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Abstract—Despite Alice’s best efforts, her long-term secret
keys may be revealed to an adversary. Possible reasons include
weakly generated keys, compromised key storage, subpoena,
and coercion. However, Alice may still be able to communicate
securely with other parties, depending on the protocol used.
We call the associated property resilience against Actor Key
Compromise (AKC). We formalise this property in a symbolic
model and identify conditions under which it can and cannot be
achieved. In case studies that include TLS and SSH, we find that
many protocols are not resilient against AKC. We implement a
concrete AKC attack on the mutually authenticated TLS protocol.

Key words: Security protocols, security properties, Key Com-

promise Impersonation, adversary models, TLS, SSH

I. INTRODUCTION

If a government agency obtains the long-term secret key of a

service provider [1,2], it is clear that the agency can impersonate

the service provider to its users. But can the agency also

impersonate an arbitrary user to the service provider? Whether

this is possible depends on the security protocol in question. In

this paper we study the property that formalises this behaviour,

which we call resilience against Actor Key Compromise (AKC).

To illustrate AKC, consider a setting with a public-key

infrastructure: each party X has a long-term key pair for

asymmetric encryption or signing, where pk(X) denotes the

public key and sk(X) denotes the corresponding secret key. We

write {m}k to denote the encryption of m with k and h(m) for

the hash of m. In this setting, Alice can use certain protocols

to establish unilateral security guarantees. For example, Alice

is guaranteed the secrecy of the nonce na and agreement on

its value when sending it encrypted to Bob and receiving a

hash of it as follows:

1. A→ B : {na,A}pk(B)

2. B → A : h(na,A,B)

Here, as in many unilateral protocols, the protocol’s security

relies only on the secrecy of Bob’s long-term secret key.

Most modern protocols offer bilateral guarantees, established

through mutual authentication protocols or authenticated key

exchange protocols. As a standard example, consider the

Needham-Schroeder-Lowe protocol [3]:

1. A→ B : {na,A}pk(B)

2. B → A : {na, nb,B}pk(A)

3. A→ B : {nb}pk(B)

Such bilateral protocols can be viewed as combining two

unilateral protocols: if Alice’s long-term secret key is compro-

mised, Bob’s half of the bilateral guarantees is lost because the

adversary can impersonate Alice. But what about Alice’s half?

Since Bob’s key is not compromised, Alice might expect to

obtain the guarantees she would have when using an appropriate

unilateral protocol.

It turns out that not every bilateral protocol has this property.

For example, if Alice’s secret key is compromised in the

Needham-Schroeder-Lowe protocol, she then no longer obtains

secrecy of the nonces nor achieves agreement on nb. Consider

the following attack, in which AAlice denotes that the adversary

A sends or receives a message as Alice:

1. Alice→ Bob : {na,Alice}pk(Bob)

2. Bob→ AAlice : {na, nb,Bob}pk(Alice)

3. A decrypts message using sk(Alice) and learns na, nb
4. A chooses nb′ and constructs {na, nb′, Bob}pk(Alice)

5. ABob → Alice : {na, nb′, Bob}pk(Alice)

6. Alice→ ABob : {nb′}pk(Bob)

We say that such protocols are vulnerable to AKC attacks: if

the long-term secret key of a party (the actor) is compromised,

the party can no longer obtain unilateral guarantees when

communicating with another party (the peer) even when the

peer’s key is still secret. From the actor’s local perspective,

protocols that are vulnerable to AKC attacks offer weaker

security guarantees than many unilateral protocols, because the

vulnerable protocols only achieve the unilateral guarantees if

both the long-term keys of the actor and the peer are secret.

This phenomenon has been largely ignored by the security

protocol community. A notable exception is in the research

literature on authenticated key exchange protocols, where a

limited instance of this problem has been studied. Namely,

there are so-called Key Compromise Impersonation (KCI)

attacks [4,5], where the actor’s key is revealed and used by the

adversary to impersonate another party communicating with

the actor. Of course, one could also consider such an adversary
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when ensuring the non-repudiation of online payments, or for

secrecy of votes in an e-voting protocol. We conclude that the

core issue is neither limited to key exchange protocols nor

to authentication. The loss of a party’s long-term secret key

may impact any security properties of that party in any type

of security protocol.

Contributions. We provide the first systematic analysis of

the consequences of compromising the actor’s secret key,

and propose countermeasures. First, we introduce actor key

compromise and define the related notions of actor key

compromise security, actor key compromise resilience, and

actor key compromise attack. Our definitions are independent

of the choice of protocol, adversary, and property. We show

that key compromise impersonation is a specific instance of

actor key compromise. Second, we provide constructive results

showing how some actor key compromise vulnerabilities can be

avoided in protocol design by using asymmetric encryption and

signatures. Third, we prove impossibility results showing that a

large class of authentication properties cannot be achieved under

actor key compromise by protocols that only use symmetric

cryptography and hashing.

Finally, we look at actor key compromise in practice. We

analyse a set of protocols, including TLS and SSH, for their

resilience against actor key compromise. We find attacks on sev-

eral protocols, including AKC attacks on mutually authenticated

TLS-RSA as well as the combinations of unilateral TLS-RSA

with authorisation protocols such as Apache’s mod auth basic,

OAUTH, and SAML. For mutually authenticated TLS, we

implement and carry out our AKC attack against a fully patched

Apache webserver running TLS v1.2. We provide and verify

concrete fixes for the vulnerable protocols.

Organisation. We describe our modelling framework in

Section II and use it to formalise actor key compromise in

Section III. We show how to achieve actor key compromise

security by protocol transformation in Section IV and prove

impossibility results in Section V. We present case studies in

Section VI, examine related work in Section VII, and draw

conclusions in Section VIII. We provide full proofs in the

appendix.

II. MODELLING FRAMEWORK

We first give an informal definition of an AKC attack to

provide the context for our model. In the next section, we

formally define this concept.

Definition 1 (Actor key compromise attack, informal): We

say that an attack on a security property of an agent A is an

actor key compromise attack if the attack requires that the

adversary obtains and uses a long-term private key of A.

Before we describe our formal framework, we give the notation

we use for functions and sequences. For f a partial function

from X to Y , we write f : X �→ Y . For every partial

function f , we denote its domain by dom(f) and its range by

ran(f). We write f ∪ f ′ for the union of two partial functions

with disjoint domains. If S ⊆ dom(f), we write f |S for

the restriction of f to S. We write f [a �→ b] to denote f ’s

update, i. e., f ′ where f ′(a) = b and for all x ∈ dom(f)\{a},
f ′(x) = f(x). If f is also a (total) function, i.e. it is defined

for each element of X , we write f : X → Y . Let S∗ denote

the set of all finite sequences of elements from S. We write

〈s1, . . . , sn〉 to denote the sequence of s1 to sn and define

last(〈s1, . . . , sn〉) = sn. We write e ∈ s if there exists an

i ∈ {1, . . . , n} such that e = si. Finally, we write s.s′ for the

concatenation of the sequences s and s′.

A. Protocol specification

Our framework is based on [6,7], where the main building

blocks for protocol specifications are roles. A protocol can

have any finite number of roles, and is run by agents who

execute those roles. Agents may execute each role multiple

times, and every role can be executed by any agent. Concrete

role instances that occur during protocol execution are called

runs. While roles are built out of role events, runs consist of

their instantiated counterpart, run events. Role and run events

contain role and run terms, respectively. We assume, prior to

protocol execution, that every agent has generated or securely

received a long-term asymmetric key pair consisting of a public

and a secret key, and has authentic copies of his long-term

symmetric keys and the public keys of all other agents.

We assume given the pairwise disjoint, infinite sets Role,

Agent, Fresh, RID, Var, and Func of roles, agent names,

freshly generated terms (nonces, coin flips, etc.), run identifiers,

variables, and function names (hash functions, constants, etc.).

We also assume that for all n ∈ N0, there is an infinite number

of function names of arity n. We denote by Const ⊆ Func
the set of all constants, i.e., the function names of arity 0. We

assume that RID contains two distinguished run identifiers,

Test and ridA, which are respectively used to identify the test
run and the adversary run. In the computational setting, the

test run is the run under attack. We refer to it to define the

adversary’s capabilities to perform different types of key reveal

queries. Such queries can be executed by the adversary run.

Definition 2 (Terms):

Term :: = Role | Agent | Fresh | Fresh#RID | Var

| (Term,Term) | {Term}Term | Func(Termn)

| k(Role,Role) | pk(Role) | sk(Role)

| k(Agent,Agent) | pk(Agent) | sk(Agent)

The superscript n in Func(Termn) denotes that the arity n ∈
N0 depends on the function name. We omit the brackets if

n = 0. By k(X,X ′) we denote the symmetric long-term secret

key shared between X and X ′, pk(X) denotes X’s asymmetric

long-term public key, and sk(X) denotes the corresponding

secret key. By {t1}t2 we denote either signature, asymmetric

encryption, or symmetric encryption, depending on whether

t2 is an asymmetric secret key, public key, or any other term,

respectively. Pairing is not associative, and we write (a, b, c)
to denote ((a, b), c).

We define substitutions as partial functions in the usual way,

except that they are defined on Role ∪ Var. A substitution

σ : Role ∪ Var �→ Term such that dom(σ) = {x1, . . . , xn},
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ran(σ) = {t1, . . . , tn}, and σ(xi) = ti for all i ∈ {1 . . . , n}
is written as σ = [t1, . . . , tn/x1, . . . , xn]. When applying

a substitution to terms, we extend the substitution to an

endomorphism on Term in the standard way. By {t/t′} we

denote the function that replaces every occurrence of the

subterm t′ with the term t. We call such functions replacements.

We define two subterm relations: the syntactic subterm

relation, which does not take into account the position of

a subterm within a term, and the accessible subterm relation,

which only identifies potentially retrievable subterms, given

knowledge of appropriate keys.

