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Abstract—Balancing resource utilization and application QoS
is a long-standing research topic in cluster resource management.
Big data YARN clusters need to co-schedule diverse workloads
on shared resources including batch processing jobs, streaming
jobs, and other long-running applications such as web services,
database services, etc. Current resource managers are only
responsible for resource allocation among applications/jobs but
completely unaware of runtime QoS requirements of interactive
and latency-sensitive applications. Prior works to maximize the
QoS of monolithic applications ignore inherent dependencies
and temporal-spatio performance variability of components,
characteristics of distributed applications primarily driven by
microservices. In this paper, we present TOPOSCH, a new
resource management system to adaptively co-locate batch tasks
and microservices by harvesting runtime latency. In particular,
TOPOSCH tracks full footprints of every request across microser-
vices over time. A latency graph is periodically generated for
identifying victim microservices through an end-to-end latency
critical path analysis. We then exploit per-microservice and per-
node risk assessment to gauge the visible resources to the capacity
scheduler in YARN. Execution of batch tasks are adaptively
throttled or delayed, thereby avoiding latency increase due to
node over-saturation. TOPOSCH is integrated with YARN and
experiments show that the latency of DLRAs can be reduced by
up to 39.8% against the default capacity scheduling in YARN.

Index Terms—latency sensitivity, workload co-location, mi-
croservice, cluster management

I. INTRODUCTION

It is a long-standing challenge to achieve a high degree

of resource utilization in cluster scheduling. Workloads co-

location – physically co-scheduling diverse tasks onto the same

host server – has become a common practice in improving

resource utilization and cost efficiency. In big data YARN

clusters, workloads typically encompass batch processing jobs,

stream processing jobs, and other long-running applications

such as web services, NoSQL, etc. With the advancement

of microservice and container techniques, distributed long-

running application (DLRA) has been of the upmost impor-

tance and criticality due to the independent function decou-

pling and in-between lightweight communications.

BRenyu Yang is the corresponding author

A DLRA typically comprise multiple microservices, which

are deployed on multiple nodes subject to their resource re-

quirements. Multiple transactions within a DLRA have strong

dependencies across multiple microservices. Load variability,

however, indicates a temporal-spatio behaviors over time and

across nodes [1][2][3][4]. A user request (e.g., an application

request, a database query, a file access operation) will trans-

verse a collection of microservices before being responded.

Therefore, end-to-end (E2E) response latency is broadly used

to indicate the execution time of any operation to complete.

Current cluster managers [5] [6][7][8][9] are designed for

short-running tasks within batch jobs, whose performance

is minimally affected when launching additional tasks. The

central resource manager (RM) is application-agnostic and

completely unaware of runtime QoS requirements of in-

teractive and latency-sensitive applications; RM is only re-

sponsible for resource allocation among jobs but leaves

all application-specific logic to application managers. Exist-

ing solutions of workload co-location either aim at reduc-

ing the performance interference through resource partition

and isolation [10][11][12] or leverage QoS-aware scheduling

to place different jobs/applications by minimizing interfer-

ence [13][14][15]. However, they are optimized towards the

monolithic application and have indirect effects on DLRAs

that have more sophisticated component dependencies and

performance variations (e.g., latency) due to a vast number

of requests across entire system components.

To address above problems, we present TOPOSCH, a re-

source management system that can continuously harvest the

status of massive requests and track them across different

microservices, and employ per-microservice and per-node risk

assessment of QoS violation to adaptively schedule resources

to batch jobs and DRLAs. TOPOSCH adopts a latency-driven

methodology to navigate the task placement under the capacity

scheduler in original YARN in order to coordinate workloads’

performance. Specifically, to capture the spatio-temporal vari-

ations and localize performance hotpots, we exploit instru-

mentation to trace each request and record footprints of all

requests across different microservices. We then calculate the

average sojourn (processing) time on individual microservice



and average transmission time between microservices. Based

on the aggregated tracing information, we form a latency

graph and periodically analyze the critical path – the chain

of invocations with the longest end-to-end latency across all

microservices – to find out the victim microservices that tend

to have higher risks of QoS violation due to co-location. Node-

level risk assessment is further employed to gauge the visible

resources to be scheduled to batch tasks and task scheduling

is adaptively delayed to give way to microservices without

over-saturating the node resources. We modify the state-of-

the-art YARN capacity scheduler and experiments show that

the average latency of DLRAs can be reduced by up to

39.8% against the default capacity scheduling in native YARN.

Particularly, the main contributions of this paper are as follows:

• A mechanism for tracing and breaking down the E2E

latency of a request among constituent microservices of

DLRAs.

• A per-microservice and per-node risk assessment method

by exploiting latency critical path analysis.

• An adaptive task placement with adjustment of visible

resources and delay scheduling of batch tasks to reduce

the probability of violating microservices’ QoS.

TOPOSCH is open-sourced and can be downloaded from

https://github.com/MSDS-ABLE/toposch.

