which not
only motivates the proposed compact methods, but also pro-
vides theoretical insights into bilinear pooling. Implemen-
tations of the proposed methods, in Caffe and MatCon-
vNet, are publicly available: https://github.com/
gy20073/compact_bilinear_pooling

2. Related work
Bilinear models were first introduced by Tenenbaum and

Freeman [32] to separate style and content. Second order
pooling have since been considered for both semantic seg-
mentation and fine grained recognition, using both hand-
tuned [3], and learned features [23]. Although repeatedly
shown to produce state-of-the art results, it has not been
widely adopted; we believe this is partly due to the pro-
hibitively large dimensionality of the extracted features.

Several other clustering methods have been considered
for visual recognition. Leung and Malik used vector quanti-
zation in the Bag of Visual Words (BoVW) framework [20]
initially used for texture classification, but later adopted for
other visual tasks. VLAD [14] and Improved Fisher Vec-
tor [26] encoding improved over hard vector quantization

Com-
pact

Highly dis-
criminative

Flexible
input size

End-to-end
learnable

Fully con-
nected 3 7 7 3
Fisher en-
coding 7 3 3 7
Bilinear
pooling 7 3 3 3
Compact
bilinear 3 3 3 3

Table 1: Pooling methods property overview: Fully con-
nected pooling [17], is compact and can be learned end-to-
end by back propagation, but it requires a fixed input image
size and is less discriminative than other methods [8, 23].
Fisher encoding is more discriminative but high dimen-
sional and can not be learned end-to-end [8]. Bilinear pool-
ing is discriminative and tune-able but very high dimen-
sional [23]. Our proposed compact bilinear pooling is as
effective as bilinear pooling, but much more compact.

by including second order information in the descriptors.
Fisher vector has been recently been used to achieved start-
of-art performances on many data-sets[8].

Reducing the number of parameters in CNN is impor-
tant for training large networks and for deployment (e.g. on
embedded systems). Deep Fried Convnets [40] aims to re-
duce the number of parameters in the fully connected layer,
which usually accounts for 90% of parameters. Several
other papers pursue similar goals, such as the Fast Circulant
Projection which uses a circular structure to reduce mem-
ory and speed up computation [6]. Furthermore, Network
in Network [22] uses a micro network as the convolution fil-
ter and achieves good performance when using only global
average pooling. We take an alternative approach and focus
on improving the efficiency of bilinear features, which out-
perform fully connected layers in many studies [3, 8, 30].

3. Compact bilinear models

Bilinear pooling [23] or second order pooling [3] forms
a global image descriptor by calculating:

B(X) =
∑
s∈S

xsx
T
s (1)

where X = (x1, . . . , x|S|, xs ∈ Rc) is a set of local de-
scriptors, and S is the set of spatial locations (combinations
of rows & columns). Local descriptors, xs are typically
extracted using SIFT[24], HOG [9] or by a forward pass
through a CNN [17]. As defined in (1), B(X) is a c × c
matrix, but for the purpose of our analysis, we will view it
as a length c2 vector.

https://github.com/gy20073/compact_bilinear_pooling
https://github.com/gy20073/compact_bilinear_pooling

3.1. A kernelized view of bilinear pooling

Image classification using bilinear descriptors is typ-
ically achieved using linear Support Vector Machines
(SVM) or logistic regression. These can both be viewed
as linear kernel machines, and we provide an analysis be-
low1. Given two sets of local descriptors: X and Y , a linear
kernel machine compares these as:

〈B(X), B(Y)〉 = 〈
∑
s∈S

xsx
T
s ,

∑
u∈U

yuy
T
u 〉

=
∑
s∈S

∑
u∈U
〈xsxTs , yuyTu 〉

=
∑
s∈S

∑
u∈U
〈xs, yu〉2

(2)

From the last line in (2), it is clear that the bilinear descriptor
compares each local descriptor in the first image with that
in the second image and that the comparison operator is a
second order polynomial kernel. Bilinear pooling thus gives
a linear classifier the discriminative power of a second order
kernel-machine, which may help explain the strong empiri-
cal performance observed in previous work [23, 3, 8, 30].

3.2. Compact bilinear pooling

In this section we define the proposed compact bilinear
pooling methods. Let k(x, y) denote the comparison ker-
nel, i.e. the second order polynomial kernel. If we could
find some low dimensional projection function φ(x) ∈ Rd,
where d << c2, that satisfy 〈φ(x), φ(y)〉 ≈ k(x, y), then
we could approximate the inner product of (2) by:

〈B(X), B(Y)〉 =
∑
s∈S

∑
u∈U
〈xs, yu〉2

≈
∑
s∈S

∑
u∈U
〈φ(x), φ(y)〉

≡ 〈C(X), C(Y)〉,

(3)

where

C(X) :=
∑
s∈S

φ(xs) (4)

is the compact bilinear feature. It is clear from this analysis
that any low-dimensional approximation of the polynomial
kernel can be used to towards our goal of creating a compact
bilinear pooling method. We investigate two such approxi-
mations: Random Maclaurin (RM) [15] and Tensor Sketch
(TS) [27], detailed in Alg. 1 and Alg. 2 respectively.