Definition 3 (Syntactic subterm relation): The syntactic
subterm relation 	 is the reflexive, transitive closure of

the smallest relation 	 on terms such that for all n ∈ N,

t1, . . . , tn ∈ Term, and f ∈ Func of arity n:
tj 	 (t1, t2) tj 	 {t1}t2 tj 	 k(t1, t2) (j ∈ {1, 2})
t1 	 pk(t1) t1 	 sk(t1) ti 	 f(t1, . . . , tn) (i ∈ {1, . . . , n})

Definition 4 (Accessible subterm relation): The accessible
subterm relation 	acc is the reflexive, transitive closure of

the smallest relation on terms where for all t1, t2 ∈ Term,

t1 	acc (t1, t2), t2 	acc (t1, t2), and t1 	acc {t1}t2 .

We extend both subterm relations to sets: for a term t and set

S, t 	 S (t 	acc S) means that there exists a term t′ ∈ S such

that t 	 t′ (t 	acc t
′). We write vars(t) for {x ∈ Var : x 	 t}.

We assume the existence of an inverse function on terms such

that for all t ∈ Term, if t = pk(t′) or t = sk(t′) for some

t′, then t−1 = sk(t′) or t−1 = pk(t′), respectively; otherwise,

t−1 = t.
We now define which terms can be inferred from a given set

of terms. We denote by 
 the smallest relation such that for all

n ∈ N0, f ∈ Func of arity n, and S ∪ {t1, . . . , tn} ⊆ Term,


 respects the following rules:

S � t1
(t1 ∈ S)

S � t1 S � t2

S � (t1, t2)

S � t1 S � t2

S � {t1}t2
S � t1 . . . S � tn

S � f(t1, . . . , tn)

S � (t1, t2)

S � t1

S � (t1, t2)

S � t2

S � {t1}t2 S � t−1
2

S � t1

We call the rules in the second row composition rules and

those in the third row decomposition rules. If a term t can

be derived from a set S in finitely many applications of the

above rules with every branch of the derivation closed, we

write S 
 t and say that S infers t. We call such derivation a


-derivation tree for t from S. If there exists a 
-derivation

tree for t from S of height at most n, we write S 
n t.
We define RoleTerm as the set of terms that have no

subterms in Agent ∪ {n#rid : n ∈ Fresh, rid ∈ RID}. We

define RunTerm as the set of terms that have no subterms

in Role ∪ Fresh. We call Role ∪ Agent ∪ {x, x#rid : x ∈
Fresh, rid ∈ RID} ∪Var ∪ Const the set of atomic terms.

Next we define role and run events. We assume two infinite,

disjoint sets are given, both pairwise disjoint from Term, Func
and RID. They are Claim, the set of all claim names, which

we use to specify claims of various security properties, and

Label, which we use to label events. We additionally assume

that {alive, commit, running, secret} ⊆ Claim.
Definition 5 (Role and run events): For all R ∈ Role and

a ∈ Agent, we define:

RoleEventR :: = sendLabel(R,Role,RoleTerm)

| recvLabel(Role, R,RoleTerm)

| claimLabel(R,Claim[ , Role][ , RoleTerm])

RunEventa :: = sendLabel(a,Agent,RunTerm)

| recvLabel(Agent, a,RunTerm)

| claimLabel(a,Claim[ , Agent][ , RunTerm])

Additionally, we define RoleEvent =
⋃

R∈Role RoleEventR
and RunEvent =

⋃
a∈Agent RunEventa.

For example, the event sendl0(Alice,Bob, {n#rid}pk(Bob))
signifies that Alice sends Bob a nonce n#rid, which is

generated in the run rid and encrypted with Bob’s public

key.

Two other events can occur during execution: create

and LKR. They respectively denote creating a run of some

role and revealing the long-term keys of an agent to the

adversary. We denote the set RunEvent ∪ {create(R) : R ∈
Role} ∪ {LKR(a) : a ∈ Agent} by TraceEvent, and the

set RoleEvent ∪ TraceEvent of all events by Event. We

homomorphically extend all replacements and substitutions

to events and sequences of terms and events. For every

ev ∈ {send, recv, claim}, l ∈ Label, and event e = evl(·),
we let evtype(e) = ev and label(e) = l. We call ev the event
type of e, and l the label of e. Additionally, if e is of the

form evl(·, ·,m) or evl(·, ·, ·,m), where m ∈ Term, we write

cont(e) = m and call m the contents of e.

We require every sequence of role events that occurs

in a protocol specification to satisfy some well-formedness

conditions. Before specifying them, for all S ∈ {Role,Agent},
we define the set LTK(x) of all long-term secret keys of

x ∈ S as {sk(x)} ∪⋃
x′∈S{k(x, x′), k(x′, x)}. We also define

the operator � that selects the set of terms that are the contents

of events of a particular type: for all e ∈ Event, s ∈ Event∗,
and ev ∈ {send, recv, claim}, let 〈〉 � ev = ∅ and

(〈e〉.s) � ev =

{
{cont(e)} ∪ (s � ev), if evtype(e) = ev,

s � ev, otherwise.

For all s ∈ Event∗ and l ∈ Label such that l occurs in s, we

define upto(s, l) as the prefix of s, up to and including the

first event labelled l.
Definition 6 (Well-formed sequence of role events for R):

Let R ∈ Role. A sequence s ∈ RoleEvent∗R is well-formed
for R if:

• all event labels in s are unique,

• for all x ∈ Var, if e ∈ s is the first event in s such that

x 	 cont(e), then evtype(e) = recv and x 	acc cont(e)
(every variable occurring in an event must be initialised in
an accessible position in a recv), and

• for all l ∈ Label, R′ ∈ Role, and t ∈ RoleTerm such that

sendl(R,R′, t) ∈ s, we have that LTK(R) ∪ {S, pk(S) :
S ∈ Role} ∪ {n ∈ Fresh : n 	 (upto(s, l) � send)} ∪
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R R′

{R, n}pk(R′)

secret(n)

Fig. 1. Example protocol 1.

R R′

{R, n}pk(R′), {h(R, n)}sk(R)

secret(n)

Fig. 2. Example protocol 2.

(upto(s, l) �recv) 
 t (role R must be able to construct the
contents of each of its send events).
When a message is received during protocol execution

(defined in the next section), some terms may be stored in

variables. A type function formalises which terms can be stored

in which variable. A recv step can be executed only if each

variable stores a term of its type.

Definition 7 (Protocol): Let Π : Role �→ RoleEvent∗ be a

partial function and typeΠ : Var → P(RunTerm) a function.

If for all R ∈ dom(Π), Π(R) is well-formed for R, we say

that (Π, typeΠ) is a protocol.
We introduce two protocols that we use as running examples in

Figure 1 and 2. Both protocols are two-role protocols, depicted

as message sequence charts. In the first one, R sends to R′ its

identity and a freshly generated nonce n, encrypted with the

public key of R′. In the second protocol, a signed hash of the

payload is additionally transmitted. In both protocols, role R′

claims the secrecy of n upon successful completion, i.e. that

the adversary cannot infer it.

Note that while we are usually most interested in one or

two roles relevant to the security property we are considering,

and only draw those roles in message sequence charts, there

is no finite bound on the number of roles in our protocols.

Let us assume that the protocol from Figure 1 is a key

transport protocol, and that n is a fresh session key. If

n is secret, R′ has the following guarantee: any messages

symetrically encrypted with n that R′ later receives are secret

and are sent by R. If the adversary, however, knows sk(R′),
he can learn n and use it to encrypt any message for R′.

Example 1: One possible formal specification of the proto-
col in Figure 1 is as follows: let R,R′ ∈ Role, {1, 2, 3} ⊆
Label, n ∈ Fresh, xn ∈ Var, and define

Π(x) =

⎧⎪⎨
⎪⎩
〈send1(R,R′, {R,n}pk(R′))〉, if x = R,

〈recv2(R,R′, {R, xn}pk(R′)),

claim3(R
′, secret, xn)〉, if x = R′.

Moreover, let typeΠ assign RunTerm to every variable.

We can extend any typeΠ function to Term by assigning

to each term the set of all its possible instantiations: for all

R ∈ Role, n ∈ Fresh, and y ∈ Agent∪Fresh#RID, we define

typeΠ(R) = Agent, typeΠ(n) = {n#rid : rid ∈ RID}, and

typeΠ(y) = {y}. We homomorphically extend typeΠ to Term.

B. Execution model and security properties

We model protocol execution as a transition system. The set

of all states of our system is State = Trace×P(RunTerm)×
(RID �→ RunEvent∗)× (RID �→ (Role∪Var) �→ RunTerm),
where Trace = (RID × TraceEvent)∗ represents all pos-

sible execution histories or traces. Every execution state

s = (trs, AKs, ths, σs) consists of (1) a trace trs, (2) the

adversary’s knowledge AKs, (3) a partial function ths mapping

the run identifiers of initiated runs to sequences of run events,

and (4) the role and variable instantiations σs of all runs. To

keep the notation compact, we write σs(rid) as σs,rid.

To define initial states, for each rid ∈ RID, we define

a replacement (·)#rid to distinguish between local freshly

generated terms of each run by assigning unique names to the

terms: (·)#rid =
⋃

n∈Fresh{n�rid / n}. We define the set of all

test substitutions TS(Π, typeΠ) as the set of all substitutions

σ : Role ∪Var→ RunTerm such that vars(ran(σ)) = ∅ and

for all x ∈ dom(σ), σ(x) ∈ typeΠ(x).
Definition 8 (Initial states): Let (Π, typeΠ) be a protocol.

For all R ∈ dom(Π), the set of initial states IS(Π, typeΠ, R)
is defined as

⋃
σ∈TS(Π,typeΠ)

{
(〈〉, AK0, T est �→ σ(Π(R)#Test), T est �→ σ)

}
,

where AK0 = {a, pk(a) : a ∈ Agent} ∪ {n#ridA : n ∈
Fresh} is the initial adversary knowledge.

Example 2: We consider the following initial state for the
protocol in Example 1:

(〈〉, AK0, T est �→ 〈recv2(Alice,Bob, {Alice, n#rid}pk(Bob)),

claim3(Bob, secret, n#rid)〉,
T est �→ [Alice,Bob, n#rid, . . . /R,R′, xn, . . .])

