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Abstract—Gear crack is one of the common failures in 

transmission systems. With the gradual expansion of cracks, it 

may cause tooth fracture. Therefore, it is of great significance to 

study the fault diagnosis of gear cracks. Vibration signals with 

time sequence are widely used in gear fault diagnosis. Extracting 

key fault features from vibration signals determines the accuracy 

of fault diagnosis models. This paper takes spur gears as research 

objects, and proposes a model for diagnosing gear crack depth 

based on one-dimensional convolutional neural network (short for 

CNN4GCDD). In order to identify crack depths, we collect the 

vibration signals from three gears with various crack depths and 

a normal gear without cracks. CNN4GCDD uses the original 

vibration signal as the input, adaptively extracts features, and 

makes crack depth diagnosis through the convolutional neural 

network. The experimental results demonstrate that CNN4GCDD 

can directly use the original time-domain signal for crack depth 

diagnosis, and make a high accurate prediction.  

Keywords—convolution neural network, deep learning, fault 

diagnosis, gear crack depth 

I. INTRODUCTION  

Gears are important variable speed and transmission 
components in various types of machinery. Gears are prone to 
partial failures due to poor working conditions.  Gear failure 
affects the operating status of the entire equipment if it cannot 
be checked on time. A study found that 65% of gearbox damage 
is due to gear faults [1]. The detection and diagnosis of gear 
status has always been a research hotspot in the field of rotating 
machinery fault diagnosis. Among the forms of gear failures, 
tooth fracture has the greatest impact on the gearbox, which 
often results in the entire gearbox being scrapped. Machines 
may be damaged in severe cases due to excessive instantaneous 
impact. It is inconvenient to carry out experimental verification 
due to the sudden and instantaneous hazard. Therefore, the early 
manifestation of gear tooth fracture is of great significance to the 
fault diagnosis of gear crack. 

At present, the use of vibration signals for fault diagnosis is 
still one of the mainstream methods in the fault pattern 
recognition of gears [2]. It is possible to make accurate 

judgments on the operating status of equipment by extracting 
and analyzing the characteristics of vibration signals. The main 
causes of gear vibration are pitch line impact and meshing 
impact during transmission. When a gear is in a normal or 
abnormal state, the meshing frequency vibration component and 
its harmonics always exist, but the vibration levels of the two 
states are different. This is also the theoretical basis for 
diagnosing gear faults through vibration signals. 

The traditional fault diagnosis based on vibration signal 
needs to analyze the internal operation mechanism of the 
mechanical system first, and then use signal processing to 
analyze fault signals. This process needs to rely on professional 
knowledge, and the quality of the extracted features directly 
affects the effect of fault diagnosis. 

Compared with traditional machine learning, deep learning 
has more powerful feature extraction and processing capabilities 
and has been widely used in various fields, such as image 
classification [3][4], face detection [5][6], natural language 
processing [7][8], etc. Methods based on deep learning can 
adaptively extract features from vibration signals, including not 
only well-known fault features, but also some potential features 
that can be used to identify faults and are difficult to be defined 
and explained explicitly. Therefore, more and more researches 
apply deep learning into gear fault diagnosis (GFD). 

Wang et al. proposed an adaptive normalized convolutional 
neural network (CNN) to diagnose different fault locations and 
severities of planetary gearbox in the scenarios of complex 
variable working conditions and data imbalance accurately and 
automatically [9]. Liu et al. trained a CNN using singular value 
decomposition matrices as inputs and achieved planetary GFD 
[10]. Shi et al. constructed a novel deep neural network (DNN) 
based on bidirectional-convolutional long short-term memory 
(LSTM) networks to determine the type, location, and direction 
of planetary gearbox faults by extracting spatial and temporal 
features from both vibration and rotational speed measurements 
automatically and simultaneously [11]. Yin et al. proposed a 
fault diagnosis method for wind turbine gearboxes based on 



optimized LSTM with cosine loss [12]. Tao et al. proposed a 
multilayer gate recurrent unit (GRU) method for spur GFD [13].  

There are still few studies on the diagnosis of gear crack 
depth (GCD) although a large number of studies have used deep 
learning theory to study GFD. Extracting key fault features from 
one-dimensional (1D) vibration signals can improve the 
accuracy of fault diagnosis models. 1D-CNN performs 
extremely well in analyzing time sequence sensor data [14][15]. 
1D-CNN can extract local features like other CNNs. Features it 
learns at one location can be recognized at other locations. 
Therefore, this paper proposes a simple and efficient end-to-end 
one-dimensional CNN model (i.e., CNN4GCDD) which 
directly takes one-dimensional raw data as input, extracts 
features, classify and diagnoses GCD. The structure of the 
model is relatively simple, easy to train, and can well ensure the 
stability of the accuracy of the test set. 

The remainder of the paper is organized as follows. Section 
II reviews one-dimensional CNN. Section III presents the model 
for diagnosing gear crack depth based on one-dimensional 
convolutional neural network (short for CNN4GCDD) and a 
multi-layer LSTM model for comparison. Section IV shows the 
experiments and result analysis. Section V concludes the paper 
and presents the future work. 