RM is an early approach developed to serve as a low
dimensional explicit feature map to approximate the poly-
nomial kernel [15]. The intuition is straight forward.

1We ignore the normalization (signed square root and `2 normalization)
which is typically applied before classification

If w1, w2 ∈ Rc are two random −1,+1 vectors and
φ(x) = 〈w1, x〉〈w2, x〉, then for non-random x, y ∈ Rc,
E[φ(x)φ(y)] = E[〈w1, x〉〈w1, y〉]2 = 〈x, y〉2. Thus each
projected entry in RM has an expectation of the quantity to
be approximated. By using d entries in the output, the es-
timator variance could be brought down by a factor of 1/d.
TS uses sketching functions to improve the computational
complexity during projection and tend to provide better ap-
proximations in practice [27]. Similar to the RM approach,
Count Sketch[4], defined by Ψ(x, h, s) in Algorithm 2, has
the favorable property that: E[〈Ψ(x, h, s),Ψ(y, h, s)〉] =
〈x, y〉 [4]. Moreover, one can show that Ψ(x ⊗ y, h, s) =
Ψ(x, h, s) ∗Ψ(y, h, s), i.e. the count sketch of two vectors’
outer product is the convolution of individual’s count sketch
[27]. Then the same approximation in expectation follows.

3.2.1 Back propagation of compact bilinear pooling

In this section we derive back-propagation for the two com-
pact bilinear pooling methods and show they’re efficient
both in computation and storage.

For RM, let L denote the loss function, s the spatial in-
dex, d the projected dimension, n the index of the training
sample and ynd ∈ R the output of the RM layer at dimension
d for instance n. Back propagation of RM pooling can then
be written as:

∂L

∂xns
=

∑
d

∂L

∂ynd

∑
k

〈Wk(d), xns 〉Wk̄(d)

∂L

∂Wk(d)
=

∑
n

∂L

∂ynd

∑
s

〈Wk̄(d), xns 〉xns
(5)

where k = 1, 2, k̄ = 2, 1, and Wk(d) is row d of matrix
Wk. For TS, using the same notation,

∂L

∂xns
=

∑
d

∂L

∂ynd

∑
k

T k
d (xns) ◦ sk

∂L

∂sk
=

∑
n,d

∂L

∂ynd

∑
s

T k
d (xns) ◦ xns

(6)

where T k
d (x) ∈ Rc and T k

d (x)c = Ψ(x, hk̄, sk̄)d−hk(c).
When d − hk(c) is negative, it denotes the circular index
(d− hk(c)) +D, where D is the projected dimensionality.
Note that in TS, we could only get a gradient for sk. hk is
combinatorial, and thus fixed during back-prop.

The back-prop equation for RM can be conveniently
written as a few matrix multiplications. It has the same
computational and storage complexity as its forward pass,
and can be calculated efficiently. Similarly, Equation 6 can
also be expressed as a few FFT, IFFT and matrix multiplica-
tion operations. The computational and storage complexity
of TS are also similar to its forward pass.

Full Bilinear Random Maclaurin (RM) Tensor Sketch (TS)

Dimension c2 [262K] d [10K] d [10K]
Parameters Memory 0 2cd [40MB] 2c [4KB]
Computation O(hwc2) O(hwcd) O(hw(c+ d log d))
Classifier Parameter Memory kc2 [1000MB] kd [40MB] kd [40MB]

Table 2: Dimension, memory and computation comparison among bilinear and the proposed compact bilinear features.
Parameters c, d, h, w, k represent the number of channels before the pooling layer, the projected dimension of compact
bilinear layer, the height and width of the previous layer and the number of classes respectively. Numbers in brackets indicate
typical value when bilinear pooling is applied after the last convolutional layer of VGG-VD [31] model on a 1000-class
classification task, i.e. c = 512, d = 10, 000, h = w = 13, k = 1000. All data are stored in single precision.

Algorithm 1 Random Maclaurin Projection

Input: x ∈ Rc

Output: feature map φRM (x) ∈ Rd, such that
〈φRM (x), φRM (y)〉 ≈ 〈x, y〉2
1. Generate random but fixed W1,W2 ∈ Rd×c, where
each entry is either +1 or −1 with equal probability.
2. Let φRM (x) ≡ 1√

d
(W1x) ◦ (W2x), where ◦ denotes

element-wise multiplication.