The operational semantics of a protocol (Π, typeΠ) is

defined by a transition system that combines the execution-

model rules from Figure 3 with a set of adversary-compromise

rules or capabilities [6], chosen from those in Figure 4. We

identify adversaries with the set of their capabilities. We

normally omit the subscripted parameters from the rule names.

The create rule starts a new run of a protocol role R. The

rule is parametrised by the function Π. A fresh run identifier rid
is assigned to the run, thereby distinguishing it from previously

created runs, the adversary run, and the test run. The role names

of Π(R) are replaced with agent names by a substitution σ′,
which is saved in the state. The send rule sends a message m
to the network, thereby adding it to the adversary knowledge.

In contrast, the recv rule, which is parametrised by typeΠ,

accepts messages from the network that match the pattern pt,
where pt is a term that may contain variables. Each variable

must be instantiated with an element of its type. The resulting
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R ∈ dom(Π) rid �∈ (dom(th) ∪ {ridA,Test}) σ′ : Role→ Agent

(tr, AK, th, σ) −→ (tr.〈(rid, create(R))〉, AK, th[rid �→ σ′(Π(R)#rid)], σ[rid �→ σ′])
[createΠ]

th(rid) = 〈sendl(a, b,m)〉.seq
(tr, AK, th, σ) −→ (tr.〈(rid, sendl(a, b,m))〉, AK ∪ {m}, th[rid �→ seq], σ)

[send]

th(rid) = 〈recvl(a, b, pt)〉.seq dom(σ′) = vars(pt) (∀x ∈ dom(σ′))(σ′(x) ∈ typeΠ(x)) AK 
 σ′(pt)
(tr, AK, th, σ) −→ (tr.〈(rid, recvl(a, b, σ′(pt)))〉, AK, th[rid �→ σ′(seq)], σ[rid �→ σrid ∪ σ′])

[recvtypeΠ ]

th(rid) = 〈e〉.seq evtype(e) = claim

(tr, AK, th, σ) −→ (tr.〈(rid, e)〉, AK, th[rid �→ seq], σ)
[claim]

Fig. 3. Execution-model rules

a = σTest(R) a �∈ {σTest(R
′) : R′ ∈ dom(Π) \ {R}}

(tr, AK, th, σ) −→ (tr.〈(ridA, LKR(a))〉, AK ∪ LTK(a), th, σ)
[LKRactorΠ,R]

a �∈ {σTest(R) : R ∈ dom(Π)}
(tr, AK, th, σ) −→ (tr.〈(ridA, LKR(a))〉, AK ∪ LTK(a), th, σ)

[LKRothersΠ]

Fig. 4. Adversary-compromise rules

substitution σ′ is applied to the remaining steps of rid and

saved in the state. The claim rule is used simply to log the

statements that runs make about the security properties they

expect to hold. We explain the connection between claims and

security properties in detail later in this section.

The LKRactor rule allows the adversary to learn the long-term

keys of the agent executing the test run (also called the actor).

The rule takes Π and R as parameters. The rule’s second

premise is needed since we allow agents to communicate

with themselves. Since LKRactor is the core component of

AKC, we discuss it in detail in Section III. The LKRothers rule,

which is parametrised by Π, formalises the standard Dolev-Yao

adversary’s capability to reveal the keys of any agent a that is

not an intended partner (or peer) of the test run.

Definition 9 (Transition relation and reachable states):
Let (Π, typeΠ) be a protocol, R ∈ dom(Π) a role, and A
an adversary. We define a transition relation →Π,typeΠ,R,A

from the execution-model rules in Figure 3 and the rules

in A. For states s and s′, s →Π,typeΠ,R,A s′ iff there exists

a rule in either A or the execution-model rules with the

conclusion s → s′ such that all of the premises hold. We

define the set of reachable states RS(Π, typeΠ, R,A) by

{s : (∃s0 ∈ IS(Π, typeΠ, R))(s0 →∗
Π,typeΠ,R,A s)}.

Example 3: The state (〈(rid, create(R))〉, AK0, th, σ)
where

th(x) =

⎧⎪⎨
⎪⎩
〈send1(Alice,Bob, {Alice, n#rid}pk(Bob))〉, if x = rid,

〈recv2(Alice,Bob, {Alice, n#rid}pk(Bob)),

claim3(Bob, secret, n#rid)〉, if x = Test
and

σx =

{
[Alice,Bob, . . . /R,R′, . . .], if x = rid,

[Alice,Bob, n#rid, . . . /R,R′, xn, . . .], if x = Test

is reached from the initial state in Example 2 by a single

application of the create rule, regardless of the adversary A.

In this state, Alice is running the newly created run rid of the

role R with whom she believes to be Bob in role R′. Alice

has not yet executed any protocol steps in run rid.

We model security properties as reachability properties. To

keep our definitions independent of the protocol, we use the

claim events to declare that a protocol is meant to satisfy a

certain property. We will define three security properties for

role R: secrecy, aliveness, and non-injective data agreement [8].

First we introduce an auxiliary function: for all rid ∈ RID,

R′ ∈ Role, and reachable states s (for any instantiation of

Π, typeΠ, R and A) such that (rid, create(R′)) ∈ trs, we

define roles(rid) = R′, and we let roles(Test) = R.

Definition 10 (Security claims, |=): Given a label l ∈
Label, roles R,R′ ∈ Role, and t ∈ RoleTerm, we call every

γ ∈ {claiml(R, secret, t),

claiml(R, alive, R′),
claiml(R, commit, R′, t)}

a security claim for R. For all states s ∈ State,

s |= γ denotes that the following implication is true: if

(Test, σs,Test(γ
#Test)) ∈ trs, then

• AKs � σs,Test(t
#Test) for γ = claiml(R, secret, t)

(secrecy of t for R)
• (∃rid ∈ RID)(σs,rid(roles(rid)) = σs,Test(R

′)) for

γ = claiml(R, alive, R′) (aliveness of R′ for R)
• (∃rid ∈ RID)(roles(rid) = R′∧

(rid, σs,Test(claiml(R
′, running, R, t#Test))) ∈ trs)

for γ = claiml(R, commit, R′, t)
(non-injective agreement for R with R′ on t)

Let (Π, typeΠ) be a protocol, R ∈ dom(Π), A an adversary,

and γ ∈ Π(R) a security claim. By (Π, typeΠ) |=A γ we

denote that for all s ∈ RS(Π, typeΠ, R,A), s |= γ.

Note that we do not consider a running claim to be a security

claim and simply use it to define non-injective agreement.

Namely, if in a particular state a commit claim executed by
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Test matches a running claim previously executed by rid, and

rid was run in the correct role, then Test and rid agree on

the claims’ contents.

Example 4: Let P be the protocol in Example 1 and A
an adversary. We have P �|=A claim3(R

′, secret, xn). If we

change P to P ′ by adding claim4(R, secret, n) in any position

to the R role, we have P ′ |=A claim4(R, secret, n). We will

prove the generalisation of this fact in Section IV.

III. FORMALISING ACTOR KEY COMPROMISE

In this section we formalise actor key compromise and related

notions. This enables us to reason about the security guarantees

of agents whose long-term secret keys are compromised. We

define these notions independently of the choice of protocol,

adversary, and property.

Definition 11 (Actor key compromise security): Let

(Π, typeΠ) be a protocol, R ∈ dom(Π), A an adversary such

that LKRactor ∈ A, and γ ∈ Π(R) a security claim. We say

that γ is actor key compromise secure in (Π, typeΠ) with
respect to A if (Π, typeΠ) |=A γ.

For example, the secrecy of the nonce n in the protocols

in Figure 1 and 2 is not AKC secure. Consider the trace of

a regular execution of either protocol, where Alice performs

R and Bob performs R′. We can extend this trace using the

LKRactor rule on Bob, which is allowed since Bob is not an

element of the set {σTest(R)} = {Alice}. The adversary can

then use sk(Bob) to decrypt the nonce, violating the claim.

In contrast, the informal notion of a KCI attack suggests

that the secret keys of the actor are not only available to

the adversary, but are integral in performing the attack. We

formalise this as follows: if an adversary without LKRactor

cannot violate a property, but can violate it using LKRactor,

only then do we call the attacks that arise AKC attacks. We

term the absence of such attacks AKC resilience.

Definition 12 (AKC resilience and AKC attack): Let

(Π, typeΠ) be a protocol, R ∈ dom(Π), A an adversary such

that LKRactor ∈ A, and γ ∈ Π(R) a security claim. We say

that γ is actor key compromise resilient in (Π, typeΠ) with
respect to A if

(Π, typeΠ) |=A\{LKRactor} γ =⇒ (Π, typeΠ) |=A γ.

Otherwise, each s ∈ RS(Π, typeΠ, R,A) where s �|= γ is an

actor key compromise attack by A on γ in (Π, typeΠ).
Note that a claim γ is trivially AKC resilient if there is an

attack on γ without the LKRactor capability. We say that a

protocol is AKC resilient or AKC secure with respect to an

adversary if all security claims in it are. If there is an AKC

attack by an adversary on a protocol’s security claim, we say

the protocol is vulnerable to AKC attacks.

We now revisit our examples. The KCI attack on the

protocol in Figure 1, which is described just before Example

1, represents an attack on secrecy by {LKRactor}. It does not

however represent an AKC attack on secrecy by {LKRactor}
because there already exist attacks on secrecy by the empty

adversary, i.e. one with no capabilities beyond the execution-

model rules. The adversary can generate and encrypt a nonce

himself. Hence the protocol is trivially AKC resilient with

respect to {LKRactor}. We see that, in general, AKC resilience

does not imply AKC security, which is the absence of attacks

on secrecy by an adversary who has the LKRactor capability.

The protocol from Figure 2, however, is not AKC resilient

with respect to {LKRactor}. The empty adversary cannot

generate the nonce himself because he cannot forge the

signature. In fact, the nonce is secret with respect to the empty

adversary. Therefore, decrypting a sent, encrypted nonce as in

the KCI attack described just before Example 1 gives rise to

an AKC attack by {LKRactor} on the secrecy of the nonce.