II. ONE-DIMENSIONAL CNN 

CNN is a deep feedforward neural network with powerful 
feature extraction capabilities. It constructs multiple filters that 
can extract features of the input data and uses these filters to 
extract the representative features hidden in the input data layer 
by layer. At the same time, it combines sparse connections and 
parameter weight sharing mechanisms to reduce dimensionality 
and sampling precision in time and space, reduce the data 
dimension, reduce the amount of training parameters, and 
effectively avoid algorithm overfitting.  

1D-CNN performs a dot product operation on the data of the 
convolution window to extract local features. The features it 
learns at a certain position can be recognized at other positions 
due to its translation invariance. 1D-CNN also has pooling 
operations, using MaxPooling1D and AveragePooling1D to 
complete maximum pooling and average pooling. 1D-CNN can 
be well applied to time sequence analysis of sensor data, such as 
gyroscope or accelerometer data. It can also be well used to 
analyze signal data with a fixed length period, such as audio 
signals. In addition, it can also be applied to natural language 
processing. 1D-CNN is mainly composed of one-dimensional 
convolution layer, one-dimensional pooling layer, full 
connection layer and classifier, as shown in Figure 1 [16]. 

1D convolution layer: 1D convolution layer is composed of 
many 1D convolution kernels. The main function of convolution 
kernels is to learn the feature representation of input data. 1D 
convolution only convolves in one direction. The output of 1D 
convolution of the i-th convolution kernel is. 

𝑦𝑖 = 𝑓(∑ 𝑋𝛩𝑘𝑖 + 𝑏𝑖)  𝑖 ∈ 𝐾                       (1) 

where f is an activation function, Θ stands for the convolution, 
ki is the i-th convolution kernel, bi is a bias, and K is the number 
of convolution kernels and the number of the channels. An 
activation function can be sigmoid, tanh or relu. 

Fig.1.  The structure of 1D-CNN 

 

1D pooling layer: The role of pooling layers is mainly to 
reduce the dimensionality of the feature vector output by the 
convolutional layer, and to improve the result at the same time, 
so that the structure is not prone to overfitting. Through 
convolutional layers and pooling layers, more abstract features 
can be obtained. The output of the i-th channel of l-length after 
pooling is 

𝑃𝑖(𝑗) = max(𝑦𝑖(𝑗 ∗ 𝑊, (𝑗 + 1) ∗ 𝑊))   0 ≤ 𝑗 ≤ 𝑙/𝑠 (2) 

where W is the width of the pooling window, and s is the stride 
size.  

Full connection layer: The output of the full connection 
layer is 

𝛿 = 𝑓(𝜔𝑃 + 𝑏)                           (3) 
where ω is weight, b is bias, and f is an activation function.  

Classifier: The classifier uses the softmax activation 
function. 

III. DIAGNOSIS OF GEAR CRACK DEPTH 

A. CNN4GCDD 

One-dimensional vibration signals are widely used in gear 
fault diagnosis, so that the gear transmission system can be 
maintained in time to reduce losses. Extracting key fault features  

TABLE I.  STRUCTURAL PARAMETERS OF CNN4GCDD 

Network layer Kernel Channels 

Convolution 1 width=64, stride=1 16 

MaxPooling 1 width=2, stride=2 16 

Convolution 2 width=4, stride=1 64 

MaxPooling 2 width=2, stride=2 64 

Convolution 3 width=4, stride=1 256 

MaxPooling 3 width=2, stride=2 256 

Convolution 4 width=4, stride=1 256 

MaxPooling 4 width=2, stride=2 256 

Convolution 5 width=4, stride=1 512 

MaxPooling 5 width=2, stride=2 512 

Convolugtion 6 width=2, stride=1 512 

MaxPooling 6 width=2, stride=2 512 



Fig. 2. The structure of CNN4GCDD 
 

from vibration signals determines the accuracy of GFD. The 
effect of 1D-CNN in vibration signal analysis is comparable to 
that of recurrent neural networks (RNN), and the computational 
cost and parameter amount are much smaller.  

This paper proposes a diagnosis model (CNN4GCDD) based 
on 1D-CNN for intelligent diagnosis of GCD. Figure 2 presents 
the structure of CNN4GCDD. There are 6 1D convolution layers, 
6 1D pooling layers, 1 global average pooling layer and 1 
dropout layer in the model. Table 1 presents the parameters used 
in the model. CNN4GCDD uses multi-layer 1D-CNN as the 
feature extractor and introduces global average pooling and 
dropout before the full connection layer, reducing the amount of 
trainable parameters and testing time. CNN4GCDD does not 
require any manual feature extraction and feature transformation 
operations on the original data during the entire fault diagnosis 
process. It only needs to input the original fault data into the 
model, and the fault diagnosis results are automatically output. 