Algorithm 2 Tensor Sketch Projection

Input: x ∈ Rc

Output: feature map φTS(x) ∈ Rd, such that
〈φTS(x), φTS(y)〉 ≈ 〈x, y〉2
1. Generate random but fixed hk ∈ Nc and
sk ∈ {+1,−1}c where hk(i) is uniformly drawn from
{1, 2, . . . , d}, sk(i) is uniformly drawn from {+1,−1},
and k = 1, 2.
2. Next, define sketch function Ψ(x, h, s) =
{(Qx)1, . . . , (Qx)d}, where (Qx)j =

∑
t:h(t)=j s(t)xt

3. Finally, define φTS(x) ≡ FFT−1(FFT(Ψ(x, h1, s1)) ◦
FFT(Ψ(x, h2, s2))), where the ◦ denotes element-wise
multiplication.

3.2.2 Some properties of compact bilinear pooling

Table 2 shows the comparison among bilinear and compact
bilinear feature using RM and TS projections. Numbers
indicated in brackets are the typical values when apply-
ing VGG-VD [31] with the selected pooling method on a
1000-class classification task. The output dimension of our
compact bilinear feature is 2 orders of magnitude smaller
than the bilinear feature dimension. In practice, the pro-
posed compact representations achieve similar performance
to the fully bilinear representation using only 2% of the bi-
linear feature dimension, suggesting a remarkable 98% re-
dundancy in the bilinear representation.

The RM projection requires moderate amounts of param-
eter memory (i.e. the random generated but fixed matrix),

while TS require almost no parameter memory. If a linear
classifier is used after the pooling layer, i.e, a fully con-
nected layer followed by a softmax loss, the number of clas-
sifier parameters increases linearly with the pooling output
dimension and the number of classes. In the case mentioned
above, classification parameters for bilinear pooling would
require 1000MB of storage. Our compact bilinear method,
on the other hand, requires far fewer parameters in the clas-
sification layer, potentially reducing the risk of over-fitting,
and performing better in few shot learning scenarios [12],
or domain adaptation [11] scenarios.

Computationally, Tensor Sketch is linear in d log d + c,
whereas bilinear is quadratic in c, and Random Maclaurin is
linear in cd (Table 2). In practice, the computation time of
the pooling layers is dominated by that of the convolution
layers. With the Caffe implementation and K40c GPU, the
forward backward time of the 16-layer VGG [31] on a 448×
448 image is 312ms. Bilinear pooling requires 0.77ms and
TS (with d = 4096) requires 5.03ms . TS is slower because
FFT has a larger constant factor than matrix multiplication.

3.3. Alternative dimension reduction methods

PCA, which is a commonly used dimensionality reduc-
tion method, is not a viable alternative in this scenario due
to the high dimensionality of the bilinear feature. Solving
a PCA usually involves operations on the order of O(d3),
where d is the feature dimension. This is impractical for the
high dimensionality, d = 262K used in bilinear pooling.

Lin et al. [23] circumvented these limitations by using
PCA before forming the bilinear feature, reducing the bi-
linear feature dimension on CUB200 [39] from 262,000 to
33,000. While this is a substantial improvement, it still ac-
counts for 12.6% of the original dimensionality. Moreover,
the PCA reduction technique requires an expensive initial
sweep over the whole dataset to get the principle compo-
nents. In contrast, our proposed compact bilinear methods
do not require any pre-training and can be as small as 4096
dimensions. For completeness, we compare our method to
this baseline in Section 4.3.

Another alternative is to use a random projections. How-
ever, this requires forming the whole bilinear feature and

projecting it to lower dimensional using some random lin-
ear operator. Due to the Johnson-Lindenstrauss lemma
[10], the random projection largely preserves pairwise dis-
tances between the feature vectors. However, deploying
this method requires constructing and storing both the bi-
linear feature and the fixed random projection matrix. For
example, for VGG-VD, the projection matrix will have a
shape of c2 × d, where c and d are the number of chan-
nels in the previous layer and the projected dimension, as
above. With d = 10, 000 and c = 512, the projection ma-
trix has 2.6 billion entries, making it impractical to store
and work with. A classical dense random Gaussian matrix,
with entries being i.i.d. N(0, 1), would occupy 10.5GB of
memory, which is too much for a high-end GPU such as
K40. A sparse random projection matrix would improve
the memory consumption to around 40MB[21], but would
still requires forming bilinear feature first. Furthermore, it
requires sparse matrix operations on GPU, which are in-
evitably slower than dense matrix operations, such as the
one used in RM (Alg. 1).