When AKC resilience is non-trivially satisfied, it coincides

with AKC security (AKCS). This is the reason we will primarily

focus on AKCS: after all, we want to use protocols with no

vulnerabilities, regardless if they are AKC-related. Another

reason is that we can represent KCI resilience (KCIR) as an

instance of AKCS.

KCIR as an instance of AKCS. KCIR key establishment

protocols provide an important security guarantee to their

users: even if the users’ own long-term keys are compromised,

they can still authenticate messages encrypted with established

session keys. Although the notion of a KCI attack has remained

informal and subjective, KCI resilience has been incorporated

into different formal models based on a recurring idea: if an

adversary capable of getting the actor’s keys cannot perform any
attack on session-key secrecy in a key establishment protocol,

then he cannot perform a KCI attack.

In the following proposition, we prove that session-key

secrecy during a key establishment handshake coincides with

key agreement after a particular key confirmation step, even

under AKC. The step requires a peer to apply any hash function

unused in the handshake to the key and the relevant identities,

and send the hash value to the actor as depicted in Figure 5.

This shows how the standard notion of KCIR can be recast in

our terms as both AKCS of secrecy and authentication.

One of the lemmas we use in the proof concerns terms t
that have no proper accessible subterms. For certain sets S, t
is unnecessary for inferring terms from S that do not contain

t as a subterm. The second lemma helps us understand the

options available to an adversary for inferring a given term: the

term has been sent as an accessible subterm and the adversary

managed to retrieve it, or he composed it himself. The proofs

of both lemmas can be found in the appendix.

Lemma 5 (Inference-irrelevant sets): Let S ∪ T ⊆ Term
where T is finite and for all t ∈ T , t �	 S \ T , t−1 = t and t
has no proper accessible subterms. Let t′ ∈ Term such that

for all t ∈ T , t �	 t′. Then S 
 t′ if and only if S \ T 
 t′.
Lemma 6 (Composition lemma): Let S ∪ {t} ⊆ Term and

S 
 t. Then t 	acc S, or every minimal-height derivation of t
from S ends in a composition rule.

We now define the transformation in Figure 5, and prove

that the adversary can violate agreement on the session key

in the transformed protocol if and only if he knows the key

in the initial one. We will instantiate all the parameters just

before using the transformation.
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R R′

(Π, typeΠ)

secret(K)

�−→

R R′

(Π, typeΠ)

running(R,K)

h(R,R′,K)

commit(R′,K)

Fig. 5. KCIR as AKCS of secrecy and non-injective agreement

KC (Π)(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Π(x).〈claiml1(R′, running, R,K ′),
sendl2(R

′, R, h(R,R′,K ′))〉, if x = R′,
Π(x).〈recvl2(R′, R, h(R,R′,K)),

claiml1(R, commit, R′,K)〉, if x = R,

Π(x), otherwise.

The term K ′ corresponds to the view from R′ on the key K;

usually, one of them is a variable and the other is a fresh

value, but some protocols use compound terms. We want the

transformation to work on any key establishment protocol, so

we choose a symbol h that does not occur in the protocol

specification. With the help of some typing assumptions, this

prevents messages from the confirmation step from being

accepted in the receive events of the handshake.

Proposition 7 (KCIR as an instance of AKCS): Let

(Π, typeΠ) be a protocol, R,R′ ∈ dom(Π) such that R �= R′,
and last(Π(R)) = claiml0(R, secret,K) where l0 ∈ Label
and K ∈ RoleTerm. Let l1, l2 ∈ Label and h ∈ Func all be

unused in Π, where l1 �= l2 and h does not occur in the set

ran(typeΠ)∪ ran(typeKC (Π)(K
′)). Let A be an adversary. If

typeKC (Π) = typeΠ and (KC (Π), typeKC (Π)) is a protocol,

(Π, typeΠ) |=A claiml0(R, secret,K) ⇐⇒
(KC (Π), typeKC (Π)) |=A claiml1(R, commit, R′,K).

IV. ACHIEVING AKCS BY TRANSFORMATION

In this section, we show how to avoid AKC vulnerabilities

during the protocol design stage. We achieve this by exploiting

unilateral protocols whose security only depends on the long-

term secret keys of the peers. To ensure that such keys are

unavailable to the adversary, we restrict ourselves to protocols

where no role sends out accessible asymmetric long-term secret

keys.

A. Achieving AKCS of secrecy

We first present a transformation that ensures the AKCS of

secrecy. The transformation, shown in Figure 6, adds a single

message exchange containing an asymmetrically encrypted

message. The message stays secret due to encryption, typing

assumptions and tagging, where the last two prevent the

message from being rerouted to the old part of the protocol.

Definition 13 (Tagging function τc): Let c ∈ Const. We

define τc : Term→ Term for all t, t1, . . . , tn ∈ Term by

τc(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
t, if t atomic or long-term key,

(τc(t1), τc(t2)), if t = (t1, t2),

{τc(t1), c}τc(t2), if t = {t1}t2 ,
f(τc(t1), . . . , τc(tn), c), if t = f(t1, . . . , tn).

We usually restrict the domain of τc to some set S of terms if

tagging more than the terms in S is unnecessary.

The following lemma tells us that if some term t that the

adversary cannot construct only occurs in his knowledge within

a term t′, then every term the adversary can infer only contains

t within t′. Its proof is given in Appendix A.

Lemma 8: Let S∪{t, t′} ⊆ Term and ⊥ ∈ Const such that

⊥ does not occur in S ∪ {t, t′}, S � t and t �	acc {⊥ / t′}(S).
Then for all t′′ such that S 
 t′′, t �	acc {⊥ / t′}(t′′).

We require that no role is instructed to send its asymmetric

long-term secret key in an accessible position. Therefore, since

no adversary can reveal asymmetric long-term secret keys of

peers, they can also never infer those keys. The lemma in which

we prove this statement must be restricted if more powerful

adversaries such as the ones in [6] are allowed.

Lemma 9 (Peers’ asymmetric secret keys not inferable):
Let (Π, typeΠ) be a protocol where no asymmetric long-term

secret keys appear in accessible positions in send events. Let

R ∈ dom(Π), A an adversary, s ∈ RS(Π, typeΠ, R,A) a

state, and a ∈ {σs,Test(R
′) : R′ ∈ dom(Π) \ {R}} an agent.

Then AKs � sk(a) holds.

For the transformation in Figure 6, we use the function:

TS (Π)(x) =

⎧⎪⎨
⎪⎩
τc1 |S(Π(R)).〈sendl(R,R′, {m, c2}pk(R′)),

claiml′(R, secret,m)〉, if x = R,

τc1 |S(Π(x)), otherwise.

The transformation TS will only be useful if the protocol

designer ensures that R can indeed send the added message.

In other words, (TS (Π), typeTS(Π)) must be a protocol, i.e.

TS (Π)(R) must be well-formed for R.

Proposition 10 (Secrecy by asymmetric encryption): Let

(Π, typeΠ) be a protocol where no asymmetric long-term

secret keys appear in accessible positions in send events.

Let R,R′ ∈ dom(Π) where R �= R′. Let c1, c2 ∈ Const,
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R R′

(Π, typeΠ), tagged by c1

{m, c2}pk(R′)

secret(m)

Fig. 6. Transforming Π for secrecy of m

l, l′ ∈ Label and n ∈ Fresh all be unused in Π such that

c1 �= c2 and l �= l′. Let m ∈ RoleTerm such that n 	acc m. Let

S = {{t}t′ : typeΠ({t}t′) ∩ typeTS(Π)({m, c2}pk(R′)) �= ∅},
and A an adversary. If (TS (Π), typeTS(Π)) is a protocol

and typeTS(Π) = typeΠ, then (TS (Π), typeTS(Π)) |=A

claiml′(R, secret,m).

B. Achieving AKCS of agreement

We now define a function TA that transforms a protocol

into one that achieves non-injective agreement, as depicted in

Figure 7. A message signed by a peer convinces the test run

that at least one of the peer’s runs agrees on the message:

TA(Π)(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τc1 |S(Π(x)).〈claiml(R′, running, R,m′),
sendl′(R

′, R, {R,m′, c2}sk(R′))〉, if x = R′,
τc1 |S(Π(x)).〈recvl′(R′, R, {R,m, c2}sk(R′)),

claiml(R, commit, R′,m)〉, if x = R,

τc1 |S(Π(x)), otherwise.

As before, m′ is an arbitrary term meant to unify with the

term m, and the transformation TA assumes that R′ can

indeed send the required signature. Therefore, we require that

(TA(Π), typeTA(Π)) is a protocol, i.e. that TA(Π)(R′) is a

well-formed sequence of role events for R′.
The following proposition states that data agreement can

be achieved by exchanging an additional signed message. The

proof uses the fact that the adversary cannot forge the signature

in (TA(Π), typeTA(Π)), because by Lemma 9 he cannot get

the required key. Through the signature, the peer confirms to

the actor that he agrees on the identities and the data.

Proposition 11 (Agreement by signing): Let (Π, typeΠ) be

a protocol where no asymmetric long-term secret keys appear

in accessible positions in send events. Let R,R′ ∈ dom(Π)
such that R �= R′. Let l, l′ ∈ Label and c1, c2 ∈ Const
all be different and unused in Π, m,m′ ∈ RoleTerm, S =
{{t′}t′′ : typeΠ({t′}t′′) ∩ typeTA(Π)({R,m, c2}sk(R′)) �= ∅},
and A an adversary. If (TA(Π), typeTA(Π)) is a protocol and

typeTA(Π) = typeΠ, then we have (TA(Π), typeTA(Π)) |=A

claiml(R, commit, R′,m).

V. IMPOSSIBILITY RESULTS

It is conjectured in [9] that KCIR requires the use of

asymmetric cryptography. We give a partial confirmation of

R R′

(Π, typeΠ), tagged by c1

running(R,m)

{R,m, c2}sk(R′)

commit(R′,m)

Fig. 7. Transforming Π for non-injective agreement on m

this conjecture: under weak assumptions on the protocol

specification and the adversary model, the use of just symmetric

cryptography and hashing cannot ensure AKCR for a large

class of security properties. This class includes, for example,

all authentication properties in Lowe’s hierarchy [8]. We prove

the result for aliveness and generalise it to all stronger claims.