Fig 3. The structure of the multi-layer LSTM model 

Fig 4. The experimental platform 

 

B. Multi-layer LSTM 

RNN is one of the most commonly used models when 
dealing with time series problems using deep learning. The 
reason why RNN has excellent performance on time series data 
is that RNN takes the output of hidden nodes of time slice t-1 as 
input at time slice t. The information of the previous time slice 
is also used to calculate the content of the current time slice, 
while the output of hidden nodes of a traditional model only 
depends on the input features of the current time slice. 

LSTM is a special kind of RNN that solves the problem of 
long-term dependencies, and vanishing and exploding gradients 
during training with long sequences. Simply, LSTM can 
perform better in longer sequences than ordinary RNNs. 

LSTM networks can not only deal with long-term 
dependencies of time series data, but also effectively deal with 
nonlinear and non-stationary problems of signals. Therefore, 
LSTM is widely applied in fault diagnosis based on vibration 
signals. In order to compare with CNN4GCDD, this paper also 
constructs a multi-layer LSTM model. Figure 3 presents its 
structure. The dimensions of the output space of the first layer, 
second layer and third layer LSTM are 64, 128, 512, respectively. 

IV. EXPERIMENTS AND RESULT ANALYSIS 

We use a first-stage reduction gearbox as the condition 
monitoring experiment platform, which includes a servo motor, 
a first-stage reduction gearbox, a three-dimensional acceleration 
sensor, a torque sensor, a magnetic brake and a brake controller, 
as shown in Figure 4. The acceleration sensor model PCB-
356A16 is installed on the input shaft of the experimental 
platform. Table 2 shows the parameters of the driving and driven 
gears in the gearbox. 

TABLE II.  PARAMETERS OF THE GEARS 

Type Number of teeth Module Tooth width 

Driving gear 50 2mm 20mm 

Driven gear 80 2mm 20mm 

 aw vibration data

1D Convolution 1

Max pooling

1D Convolution 2

Max pooling

1D Convolution 3

Max pooling

1D Convolution 4

Max pooling 1D Convolution 5

Max pooling

1D Convolution 6

Max pooling

Global average 

pooling

Dropout

Full connection

 oftmax

 utput



Fig. 5.  Gears with and without cracks 

 

TABLE III.  PERFORMANCE COMPARISON BETWEEN 

CNN4GCDD AND MULTI-LAYER LSTM 

 

The driving gears have radial cracks of different lengths 
including no cracks, ¼ cracks, ½ cracks and ¾ cracks, as shown 
in Figure 5. The crack length is Li = i×(Rc-r)/4, I = 0, 1, 2, 3. Rc 
is the radius of the root circle and r is the radius of the spindle 
hole. Radial cracks are processed by wire cutting. The 
acceleration signal of the input shaft is collected through NI 
PXI-1042, the load is 6 N·m, the rotating speeds are 300rpm, 
600rpm and 900rpm respectively, and the sampling sample and 
got a training set of 1057 samples and a test set of 266 samples. 
Figure 6 presents the time domain signals in 4 different 
conditions at a speed of 600 rpm and a load of 6 N·m. 

The four types of faults with gear crack lengths of 0, 1/4, 1/2, 
and 3/4 are expressed as C0, C1, C2, and C3, respectively. We 
took 512, 1024, 2048 points as an input sample respectively in 
experiments. The proportions of the training set and test set are 
80% and 20%, respectively. Table 3 shows the experimental 
results on the test set. The accuracy of CNN4GCDD is much 
higher than that of the multi-layer LSTM model although the 
number of trainable parameters of the constructed multi-layer 
LSTM is larger than that of CNN4GCDD. Taking 2048 points 
as a sample works best for CNN4GCDD. The accuracy on a 
single-speed data set is higher than that on a multi-speed data set 
for CNN4GCDD. It is the exact opposite for the LSTM model. 

V. CONCLUSION 

  GFD plays an important role in equipment maintenance. 
This paper proposes a simple and efficient end-to-end CNN 
model, that is CNN4GCDD, which directly takes vibration 
signals as input and can make the fault classification relatively 
simpler, easier to train. The experimental results demonstrate 
that CNN4GCDD can use the original time-domain signal for 
crack depth diagnosis and make a higher accurate prediction 
than LSTM method. Future work will focus on improving and 
testing the model in different working conditions to further 
improve the generalization ability of the model. 
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Points Speed 
Accuracy 

CNN4GCDD Muti-layer LSTM 

2048 

300rpm 100% 41.86% 

600rpm 100% 40.00% 

900rpm 100% 50.00% 

300,600,900rpm 94.70% 60.43% 

1024 

300rpm 97.67% 43.02% 

600rpm 100% 49.45% 

900rpm 100% 49.44% 

300,600,900rpm 89.06% 71.69% 

512 

300rpm 94.19% 41.28% 

600rpm 100% 42.31% 

900rpm 99.44% 52.81% 

300,600,900rpm 70.43% 79.70% 

 
Fig.6-(a) C0 

 
Fig. 6-(b) C1 

 
Fig. 6-(c) C2 

 
Fig.6-(d) C3 

Fig.6. Time domain signals with 4 different conditions 
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