4. Experiments

In this section we detail four sets of experiments. First,
in Sec. 4.2, we investigate some design-choices of the pro-
posed pooling methods: appropriate dimensionality, d and
whether to tune the projection parameters, W . Second, in
Sec. 4.3, we conduct a baseline comparison against a PCA
based compact pooling method. Third, in Sec. 4.4, we
look at how bilinear pooling in general, and the proposed
compact methods in particular, perform in comparison to
state-of-the-art on three common computer vision bench-
mark data-sets. Fourth, in Sec. 4.5, we investigate a situa-
tion where a low-dimensional representation is particularly
useful: few-shot learning. We begin by providing the ex-
perimental details.

4.1. Experimental details

We evaluate our design on two network structures: the
M-net in [5] (VGG-M) and the D-net in [31] (VGG-D). We
use the convolution layers of the each network as the lo-
cal descriptor extractor. More precisely, in the notation of
Sec. 3, xs is the activation at each spatial location of the
convolution layer output. Specifically, we retain the first
14 layers of VGG-M (conv5 + ReLU) and the first 30 lay-
ers in VGG-D (conv5 3 + ReLU), as used in [23]. In addi-
tion to bilinear pooling, we also compare to fully connected
layer and improved fisher vector encoding [26]. The latter
one is known to outperform other clustering based coding
methods[8], such as hard or soft vector quantization [20]
and VLAD [14]. All experiments are performed using Mat-
ConvNet [34], and we use 448 × 448 input image size, ex-
cept fully connected pooling as mentioned below.

4.1.1 Pooling Methods

Full Bilinear Pooling: Both VGG-M and VGG-D have
512 channels in the final convolutional layer, meaning that
the bilinear feature dimension is 512×512 ≈ 250K. We use
a symmetric underlying network structure, corresponding to
the B-CNN[M,M] and B-CNN[D,D] configurations in [23].
We did not experiment with the asymmetric structure such
as B-CNN[M, D] because it is shown to have similar perfor-
mance as the B-CNN[D,D] [23]. Before the final classifica-
tion layer, we add an element-wise signed square root layer
(y = sign(x)

√
|x|) and an instance-wise `2 normalization.

Compact Bilinear Pooling: Our two proposed compact
bilinear pooling methods are evaluated in the same exact
experimental setup as the bilinear pooling, including the
signed square root layer and the `2 normalization layer.
Both compact methods are parameterized by a used-defined
projection dimension d and a set of random generated pro-
jection parameters. For notational convenience, we use W
to refer to the projection parameters, although they are gen-
erated and used differently (Algs. 1, 2). When integer con-
straints are relaxed, W can be learned as part of the end-
to-end back-propagation. The appropriate setting of d, and
of whether or not to tune W , depends on the amount of
training data, memory budget, and the difficulty of the clas-
sification task. We discuss these design choices in Sec. 4.2;
in practice we found that d = 8000 is sufficient for reaching
close-to maximum accuracy, and that tuning the projection
parameters has a positive, but small, boost.

Fully Connected Pooling: The fully connected baseline
refer to a classical fine tuning scenario, where one starts
from a network trained on a large amount of images, such
as VGG-M, and replace the last classification layer with a
random initialized k-way classification layer before fine-
tuning. We refer to this as the ”fully connected” because
this method has two fully connected layers between the last
convolution layer and the classification layer. This method
requires a fixed input image sizes, dictated by the network
structure. For the VGG nets used in this work, the input size
is 224× 224, and we thus re-size all images to this size for
this method.

Improved Fisher Encoding: Similarly to bilinear pool-
ing, fisher encoding [26] has recently been used as an en-
coding & pooling alternative to the fully connected lay-
ers [8]. Following [8], the activations of last convolutional
layer (excluding ReLU) are used as input the encoding step,
and the encoding uses 64 GMM components.

4.1.2 Learning Configuration

During fine-tuning, we initialized the last layer using the
weights of the trained logistic regression and attach a cor-
responding logistic loss. We then fine tune the whole net-
work until convergence using a constant small learning rate

of 10−3, a weight decay of 5 × 10−4, a batch size of 32
for VGG-M and 8 for VGG-D. In practice, convergence
occur in < 100 epochs. Note that for RM and TS, back-
propagation can be used simply as a way to tune the deeper
layers of the network (as it is used in full bilinear pooling),
or to also tune the projection parameters,W . We investigate
both options in Sec. 4.2. Fisher vector has an unsupervised
dictionary learning phase, and it is unclear how to perform
fine-tuning [8]. We therefore do not evaluate Fisher Vector
under fine-tuning.

In Sec. 4.2 we also evaluate each method as a feature
extractor. Using the forward-pass through the network, we
train a linear classifier on the activations. We use `2 regu-
larized logistic regression: λ||w||22 +

∑
i l(〈xi, w〉, yi) with

λ = 0.001 as we found that it slightly outperforms SVM.