Proposition 12 (Impossibility of aliveness): Let (Π, typeΠ)
be a protocol, R,R′ ∈ dom(Π) such that R �= R′, l ∈ Label,
and claiml(R, alive, R′) ∈ Π(R). If for all S, T ∈ Role,

x ∈ Var, and n ∈ Fresh,

• pk(S) �	 Π(R) and sk(S) �	 Π(R),
• if k(S, T ) 	 Π(R), then S = R or T = R,

• there exists nx ∈ Fresh such that n#ridA
x ∈ typeΠ(x), and

• if n 	 Π(R), n in Π(R) appears first in a send, in accessible

positions only,

then (Π, typeΠ) �|={LKRactor} claiml(R, alive, R′).
Definition 14 (At least as strong security claim): Let γ

and γ′ be security claims for R ∈ Role. We say that γ is at
least as strong as γ′ if for all protocols (Π, typeΠ) such that

R ∈ dom(Π) and γ, γ′ ∈ Π(R), adversaries A, and reachable

states s ∈ RS(Π, typeΠ, R,A), whenever instances of both γ
and γ′ are executed by Test in trs and s |= γ, then s |= γ′.
For example, claiml(R, commit, R′, t) is at least as strong as

claiml′(R, alive, R′).
Corollary 13 (Impossibility of authentication): Under the

assumptions of Proposition 12, for every security claim γ that

is at least as strong as claiml(R, alive, R′) and occurs before

it in Π(R), if (Π, typeΠ) |=∅ γ, then γ is not AKC resilient

in (Π, typeΠ) with respect to the {LKRactor} adversary.

Proof: Let γ′ = claiml(R, alive, R′). From Proposition

12, we have (Π, typeΠ) �|={LKRactor} γ′. Therefore, we know

there exists a state s ∈ RS(Π, typeΠ, R, {LKRactor}) such that

Test executed an instance of γ′ in trs, but s �|= γ′. Since γ
appears before γ′ in Π(R), we know Test also executed an

instance of γ in trs. Since γ is at least as strong as γ′, s �|= γ.

This implies (Π, typeΠ) �|={LKRactor} γ. Since (Π, typeΠ) |=∅ γ
holds by assumption, we are done.
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VI. CASE STUDIES

We have used the Scyther tool [10] to analyse the NSL

protocol, the CCITT X.509 family of protocols, the SSH

Transport Layer protocol, and the TLS protocol. Our findings

include an AKC attack on mutually authenticated TLS-RSA,

for which we provide a concrete implementation against an

Apache web server running TLS v1.2. All of the protocol

specifications needed to reproduce the tests in this section, as

well as the scripts for the attack, are available at [11].

There are several ways to fix a vulnerable protocol, depend-

ing on its requirements and deployment status: (1) switch to a

different mode of the protocol within its protocol suite, (2) use

generic Propositions 10 and 11 verbatim, or (3) use a modified

version of the transformations described in these propositions,

perhaps to achieve slightly different security requirements, and

prove the resulting protocol secure, e.g., with tool support. The

approach listed as (2) is best suited for use in the protocol

design stage. We give an application of (1) in the sections

on TLS, and examples of (3) when discussing NSL and the

CCITT X.509 protocols.

Note that Proposition 12 tells us what kind of changes are

insufficient to ensure AKCS: we cannot achieve authentication

under actor key compromise by employing just hashing and

symmetric keys. However, adding one or both to a protocol

that utilises other mechanisms may suffice. With this in mind,

we propose practical fixes for each of the vulnerable protocols.

A. Needham-Schroeder-Lowe

In the presence of a Dolev-Yao adversary, the Needham-

Schroeder-Lowe (NSL) protocol [3] achieves mutual authenti-

cation and secrecy of both nonces. However, as explained in the

introduction, it is vulnerable to AKC attacks on non-injective

agreement on the nonces for the initiator, and secrecy of both

nonces for both roles. We can fix the AKC vulnerabilities

by hashing the nonces in the response messages, which

prevents leaking the actor’s nonces after learning the actor’s

key. However, this is insufficient to achieve agreement on both

nonces because the claim of an actor in the A role could be

violated by the adversary replacing nb by nb′. We remedy

this problem by linking the nonces in the hash of the second

message, resulting in the protocol we call NSL-AKC:

1. A→ B : {na,A}pk(B)

2. B → A : {h(na, nb), nb, B}pk(A)

3. A→ B : {h(nb)}pk(B)

This protocol is not vulnerable to the attack from the introduc-

tion because the adversary does not learn na from decrypting

the second message. Therefore, he cannot produce a hash of

h(na, nb′), and agreement on both nonces is achieved even

under AKC. In NSL-AKC, AKC leads to the adversary learning

the peer’s nonce nb. However, the combination of both nonces

under a different hash, e.g. h′(na, nb), can still act as a shared

secret. We used Scyther to verify that NSL-AKC achieves

synchronisation (a strong authentication property that implies

agreement, cf. [7]) and secrecy of h′(na, nb), with respect to

{LKRactor} and for both roles.

TABLE I
AUTOMATIC ANALYSIS RESULTS

Protocol AKC attack

1. Needham-Schroeder-Lowe Yes

2 NSL-AKC No

3. CCITT X.509 three-message BAN Yes

4. CCITT X.509 three-message BAN fixed No

5. CCITT X.509 one-message Yes

6. CCITT X.509 one-message fixed No

7. SSH Transport Layer No

8. Mutual TLS-RSA Yes

9. Mutual TLS-DHE RSA No

10. Unilateral TLS-RSA with mod auth basic Yes

B. CCITT X.509 family

We consider a family of protocols from the recommendations

for the CCITT X.509 standard as modelled in the SPORE

library [12]. The protocols are meant to enable secure and

(mutually) authenticated access to a certificate directory. There

are AKC attacks on the secrecy of yb for the A role (likewise,

ya for the B role) in the BAN modified version of the CCITT

X.509 three-message protocol:

1. A→ B : {na,B, xa, {ya}pk(B)}sk(A)

2. B → A : {nb,A, na, xb, {yb}pk(A)}sk(B)

3. A→ B : {B,nb}sk(A)

To obtain secrecy of ya for B under AKC, we must encrypt

it with something other than pk(B). We normally have two

sources of secrecy to choose from (long-term secret keys and

freshly generated values), but under AKC we cannot depend

on the actor’s long-term secret keys. Therefore, we postpone

the transmission of ya to the third message and encrypt it with

yb, which is generated in the second message. The encryption

with pk(A) in message 2 makes yb secret for B, analogous to

the transformation in Proposition 10. We make xa secret for

A under AKC by encrypting it with pk(B). We also encrypt

yb by xa so that it is secret for A. We put xb inside of the

encryption with pk(A) to achieve agreement on xb for B,

which leads to synchronisation [7] under AKC for both roles.

The repaired protocol is successfully verified by Scyther:

1. A→ B : {na,B, {xa}pk(B)}sk(A)

2. B → A : {nb,A, na, {xb, {yb}xa}pk(A)}sk(B)

3. A→ B : {B, nb, {ya}yb}sk(A)

The CCITT X.509 one-message protocol is also vulnerable

to an AKC attack. Even though it is unilateral, its properties

depend on the keys of both parties.

1. A→ B : {ta, na,B, xa, {ya}pk(B)}sk(A)

There is an AKC attack on the secrecy of ya for the responder,

similar to the three-message protocol. The protocol can be

made AKC resilient by prepending a message {nb}pk(A) from

B to A, and replacing ya by {ya}nb in message 1.
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C. SSH

The Secure Shell (SSH) protocol is used to establish a

secure channel between two endpoints, mainly for remote login

and command execution purposes. The mutually authenticated

public-key version of the SSH Transport Layer protocol [13]

is essentially a signed Diffie-Hellman key exchange. We used

Scyther to verify the AKC security of session-key secrecy

and synchronisation in the SSH Transport Layer protocol with

respect to {LKRactor, LKRothers}.
D. Mutually authenticated TLS

The TLS protocol [14] is the most widely deployed protocol

for secure communications on the Internet. It can be used

to unilaterally authenticate a server to a client and also

supports mutually authenticated modes. We first analyse mutual

authentication before returning to unilateral authentication in

the next section.

The mutually authenticated modes of TLS are typically used

in, for example, specialised banking applications [15] and VPN

access. The most commonly deployed mode of TLS is the

RSA mode. Abstractly (omitting, e.g., the explicit certificate

exchange), TLS-RSA proceeds as follows:

1. Client C and server S exchange nonces nc and ns and

parameters; C picks a random pre-master secret PMS .

2. C → S : {PMS}pk(S)

3. C → S : {h(msgs so far)}sk(C)

4. Both C and S compute CLIENTMK ,SERVERMK ,
CLIENTK ,SERVERK , and F , using only PMS and

public information.

5. C → S : CFIN = {F}CLIENTK

6. S computes F ′ from the keys derived from PMS and

public information.

7. S → C : SFIN = {F ′}SERVERK

The four computed session keys are used to encrypt and

authenticate the application data in subsequent communications.

We observe that the only secret information involved in the

computation of all session keys is the pre-master secret PMS .

Therefore, the secrecy of the session keys critically depends

on the secrecy of PMS , which in turn is based on the secrecy

of the server’s long-term secret key sk(S) (see message 2).

Scyther finds a server-side AKC attack by {LKRactor} on

session-key secrecy. In the attack, the adversary essentially

eavesdrops on a regular handshake. Then, by using sk(S), he

decrypts {PMS}pk(S) to get PMS , enabling him to compute

the session keys. Hence he can intercept any subsequently

transmitted messages, or inject his own, thereby rendering the

established communication channel completely insecure.

We implemented this attack against an Apache web server

running TLS v1.2 [14], using a man-in-the-middle attack script

written in Python. The script connects to an OpenSSL integrated

client program (s client) on one end, and the Apache web server

on the other. For the AKC attack we provide our script with

the long-term secret key of the web server. The attack script

eavesdrops on a regular handshake between the server and the

client, and uses the messages and the long-term key to compute

the session keys. The script can then decrypt all sent application

data and is able to insert or modify all received application

data, both to and from the web server. While the attack does

not depend on the concrete hash algorithms, ciphers, and their

modes of operation, we used SHA–256 and AES–256 in CBC

mode in our experiments. The required files and instructions

to run the attack can be downloaded from [11].

The simplest way to prevent the AKC attack is to switch to the

mutually authenticated DHE RSA mode of TLS. This mode

is not vulnerable to AKC attacks, because it uses temporary

Diffie-Hellman public keys of the form gx, where x is a freshly

generated value. The client’s temporary key gx is combined

with the server’s temporary secret key y, and vice versa, to

obtain gxy. The adversary learns both temporary public keys

gx and gy, but does not learn x or y, and therefore cannot

construct the session key. In this case, we use the Tamarin

prover [16] (for its more precise modelling of Diffie-Hellman

exponentiation) to successfully verify that session key secrecy

is AKC secure in the DHE RSA mode of our TLS model.

Until now, the reason put forward for using the DHE modes

of TLS instead of the RSA mode has been that they offer

Perfect Forward Secrecy (PFS): even if all long-term keys are

compromised at some point, previously sent application data

is still secure. Our analysis reveals that there is an additional

advantage to TLS-DHE RSA over TLS-RSA. Namely, the

AKC security implies that a server running TLS-DHE RSA

can still securely communicate with clients even if the server’s

key is compromised. Our attack proves that this is not the case

for the RSA mode.

E. Unilateral TLS combined with authorisation protocols

The most common use of TLS involves the unilateral modes,

in which only the server has a certificate. In these modes,

the client authenticates the server, but the server does not

authenticate the client. The message exchanges are similar to

mutually authenticated TLS, except that the client does not send

a certificate and does not send the so-called CertificateVerify
message (message 3 in the earlier TLS description). Because

the only security requirements stem from the client, who uses

no secret key or has no secret key to reveal, the unilateral

modes are resilient against AKC attacks.

However, many applications such as e-banking and online

e-mail services require mutual authentication even when

the client has no certificate. For such applications, mutual

authentication is usually achieved by combining (unilateral)

TLS with an authorisation protocol in the following way.

First, the client establishes a unilateral TLS session with the

server, authenticating the server based on the server’s certificate.

Then the server performs an authorisation protocol inside

the TLS connection. Typical examples of such protocols are

Apache’s password-based mod auth basic [17], or single sign-

on protocols such as OAUTH [18] or SAML [19]. Abstractly,

these examples all take the following approach, where the

last three communications are encrypted using the previously
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established TLS session keys:

1. C ←→ S : C authenticates S by means of unilateral

TLS and they establish CLIENTK
and SERVERK .

2. C ←→
TLS

S : S authenticates C using an
authorisation protocol.

3. C −→
TLS

S : Communicate or request resource.

4. S −→
TLS

C : Communicate or provide resource.

We modelled the above setup for unilateral TLS-RSA followed

by the default Apache password authentication mod auth basic.

Scyther finds an AKC attack on the server that, upon inspection,

is straightforward: the adversary eavesdrops on the TLS

handshake and the following authentication, which correspond

to step 1 and 2 above. As in the mutually authenticated case,

he can decrypt PMS and compute the session keys. He can

then arbitrarily eavesdrop, modify, or inject messages in steps

3 and 4, regardless of the authorisation protocol used. Thus,

the mutual authentication protocols obtained by combining

unilateral TLS-RSA with either mod auth basic, OAUTH, or

SAML, are all vulnerable to AKC attacks on the server.

Because Apache’s mod auth basic relies on a secret that

is known to both the server and the client, compromising the

server compromises the secret, which enables AKC attacks

against the above setup even when no clients are present.

This is not the case in a weaker threat model, where the

adversary learns the long-term secret key of the server through

cryptanalysis but does not have access to the server’s password

store. In both of the above situations, switching to the mutually

authenticated DHE RSA mode of the TLS handshake provides

the guarantee of AKCS of session-key secrecy to the server.

VII. RELATED WORK

The vast majority of related work has been on Key Com-

promise Impersonation in the domain of key establishment

protocols. The first key compromise impersonation attack was

described by Just and Vaudenay [5] in 1996. The first explicit,

but informal definition of this notion, due to Blake-Wilson,

Johnson and Menezes [4], dates back to 1997. Both of these

papers consider an adversary who obtains long-term secret

keys of a party, usually referred to as the actor, running a

key establishment protocol. The adversary uses the keys to

establish a session key as another protocol participant with

the actor, without being detected. This results in a session key

known to the adversary, which is therefore useless for securing

subsequent communication.

Following [4,5], researchers have examined concrete pro-

tocols or small classes of protocols, and classified KCI

attacks [20,21,22,23,24,25]. This has lead to a partial un-

derstanding of KCI. However, determining if an attack is a

KCI attack is still done on a per-case basis, guided by minor

variations in the early informal definitions.

Starting with [26], researchers have considered the compro-

mise of the actor’s keys in computational [24,26,27] models and

proved KCI resilience for concrete protocols. The underlying

idea is that resilience to KCI attacks can be proved without

formally stating what constitutes a KCI attack, as long as it

is informally argued that KCI resilience is implied by the

monolithic computational security model. Conversely, attacks

are informally argued to be KCI attacks on a case-by-case

basis.

Examples of KCI attacks on one–pass key establishment

protocols can be found in [21,22], where they are classified

as one of two types, depending on whether the responder

authenticates the initiator. In [24], KCI attacks are either

“insider” or “outsider”, depending on whether the adversary

actively participates in the execution of a protocol on behalf of

a party whose long-term keys have been revealed. We assume

that every AKC-capable adversary can actively use any keys he

reveals and make no distinction between the two types of KCI

attacks. A third classification is outlined in [25], where KCI

attacks by adversaries with a session-key reveal capability are

classified according to how that capability is used in the attack.

These attacks would be captured in our model by adding the

session-key reveal capability from [6].

In [28], the fact that derivability of session keys from the

secret keys and public values of just one party can be a source

of insecurity is demonstrated by KCI attacks on four protocols.

It is argued that the session keys should be derived from the

secret keys and, ideally, run-specific data of another party.

A KCI attack by an adversary with a randomness reveal

capability against the 3-pass HMQV protocol is shown in [23].

The protocol is fixed by adding a confirmation message

consisting of a signed hash of both ephemeral and long-

term public values. However, since the adversary can get the

actor’s randomness and his long-term secret key, the adversary

can compute all session keys. Therefore, their fixed protocol

does not provide any security guarantees for the subsequent

communications with respect to their adversary model.

In [29], it is proven that the DHE modes of TLS satisfy a

monolithic security notion that implies KCI resilience. This

is in line with our findings. In contrast, it is proven in [30]

that all modes of TLS are secure in a weaker security model.

This weaker security model does not capture AKC attacks;

these proofs therefore do not contradict our AKC attacks on

TLS. Note that Paulson’s simplified model of TLS [31] is

vulnerable to an additional AKC attack on authentication where

the adversary can replace the client’s nonce by an arbitrary

value to make the client’s and server’s views of all session

keys diverge. The reason for this is that in Paulson’s simplified

version, the hash in the client’s CertificateVerify message does

not contain all previously transmitted data. However, this is

not an actual attack on the TLS protocol.

In April 2014, a critical vulnerability [2] (CVE-2014-0160,

also known as Heartbleed) was discovered in OpenSSL,

versions 1.0.1–1.0.1f. The vulnerability allows an attacker

to retrieve parts of an affected server’s memory, potentially

including the server’s long-term secret keys. If the attacker

obtains the keys, he can impersonate the compromised server.

As we have shown, the attacker can additionally perform an
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AKC attack on the server using TLS-RSA. Until the server

changes its key pair and prevents further key leakage (by

upgrading to a Heartbleed-unaffected implementation of TLS-

RSA, e. g., OpenSSL 1.0.1g), it can avoid AKC attacks by

switching to TLS-DHE RSA.

VIII. CONCLUSIONS

One of the guiding principles of modern information security

is containment: given that security mechanisms may be

compromised, it is prudent to design systems that limit the

resulting damage as much as possible. In the domain of security

protocols, AKC resilience and security are desirable features

because they help contain the effects of key compromise

[1,2]. We have provided the first systematic analysis of this

phenomenon and have given conditions under which it can and

cannot be achieved.

Our transformations show how to construct protocols that are

resilient against AKC. Our work thereby facilitates incremental

protocol design, and enables protocol designers to provide

strong security guarantees to the users of their protocols, even

under actor key compromise.

For existing, widely deployed protocols, we have introduced

fixes that use the underlying structure of the protocols at hand.

In comparison with using the generic transformations developed

in this paper, this approach enables less intrusive fixes and

more efficient results. For TLS-RSA, the most efficient fix is

to use the Diffie-Hellman mode. We showed that asymmetric

cryptography is needed to obtain authentication guarantees,

which has direct consequences for improving existing protocols

and developing new protocols.

Our AKC attacks on protocols such as mutually authenticated

and unilateral TLS-RSA show that there is still room for

improvement in practice, and reveal that perfect forward secrecy

is not the only advantage of using TLS-DHE RSA.
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APPENDIX A

PROOFS

A. Proof of Lemma 5

We first prove a lemma:

Lemma 14 (Inference-irrelevant terms): Let S ∪ {t} ⊆
Term where t �	 S\{t}, t−1 = t and t has no proper accessible

subterms. Let t′ ∈ Term such that t �	 t′. Then S 
 t′ if and

only if S \ {t} 
 t′.
Proof: ⇐ Trivial.

⇒ Let t′ ∈ Term such that t �	 t′. We prove by induction

on n that for all n ∈ N0, if S 
n t′, then S \ {t} 
n t′. First

we consider the case n = 0, so we have t′ ∈ S. From t �	 t′

we get t �= t′, so t′ ∈ S \ {t}, i.e. S \ {t} 
0 t′. Now we

assume that up to some n ∈ N0, the statement holds and that a


-derivation tree for t′ from S of height at most n+1 is given.