4.2. Configurations of compact pooling

Both RM and TS pooling have a user defined projection
dimension d, and a set of projection parameters, W . To in-
vestigate the parameters of the proposed compact bilinear
methods, we conduced extensive experiments on the CUB-
200 [37] dataset which contains 11,788 images of 200 bird
species, with a fixed training and testing set split. We eval-
uate in the mode where part annotations are not provided
at neither training nor testing time, and use VGG-M for all
experiments in this section.

Fig. 2 summarizes our results. As the projection dimen-
sion d increases, the two compact bilinear methods reach
the performance of the full bilinear pooling. When not fine-
tuned, the error of TS with d = 16K is 1.7% less than that of
bilinear feature, while only using 6.1% of the original num-
ber of dimensions. When fine tuned, the performance gap
disappears: TS with d = 16K has an error rate of 22.66%,
compared to 22.44% of bilinear pooling.

In lower dimension, RM outperforms TS, especially
when tuningW . This may be because RM pooling has more
parameters, which provides additional learning capacity de-
spite the low-dimensional output (Table 2). Conversely, TS
outperforms RM when d > 2000. This is consistent with
the results of Pham & Pagm, who evaluated these projec-
tions methods on several smaller data-sets [27]. Note that
these previous studies did not use pooling nor fine-tuning as
part of their experimentation.

Fig. 2 also shows performances using extremely low di-
mensional representation, d = 32, 128 and 512. While the
performance decreased significantly for the fixed represen-
tation, fine-tuning brought back much of the discriminative
capability. For example, d = 32 achieved less than 50% er-
ror on the challenging 200-class fine grained classification
task. Going up slightly, to 512 dimensions, it yields 25.54%
error rate. This is only 3.1% drop in performance compared
to the 250,000 dimensional bilinear feature. Such extremely
compact but highly discriminative image feature represen-

Projected dimensions
32 128 512 2048 4096 8192 16384

T
o

p
 1

 e
rr

o
r

0

10

20

30

40

50

60

70

80

90

100
RM Non-finetuned
TS Non-finetuned
RM Finetuned Fix W
TS Finetuned Fix W
RM Finetuned Learn W
TS Finetuned Learn W
FB Non-finetuned
FB Finetuned

Figure 2: Classification error on the CUB dataset. Compar-
ison of Random Maclaurin (RM) and Tensor Sketch (TS)
for various combinations of projection dimensions and fine-
tuning options. The two horizontal lines shows the perfor-
mance of fine-tuned and non fine-tuned Fully Bilinear (FB).

tations are useful, for example, in image retrieval systems.
For comparison, Wang et al. used a 4096 dimensional fea-
ture embedding in their recent retrieval system [38].

In conclusion, our experiments suggest that between
2000 and 8000 features dimension is appropriate. They also
suggest that the projection parameters, W should only be
tuned when one using extremely low dimensional represen-
tations (the 32 dimensional results is an exception). Our ex-
periments also confirmed the importance of fine-tuning, em-
phasizing the critical importance of using projection meth-
ods which allow fine-tuning.

4.3. Comparison to the PCA-Bilinear baseline

As mentioned in Section 3.3, a simple alternative di-
mensionality reduction method would be to use PCA be-
fore bilinear pooling [23]. We compare this approach with
our compact Tensor Sketch method on the CUB[37] dataset
with VGG-M [5] network. The PCA-Bilinear baseline is
implemented by inserting an 1 × 1 convolution before the
bilinear layer with weights initialized by PCA. The number
of outputs, k of this convolutional layer will determine the
feature dimension (k2).

Results with various k2 are shown in Table 3. The gap
between the PCA-reduced bilinear feature and TS feature
is large especially when the feature dimension is small and
network not fine tuned. When fine tuned, the gap shrinks but
the PCA-Bilinear approach is not good at utilizing larger di-
mensions. For example, the PCA approach reaches a 23.8%
error rate at 16K dimensions, which is larger than the 23.2%
error rate of TS at 4K dimensions.

dim. 256 1024 4096 16384

PCA 72.5/42.9 49.7/28.9 41.3/25.3 36.2/23.8
TS 62.6/32.2 41.6/25.5 33.9/23.2 31.1/22.5

Table 3: Comparison between PCA reduced feature and TS.
Numbers refer to Top 1 error rates without and with fine
tuning respectively.

4.4. Evaluation across multiple data-sets

Bilinear pooling has been studied extensively. Carreira
et al. used second order pooling to facilitate semantic seg-
mentation [3]. Lin et al. used bilinear pooling for fine-
grained visual classification [23], and Rowchowdhury used
bilinear pooling for face verification [30]. These methods
all achieved state-of-art on the respective tasks indicating
the wide utility of bilinear pooling. In this section we show
that the compact representations perform on par with bi-
linear pooling on three very different image classification
tasks. Since the compact representation requires orders of
magnitude less memory, this suggests that it is the prefer-
able method for a wide array of visual recognition tasks.