We proceed with a case split on the last rule applied in that
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tree. If the last rule infers t′ from t1, . . . , tm by composition,

assuming t 	 ti for some i ∈ {1, . . . ,m}, we would have

t 	 t′, which is a contradiction. Therefore, we can apply the

inductive hypothesis and infer each of t1, . . . , tm from S \ {t}
with trees of height at most n each. Note that we needed t �	 t′

precisely for this and the base cases. In the remaining cases,

the last rule to derive t′ is a decomposition rule:

• S 
n (t′, t′′) or S 
n (t′′, t′): Without loss of generality, we

assume the former and do a case split on the accessibility

of (t′, t′′) in S.

– (t′, t′′) 	acc S: The term t has no proper accessible

subterms, so from (t′, t′′) 	acc S we get (t′, t′′) 	acc

S \ {t}. Suppose t 	 (t′, t′′). By transitivity of 	, we

get t 	 S \ {t}, which contradicts our assumptions.

We can now apply the inductive hypothesis to infer

S \ {t} 
n (t, t′). Hence S \ {t} 
n+1 t′.
– (t′, t′′) �	acc S: We can replace the derivation of (t′, t′′)

with one of a minimal height, which is of height at most

n. By Lemma 6, that derivation ends in a composition

rule from t′ and t′′. Therefore, S 
n−1 t′, so the inductive

hypothesis implies S \ {t} 
n−1 t′.
• S 
 {t′}t′′ and S 
 t′′−1:

– {t′}t′′ 	acc S: As above, we conclude t �	 {t′}t′′ . The

inductive hypothesis then gives us S \ {t} 
n {t′}t′′ .
From t �	 {t′}t′′ we also get t �	 t′′.
We have two cases: if t′′−1 = t′′, then t �	 t′′−1 is

immediate. Otherwise, if t′′−1 �= t′′, from t−1 = t we get

t �= t′′−1. Without loss of generality, let u ∈ Term such

that t′′ = pk(u) and t′′−1 = sk(u). From t �	 t′′ we get

t �	 u. Hence t �= t′′−1 implies t �	 t′′−1.

In both cases we get t �	 t′′−1, so we can apply the

inductive hypothesis to infer S \ {t} 
n t′′−1.

– {t′}t′′ �	acc S: As above.

We can now prove Lemma 5, where we use that a finite

number of terms can be removed from a set by applying the

previous lemma, provided that it is done in the right order.

Proof of Lemma 5: Assume S 
 t′. Since T is finite and

partially ordered by 	, it has a maximal element t. But then

t �	 T \ {t}, which with t �	 S \ T implies t �	 S \ {t}. We

can now apply Lemma 14 and get S \ {t} 
 t′. The set T is

finite, so by induction we get S \ T 
 t′.

B. Proof of Lemma 6

The next auxiliary lemma states that accessible subterms of

terms inferable from a set are either inferable themselves or

accessible in the set.

Lemma 15 (Inference of accessible subterms): Let

S ∪ {t} ⊆ Term and n ∈ N0 such that S 
n t. Then

for all t′ ∈ Term such that t′ 	acc t, S 
n t′ or t′ 	acc S.

Proof: We prove the lemma by induction on n. For n = 0,

we have t ∈ S, so t′ 	acc t implies t′ 	acc S. Assuming that

the statement holds for all natural numbers less than some n, we

prove the statement for n. All decomposition cases immediately

follow from the inductive hypothesis. The composition cases

are similar, so we only provide a proof for one. If the last

step of a derivation of t from S of height n infers S 
 (t1, t2)
from S 
 t1 and S 
 t2, then either t′ = t (and thus S 
n t′),
or it is the case that t′ 	acc t1 or t′ 	acc t2. Without loss of

generality, assume the former. Then the inductive hypothesis

gives us S 
n−1 t′ or t′ 	acc S.

Proof of Lemma 6: Assume S 
 t. Then there is a

derivation of t from S, so there is one of minimal height n.

We are done if n = 0, because then t ∈ S, which implies

t 	acc S. Assume now that n > 0 and that some derivation

of t from S of height n ends in a decomposition rule. The

premises of that rule then imply that there is a term t′ such that

S 
n−1 t′ and t 	acc t
′. However, S �n−1 t by the minimality

of n, so from Lemma 15 we conclude t 	acc S.

C. Proof of Proposition 7

Proof: ⇒ We prove the contrapositive. Suppose that

(KC (Π), typeKC (Π)) �|=A claiml1(R, commit, R′,K). Then

there is a state s ∈ RS(KC (Π), typeKC (Π), R,A) such that

(Test, σs,Test(claiml1(R, commit, R′,K#Test))) ∈ trs

and there is no rid ∈ RID where both roles(rid) = R′ and

(rid, σs,Test(claiml1(R
′, running, R,K#Test))) ∈ trs.

For all L ⊆ Label, we define δL(〈〉) = 〈〉 and

δL(〈(rid, e)〉.u) =
{
δ(u), if label(e) ∈ L,

〈(rid, e)〉.δ(u), otherwise.

We want to construct an attack s′ ∈ RS(Π, typeΠ, A,R) on

the secrecy of K where trs′ = δ{l1,l2}(trs).
First we prove that h does not appear in δ{l1,l2}(trs). Assume

that the opposite is true, i.e. that for T = {h(t0, . . . , tm) :
t0, . . . , tm ∈ Term,m ∈ N}, there exist τ ∈ T , rid ∈ RID
and e′ ∈ RunEvent such that (rid, e′) ∈ trs, τ 	 cont(e′)
and label(e′) /∈ {l1, l2}. Then either there exists e′′ ∈
Π(roles(rid)) such that x 	acc cont(e′′) and τ 	 σs′,rid(x),
or there is a τ ′ ∈ T such that τ ′ ∈ Π(roles(rid)) and

σs,rid(τ
′) = τ . Both cases contradict the assumptions on h.

The construction of s′ proceeds inductively, by following

δ{l1,l2}(trs). For prefix length 0, we know the state

s0 = (〈〉, AK0, T est �→ σs,Test(Π(R)#Test),Test �→ σs,Test)

is reachable. The only interesting case in the induction step

involves checking if recv transitions are still enabled. Let sn be

a state reached after n transitions from s0 and e ∈ RunEvent
with evtype(e) = recv the next event. All we need to prove

is AKsn 
 cont(e). Since e is also an event in trs, let s′n be

any state such that s′n →∗ s, just after e is executed. The only

send events deleted by δ{l1,l2} are the ones labelled l2. Hence

there exists a finite set T ′ ⊆ T such that AKsn = AKs′n \ T ′.
We know that cont(e) does not contain h. Since for all τ ∈ T ′,
τ �	 AKsn , we can apply Lemma 5 to get AKsn 
 cont(e).

Let τ = σs,Test(h(R,R′,K)#Test) for the rest of this

proof. We still need to prove AKs′ 
 σs′,Test(K
#Test),

where the discussed instance of K, i.e. σs′,Test(K
#Test) =
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σs,Test(K
#Test), is a subterm of τ . To that end, we prove

that no send event in trs contains τ as a syntactic subterm.

Let rid ∈ RID and e′ ∈ RunEvent such that (rid, e′) ∈ trs,

evtype(e′) = send, and τ 	 cont(e′). Since τ ∈ T , we know

that label(e′) = l2 and roles(rid) = R′. By the definition of

	, the set {t : t 	 cont(e′)} is the same as the set

{cont(e′)}∪{σs,rid(R), σs,rid(R
′)}∪{t : t 	 σs,rid(K

′#rid)}.
Because of the running claim which precedes the sendl2
role event in KC (Π), τ = cont(e′) would contradict our

assumptions that no such claim occurs in trs. Since τ /∈
Agent, we get τ 	 σs,rid(K

′#rid), which contradicts the

typing assumptions on K ′. Therefore, no send event in trs
contains τ as a syntactic subterm, so τ �	 AKs holds.

From AKs 
 τ and Lemma 6, we get that the adversary

constructed the hash τ himself, i.e. AKs 
 σs′,Test(K
#Test).

We have AKs′ = AKs \ T ′, for some finite T ′ ⊆ T . For all

τ ′ ∈ T ′, we have τ ′ �	 σs′,Test(K
#Test) because h does not

occur in trs′ , so Lemma 5 gives us AKs′ 
 σs′,Test(K
#Test).

⇐ Let s ∈ RS(Π, typeΠ, R,A) such that

(Test, σs,Test(claiml0(R, secret,K#Test))) ∈ trs

and AKs 
 σs,Test(K
#Test). We now construct s′ ∈

RS(KC (Π), typeKC (Π), A,R) such that

(Test, σs′,Test(claiml1(R, commit, R′,K)#Test)) ∈ trs′

and there is no rid ∈ RID such that roles′(rid) = R′ and

(rid, σs′,Test(claiml1(R
′, running, R,K)#Test))

is in trs′ . We know ths(Test) = 〈〉, because claiml0 is the

role’s last step. For all rid ∈ dom(ths), we define ths′(rid):

ths(rid).σs,rid(〈recvl2(R′, R, h(R,R′,K)),

claiml1(R, commit, R′,K)〉#rid)

if roles(rid) = R and rid �= Test,

ths(rid).σs,rid(〈claiml1(R′, running, R,K ′),

sendl2(R
′, R, h(R,R′,K ′))〉#rid)

if roles(rid) = R′, and ths(rid) otherwise. Then for

s′ = (trs.σs,Test(〈(Test, recvl2(R′, R, h(R,R′,K))),

(Test, claiml1(R, commit, R′,K))〉#Test), AKs, ths′ , σs),

we have s′ ∈ RS(KC (Π), typeKC (Π), R,A). Therefore,

(KC (Π), typeKC (Π)) �|=A claiml1(R, commit, R′,K).

D. Proof of Lemma 8

Proof: We prove the lemma by induction on the derivation

height n for t′′ from S. If n = 0, then t′′ ∈ S, so the statement

is trivial. Assume n �= 0 and fix any derivation of height n.

The inductive hypothesis tells us that t �	acc {⊥/ t′}(ti) for all

ti appearing in the premises of the last rule in the derivation. If

the rule is a decomposition rule, we are done. Otherwise, due

to S � t we have t �= t′′, which implies t �	acc {⊥ / t′}(t′′).