Fully connected pooling, fisher vector encoding, bilin-
ear pooling and the two compact bilinear pooling methods
are compared on three visual recognition tasks: fine-grained
visual categorization represented by CUB-200-2011 [37],
scene recognition represented by the MIT indoor scene
recognition dataset [28], and texture classification repre-
sented by the Describable Texture Dataset [7]. Sample fig-
ures are provided in Fig. 3, and dataset details in Table 5.
Guided by our results in Sec. 4.2 we use d = 8192 dimen-
sions and fix the projection parameters W .

Data-set # train img # test img # classes

CUB [37] 5994 5794 200
MIT [28] 4017 1339 67
DTD [7] 1880 3760 47

Table 5: Summary statistics of data-sets in Sec. 4.4

4.4.1 Bird species recognition

CUB is a fine-grained visual categorization dataset. Good
performance on this dataset requires identification of overall
bird shape, texture and colors, but also capacity to focus
on subtle differences, such as the beak-shapes. The only
supervision we use is the image level class labels, without
referring to either part or bounding box annotations.

Our results indicate that bilinear and compact bilinear
pooling outperforms fully connected and fisher vector by a
large margin, both with and without fine-tuning (Table 4).
Among the compact bilinear methods, TS consistently out-
performed RS. For the larger VGG-D network, bilinear
pooling achieved 19.90% error rate before fine tuning, while

RM and TS achieved 21.83% and 20.50% respectively. This
is a modest 1.93% and 0.6% performance loss consider-
ing the huge reduction in feature dimension (from 250k to
8192). Notably, this difference disappeared after fine-tuning
when the bilinear pooling methods all reached an error rate
of 16.0%. This is, to the best of our knowledge, the state
of the art performance on this dataset without part annota-
tion [16, 23]. The story is similar for the smaller VGG-M
network: TS is more favorable than RM and the perfor-
mance gap between compact full bilinear shrinks to 0.5%
after fine tuning.

Figure 3: Samples images from the three datasets examined
in Sec. 4.4. Each row contains samples from indigo bunting
in CUB, jewelery shop in MIT, and honey comb in DTD.

4.4.2 Indoor scene recognition

Scene recognition is quite different from fine-grained visual
categorization, requiring localization and classification of
discriminative and non-salient objects. As shown in Fig. 3,
the intra-class variation can be quite large.

As expected, and previously observed [8], improved
Fisher vector encoding outperformed fully connected pool-
ing by 6.87% on the MIT scene data-set (Table 4). More
surprising, bilinear pooling outperformed Fisher vector by
3.03%. Even though bilinear pooling was proposed for
object-centric tasks, such as fine grained visual recognition,
this experiment thus suggests that is it appropriate also for
scene recognition. Compact TS performs slightly worse
(0.94%) than full bilinear pooling, but 2.09% better than
Fisher vector. This is notable, since fisher vector is used in
the current state-of-art method for this dataset [8].

Surprisingly, fine-tuning negatively impacts the error-
rates of the full and compact bilinear methods, about 2%.
We believe this is due to the small training-set size and large
number of convolutional weights in VGG-D, but it deserves
further attention.

Data-set Net FC [5, 31] Fisher [8] FB [23] RM (Alg. 1) TS (Alg. 2)

CUB [37] VGG-M [5] 49.90/42.03 52.73/NA 29.41/22.44 36.42/23.96 31.53/23.06
CUB [37] VGG-D [31] 42.56/33.88 35.80/NA 19.90/16.00 21.83/16.14 20.50/16.00
MIT [28] VGG-M [5] 39.67/35.64 32.80/NA 29.77/32.95 31.83/32.03 30.71/31.30
MIT [28] VGG-D [31] 35.49/32.24 24.43/NA 22.45/28.98∗ 26.11/26.57 23.83/27.27∗

DTD [7] VGG-M [5] 46.81/43.22 42.58/NA 39.57/40.50 43.03/41.36 39.60/40.71
DTD [7] VGG-D [31] 39.89/40.11 34.47/NA 32.50/35.04 36.76/34.43 32.29/35.49

Table 4: Classification error of fully connected (FC), fisher vector, full bilinear (FB) and compact bilinear pooling methods,
Random Maclaurin (RM) and Tensor Sketch (TS). For RM and TS we set the projection dimension, d = 8192 and we
fix the projection parameters, W . The number before and after the slash represents the error without and with fine tuning
respectively. Some fine tuning experiments diverged, when VGG-D is fine-tuned on MIT dataset. These are marked with an
asterisk and we report the error rate at the 20th epoch.