E. Proof of Lemma 9

Proof: We prove the statement by contradiction. As-

sume AKs 
 sk(a). Then Lemma 6 implies sk(a) 	acc

AKs, because no derivation of sk(a) can end in a com-

position rule. Since sk(a) �	acc AK0, there exist s′, s′′ ∈
RS(Π, typeΠ, R,A) where s′′ → s′ →∗ s, sk(a) �	acc AKs′′

and sk(a) 	acc AKs′ . Therefore, for rid ∈ RID and

e ∈ Event such that last(trs′) = (rid, e), either (rid, e) =
(ridA, LKR(a)), which contradicts the fact that adversaries

cannot reveal peers’ keys, or (rid, e) is the first send of sk(a)
in an accessible position in trs.

For e′ ∈ Π(roles′(rid)) such that label(e′) = label(e),
the existence of t ∈ RoleTerm such that sk(t) 	acc cont(e′)
would contradict our assumption on (Π, typeΠ). Hence we

conclude that there exists x 	acc cont(e
′) such that sk(a) 	acc

σs′,rid(x).
Assume e′′ is the role event of the recv where rid initialised

the variable x, in s′′ or a reachable state before s′′. Let t =
cont(σs′′,rid(e

′′#rid)). We have AKs′′ 
 t, sk(a) 	acc t and

sk(a) �	acc AKs′′ . Lemma 15 then gives us AKs′′ 
 sk(a).
From Lemma 6 we deduce that there is a derivation of sk(a)
from AKs′′ that ends in a composition rule, contradiction.

F. Proof of Proposition 10

Proof: Let s ∈ RS(TS (Π), typeTS(Π), R,A) such

that (Test, σs,Test(claiml′(R, secret,m#Test)) ∈ trs. We

want to prove that AKs � σs,Test(m
#Test). First we

use induction over the prefix length of trs to prove that

n#Test only appears accessible in send events in trs
as a subterm of σs,Test({m#Test, c2}pk(R′)). Let s′ ∈
RS(TS (Π), typeTS(Π), R,A), rid ∈ RID and e ∈ Event
such that s′ →∗ s, (rid, e) = last(trs′), evtype(e) = send

and n#Test 	acc cont(e). If rid = Test, the statement is true,

because the only time Test sends n#Test is when n#Test is

generated in the claim labelled l.
Otherwise, if rid �= Test, let ⊥ ∈ Const be any constant

unused in TS (Π). From the inductive hypothesis and the defi-
nition of AK0, we know that n#Test only appears accessible
inside σs,Test({m#Test, c2}pk(R′)) in AKs′ \ {cont(e)}, i.e.

n#Test �	acc {⊥/σs,Test({m#Test, c2}pk(R′))}(AKs′\{cont(e)}).
For that reason, Lemma 8 tells us that for all t ∈ Term such

that AKs′ \ {cont(e)} 
 t,

n#Test �	acc {⊥ / σs,Test({m#Test, c2}pk(R′))}(t).
Hence n#Test is accessible in recv events in trs′ only inside

σs,Test({m#Test, c2}pk(R′)).
Assume that n#Test occurs accessible outside the term

σs,Test({m#Test, c2}pk(R′)) in cont(e). But then there exist

{t}t′ ∈ S, x ∈ Var and rid ∈ RID such that {t}t′ 	
TS (Π)(roles′(rid)), x 	acc t and n#Test 	acc σs′,rid(x). We

then have

σs,rid(τc1(({t}t′)#rid)) = σs,Test({m#Test, c2}pk(R′)),

which contradicts c1 �= c2. Hence n#Test is only ac-

cessible in the set AKs as a subterm of the term
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σs,Test({m#Test, c2}pk(R′)). However, from Lemma 9 we get

sk(σs,Test(R
′)) /∈ AKs. Therefore, AKs � n#Test. From

Lemma 8, we get AKs � σs,Test(m
#Test).

G. Proof of Proposition 11

Proof: Let s ∈ RS(TA(Π), typeTA(Π), R,A) and

(Test, σs,Test(claiml(R, commit, R′,m#Test))) ∈ trs. We

now prove that a run executed the corresponding running

claim. Denote t = σs,Test({R,m#Test, c2}sk(R′)). From the

above, there exists s′ ∈ RS(TA(Π), typeTA(Π), R,A) such

that s′ →∗ s and

(Test, recvl′(σs,Test(R
′), σs,Test(R), t)) = last(trs′).

From this, we have AKs′ 
 t. We know from Lemma 9 that

AKs′ � sk(σs,Test(R
′)) holds. That means no derivation of

t from AKs′ can end in a composition step, so Lemma 6

now implies t 	acc AKs′ . Thus, there exist rid ∈ RID and

e ∈ RunEvent such that evtype(e) = send, (rid, e) ∈ trs′
and t 	acc cont(e).

Without loss of generality, let (rid, e) be the first send with

the above properties in trs′ . Assume first that label(e) �= l′.
Then e is an instance of a tagged step of Π, i.e. there is a

unique t′ ∈ RoleTerm such that σs′,rid(t
′#rid) = cont(e)

and send label(e)(·, ·, t′) ∈ τc1 |S(Π(roles′(rid))). We know

that t cannot occur in cont(e) as a subterm of any instantiated

variables of t′, since Lemma 15 would contradict the minimality

of (rid, e). That means there must be a {t0}t1 ∈ S such

that σs′,rid(({t0, c1}t1)#rid) = t. However, that implies

c1 = c2, contradiction. Therefore, label(e) = l′. Hence

roles′(rid) = R′, σs′,rid(claiml(R
′, running, R,m′)#rid) ∈

trs′ and σs′,rid((R,R′,m′)#rid) = σs,Test((R,R′,m)#Test).

H. Proof of Proposition 12

For the proof, we need a lemma that states that we can infer

a term from all its subterms that are atomic or long-term keys.

Lemma 16 (Composition from atomic subterms): Let S ∪
{t} ⊆ Term. If for all x 	 t where x is atomic or x is a

long-term key, S 
 x, then S 
 t.

Proof: We prove the statement by structural induction on

t. If t is atomic or a long-term key, since t 	 t, the assumption

gives us S 
 t. If for some t1, . . . , tn, the term t is equal to

(t1, t2), {t1}t2 or f(t1, . . . , tn), then the inductive hypothesis

implies S 
 t1, . . . , tn. We can then use the corresponding

composition rule to get t.

Proof of Proposition 12: Let a, b ∈ Agent such that

a �= b and define the substitution τ as follows:

τ(x) =

⎧⎪⎨
⎪⎩
a, if x = R,

b, if x ∈ Role \ {R},
n#ridA
x , if x ∈ Var.

By the third assumption in the proposition statement, τ ∈
TS(Π, typeΠ). If the length of Π(R) is k for some k ∈ N,

we define:

seq = 〈(Test, τ(Π(R)#Test)1), . . . , (Test, τ(Π(R)#Test)k)〉
s = (〈(ridA, LKR(a))〉.seq, AK0 ∪ LTK(a)∪
(τ(Π(R)#Test) � send), T est → 〈〉, T est �→ τ).

The proof of reachability proceeds by induction on the

prefix length of the sequence 〈(ridA, LKR(a))〉.seq. More

specifically, we prove two statements within the induction:

• the adversary can infer all sent nonces just after they are

first sent, and

• the adversary can infer the contents of all recv events just

before they occur.
For lengths 0 and 1, we know that the states

s0 = (〈〉, AK0, Test �→ τ(Π(R)
#Test

),Test �→ τ) and s1 =

(〈(ridA, LKR(a))〉, AK0 ∪ LTK(a), Test �→ τ(Π(R)
#Test

),Test �→ τ)

are reachable and that no nonces have yet been sent. Let m ∈ N

such that m > 1, sm a state reached after m transitions from

s0, and e ∈ RunEvent the next event. Let K be any long-term

key such that K 	 cont(e). We want to prove that K ∈ AKsm .

Since τ assigned nonces local to ridA to variables in Π(R),
we know that K does not occur inside a variable instance in

cont(e). Therefore, there is a t in Π(R) of the form k(·, ·), pk(·)
or sk(·) such that K = σsm,Test(t

#Test) = τ(t#Test). The

first assumption in the proposition statement now gives us that

K = k(c, d) for some c, d ∈ Agent, and the second one implies

that c = a or d = a. Hence K ∈ LTK(a), which implies

K ∈ AKs1 . Since AKs1 ⊆ AKsm , we get K ∈ AKsm .

Suppose now that (Test, e) is the first send for n#Test

where n ∈ Fresh. By the inductive hypothesis, we know

that for all n′#Test sent strictly before (Test, e) in trsm ,

we have AKsm 
 n′#Test. By the fourth assumption in the

proposition statement, we know all other nonces local to Test,
i.e. those that appear for the first time in (Test, e), appear in

cont(e) in accessible positions only. Therefore, AKsm infers all

inaccessible atomic subterms and long-term keys in cont(e). By

induction on n#Test 	acc cont(e), we prove AKsm 
 n#Test.

The basis, where n#Test = cont(e), is trivial. Assume now

that n#Test �= cont(e), and let cont(e) = {t1}t2 first. We want

to conclude AKsm 
 t−1
2 . We know that all atomic subterms

and long-term keys in t2 are inferable by AKsm , so by Lemma

16 we have S 
 t2. By construction of seq, we have t2 = t−1
2 ,

so S 
 t−1
2 . We can therefore apply the decryption rule to get

S 
 t1. Finally, if t = (t1, t2), without loss of generality we

can assume that n#Test 	acc t1 and use the unpairing rule

to get AKsm 
 t1. In any case, the inductive hypothesis for

AKsm 
 t1 gives us AKsm 
 n#Test, which proves the first

statement.

Now assume evtype(e) = recv. We need to check that e is

enabled, i.e. that AKsm 
 cont(e) holds. All nonces local to

Test to be received in cont(e) have been sent previously by

Test, so we know they are inferable by AKsm . Additionally,

AKsm already contains all long-term keys in cont(e) and

AKs0 contains all nonces local to ridA and the names of all

agents, so we can apply Lemma 16 to get AKsm 
 cont(e).
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