4.4.3 Texture classification

Texture classification is similar to scene recognition in that
it requires attention to small features which can occur any-
where in the image plane. Our results confirm this, and
we see similar trends as on the MIT data-set (Table 4).
Again, Fisher encoding outperformed fully connected pool-
ing by a large margin and RM pooling performed on par
with Fisher encoding, achieving ∼ 34.5% error-rate using
VGG-D. Both are out-performed by ∼ 2% using full bilin-
ear pooling which achieves 32.50%. The compact TS pool-
ing method achieves the strongest results at 32.29% error-
rate using the VGG-D network. This is 2.18% better than
the fisher vector and the lowest reported single-scale error
rate on this data-set2. Again, fine-tuning did not improve
the results for full bilinear pooling or TS, but it did for RM.

4.5. An application to few-shot learning

Few-shot learning is the task of generalizing from a very
small number of labeled training samples [12]. It is impor-
tant in many deployment scenarios where labels are expen-
sive or time-consuming to acquire [1].

Fundamental results in learning-theory show a relation-
ship between the number of required training samples and
the size of the hypothesis space (VC-dimension) of the clas-
sifier that is being trained [33]. For linear classifiers, the
hypothesis space grows with the feature dimensions, and
we therefore expect a lower-dimensional representation to
be better suited for few-shot learning scenarios. We inves-
tigate this by comparing the full bilinear pooling method
(d = 250, 000) to TS pooling (d = 8192). For these ex-
periments we do not use fine-tuning and use VGG-M as the
local feature extractor.

When only one example is provided for each class, TS
achieves a score of 15.5%, which is a 22.8% relative im-
provement over full bilinear pooling, or 2.9% in absolute

2Cimpoi et al. extract descriptors at several scales to achieve their state-
of-the-art results [8]

value, confirming the utility of a low-dimensional descrip-
tor for few-shot learning. The gap remains at 2.5% with 3
samples per class or 600 training images. As the number
of shots increases, the scores of TS and the bilinear pool-
ing increase rapidly, converging around 15 images per class,
which is roughly half the dataset. (Table 5).

images 1 2 3 7 14

Bilinear 12.7 21.5 27.4 41.7 53.9
TS 15.6 24.1 29.9 43.1 54.3

Table 6: Few shot learning comparison on the CUB data-
set. Results given as mean average precision for k training
images from each of the 200 categories.

5. Conclusion

We have modeled bilinear pooling in a kernelized frame-
work and suggested two compact representations, both of
which allow back-propagation of gradients for end-to-end
optimization of the classification pipeline. Our key experi-
mental results is that an 8K dimensional TS feature has the
same performance as a 262K bilinear feature, enabling a
remarkable 96.5% compression. TS is also more compact
than fisher encoding, and achieves stronger results. We be-
lieve TS could be useful for image retrieval, where storage
and indexing are central issues or in situations which require
further processing: e.g. part-based models [2, 13], con-
ditional random fields, multi-scale analysis, spatial pyra-
mid pooling or hidden Markov models; however these stud-
ies are left to future work. Further, TS reduces network
and classification parameters memory significantly which
can be critical e.g. for deployment on embedded systems.
Finally, after having shown how bilinear pooling uses a
pairwise polynomial kernel to compare local descriptors, it
would be interesting to explore how alternative kernels can
be incorporated in deep visual recognition systems.

References
[1] O. Beijbom, P. J. Edmunds, D. Kline, B. G. Mitchell,

D. Kriegman, et al. Automated annotation of coral reef
survey images. In Computer Vision and Pattern Recogni-
tion (CVPR), 2012 IEEE Conference on, pages 1170–1177.
IEEE, 2012. 8

[2] S. Branson, O. Beijbom, and S. Belongie. Efficient large-
scale structured learning. In Computer Vision and Pat-
tern Recognition (CVPR), 2013 IEEE Conference on, pages
1806–1813. IEEE, 2013. 8

[3] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Se-
mantic segmentation with second-order pooling. In Com-
puter Vision–ECCV 2012, pages 430–443. Springer, 2012.
1, 2, 3, 7

[4] M. Charikar, K. Chen, and M. Farach-Colton. Finding fre-
quent items in data streams. In Automata, languages and
programming, pages 693–703. Springer, 2002. 3

[5] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.
Return of the devil in the details: Delving deep into convo-
lutional nets. arXiv preprint arXiv:1405.3531, 2014. 5, 6,
8

[6] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and
S.-F. Chang. Fast neural networks with circulant projections.
arXiv preprint arXiv:1502.03436, 2015. 2

[7] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and
A. Vedaldi. Describing textures in the wild. In Proceedings
of the IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2014. 7, 8

[8] M. Cimpoi, S. Maji, I. Kokkinos, and A. Vedaldi. Deep filter
banks for texture recognition, description, and segmentation.
arXiv preprint arXiv:1507.02620, 2015. 1, 2, 3, 5, 6, 7, 8

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 1, pages 886–893. IEEE, 2005. 1, 2

[10] S. Dasgupta and A. Gupta. An elementary proof of the
Johnson-Lindenstrauss lemma. International Computer Sci-
ence Institute, Technical Report, pages 99–006, 1999. 5

[11] H. Daumé III. Frustratingly easy domain adaptation. arXiv
preprint arXiv:0907.1815, 2009. 2, 4

[12] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of ob-
ject categories. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 28(4):594–611, 2006. 2, 4, 8

[13] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-
based models. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 32(9):1627–1645, 2010. 8

[14] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregat-
ing local descriptors into a compact image representation.
In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 3304–3311. IEEE, 2010. 2, 5

[15] P. Kar and H. Karnick. Random feature maps for dot prod-
uct kernels. In International Conference on Artificial Intelli-
gence and Statistics, pages 583–591, 2012. 2, 3

[16] J. Krause, H. Jin, J. Yang, and L. Fei-Fei. Fine-grained
recognition without part annotations. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 5546–5555, 2015. 7

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012. 1, 2

[18] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In Computer Vision and Pattern Recogni-
tion, 2006 IEEE Computer Society Conference on, volume 2,
pages 2169–2178. IEEE, 2006. 1, 2

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 1

[20] T. Leung and J. Malik. Representing and recognizing the
visual appearance of materials using three-dimensional tex-
tons. International journal of computer vision, 43(1):29–44,
2001. 2, 5

[21] P. Li, T. J. Hastie, and K. W. Church. Very sparse random
projections. In Proceedings of the 12th ACM SIGKDD inter-
national conference on Knowledge discovery and data min-
ing, pages 287–296. ACM, 2006. 5

[22] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR,
abs/1312.4400, 2013. 2

[23] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN
models for fine-grained visual recognition. arXiv preprint
arXiv:1504.07889, 2015. 1, 2, 3, 4, 5, 6, 7, 8

[24] D. G. Lowe. Object recognition from local scale-invariant
features. In Computer vision, 1999. The proceedings of the
seventh IEEE international conference on, volume 2, pages
1150–1157. Ieee, 1999. 1, 2

[25] S. Maji and A. C. Berg. Max-margin additive classifiers for
detection. In Computer Vision, 2009 IEEE 12th International
Conference on, pages 40–47. IEEE, 2009. 2

[26] F. Perronnin, J. Sánchez, and T. Mensink. Improving the
fisher kernel for large-scale image classification. In Com-
puter Vision–ECCV 2010, pages 143–156. Springer, 2010.
1, 2, 5

[27] N. Pham and R. Pagh. Fast and scalable polynomial kernels
via explicit feature maps. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 239–247. ACM, 2013. 2, 3, 6

[28] A. Quattoni and A. Torralba. Recognizing indoor scenes.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 413–420. IEEE, 2009. 7,
8

[29] A. Rahimi and B. Recht. Random features for large-scale
kernel machines. In Advances in neural information pro-
cessing systems, pages 1177–1184, 2007. 2

[30] A. RoyChowdhury, T.-Y. Lin, S. Maji, and E. Learned-
Miller. Face identification with bilinear CNNs. arXiv
preprint arXiv:1506.01342, 2015. 2, 3, 7

[31] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 4, 5, 8

[32] J. B. Tenenbaum and W. T. Freeman. Separating style
and content with bilinear models. Neural computation,
12(6):1247–1283, 2000. 2

[33] V. Vapnik. The nature of statistical learning theory. Springer
Science & Business Media, 2013. 8

[34] A. Vedaldi and K. Lenc. MatConvNet – convolutional neural
networks for MATLAB. 5

[35] A. Vedaldi and A. Zisserman. Efficient additive kernels via
explicit feature maps. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 34(3):480–492, 2012. 2

[36] S. Vempati, A. Vedaldi, A. Zisserman, and C. Jawahar. Gen-
eralized RBF feature maps for efficient detection. In BMVC,
pages 1–11, 2010. 2

[37] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD birds-200-2011 dataset. 2011. 6, 7, 8

[38] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang,
J. Philbin, B. Chen, and Y. Wu. Learning fine-grained image
similarity with deep ranking. In Computer Vision and Pat-
tern Recognition (CVPR), 2014 IEEE Conference on, pages
1386–1393. IEEE, 2014. 6

[39] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-
longie, and P. Perona. Caltech-UCSD birds 200. 2010. 4

[40] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. Smola,
L. Song, and Z. Wang. Deep fried convnets. arXiv preprint
arXiv:1412.7149, 2014. 2