Organization. We firstly depict the background and chal-

lenges facing the design of TOPOSCH in §2 and introduce the

key design and architecture in §3. More technical details are

presented in §4 to §6. Experiments are shown in §7. Following

a review of related work in §8, we finally draw the conclusions

and discuss future works.

II. BACKGROUND AND MOTIVATION

A. Background

Cluster resource management. Cluster scheduling systems

typically separate the resource management layer from the job-

level logical execution plans. YARN[16] and Fuxi[8] share

the following components: Resource Manager (RM) is the

centralized resource manager, tracking resource usage, node

aliveness, enforcing resource quotas among tenants through

either capacity or fairness control. Application Master (AM)

is an application-level scheduler which coordinates the logical

plan of a single job by requesting resources from the RM,

generating a plan from received resources, and coordinating

task execution. Node Manager (NM) is a daemon process

within each cluster node and responsible for managing task

life-cycle and monitoring node information.

Workload Colocation. In YARN clusters, resources are usu-

ally consumed by various workloads mainly including batch

jobs and long running applications (LRAs). Batch analytic

jobs are big data processing applications that are insensitive

to latency [8][17]. They are mainly measured by the E2E

completion time, and thus deadline-constrained. A job can

be typically segmented into a large number of short-lived

tasks with only subsecond or seconds duration. LRAs typi-

cally encompass transaction analytics, online web services, or

front-end
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Fig. 1. An e-commerce DLRA for online clothing store [18]

database services (e.g., HBase, Memcached, MongoDB, etc).

Their durations range from hours to months, and are typically

latency-sensitive. Response latency and throughput are the key

performance indicators and applications must meet strict QoS.

Latency-sensitive applications and microservices. Microser-

vice architectural style is an approach to constructing a

single application as a set of small interconnected services.

Each microservice runs individually and communicates with

each other via light-weight protocol, e.g., HTTP resource

API. In this context, a Distributed Long Running Application

(DLRA) is referred to such application that consists of a set

of interactive microservices. Each functional microservice is

an indispensable component of the application. Compared to

monolithic applications, massive communications are gener-

ated and any network turbulence would coherently affect the

overall response time of a given request.

Fig. 1 illustrates an example of a simple but typical e-

commerce application of online store. This representative

DLRA consists of nine business microservices (ranging from

account related services to order management services) and

seven data warehouse microservices. The arrow represents a

calling relationship. After logging in the system, customers

can browse the inventory through catalogue or add items into

the cart before finishing an order. Shipping service will also

be connected with the order service so that one can check the

shipping status of a given order. All information needs to be

queried and fetched from underlying database services.

B. Motivation

Response latency has been of great importance in QoS

assurance for Internet services. Pinpointing microservice QoS

violation is more significant because a latency in a single

microservice can promptly propagate across all dependent

microservices and ultimately result in the entire performance

slowdown. Current cluster managers in YARN, Mesos and

Fuxi are solely designed for short-running tasks of batch

jobs; launching additional tasks would have negligible impact

on their performance. RM is only responsible for resource

allocation among applications/jobs but leave all application-

specific logic to AMs. Hence, RM is application-agnostic and

completely unaware of runtime QoS requirements of latency-

sensitive applications.

Unawareness of application-level latency at runtime could

lead to node over-saturation – too many co-located batch tasks

tend to compete for resources with microservices – making



neighboor microservices experience performance outliers, i.e.,

tail latency. These victims are vulnerable to further resource

contention, and thus need particular protections: to avoid

placing additional tasks onto the node or to evict running tasks

to make sufficient rooms. Specifically, the system requirements

encompass the following aspects:

[Q1] How to capture the spatio-temporal variations and

localize performance hotspots from DLRAs? Since a QoS

violation of a single microservice may propagate quickly and

lead to cascading violations across the entire system, it is

imperative to effectively trace the hotpots and extract the

casualty among massive requests. [Q2] How to identify the

most vulnerable microservices? At the core of this question

is to find out which microservices have request backlogs

and experience an increase in their latency. This helps to

determine how to break down the overall e2e latency. [Q3]

How to mitigate the performance degradation of the victim

microservices? Node saturation is observably the main reason

for increased latency. Therefore it is essential to adaptively

throttle the number of back-end batch tasks that saturate the

node resources or proactively delay their execution.

III. SYSTEM OVERVIEW

A. Key Idea

We present a new YARN scheduling mechanism – with

the help of a set of techniques including per-application-basis

E2E latency tracing technique and critical path analysis –

for scheduling batch tasks to adapt to dynamic DLRA’s QoS

status, thereby reducing QoS violation. Notably, TOPOSCH

employs a latency-driven methodology to intervene the pro-

cedure of capacity scheduler used in native YARN.

E2E latency tracing and breakdown. In response to [Q1],

we measure the E2E latency from a user initiating a request

to receiving the response as the performance of DLRA. In

case of inter-connected microservices, the overall E2E time

of a request can break down into time slices – including

the time spent on average in different microservices, and the

transmission time between dependent microservices. To be

precise, the Mean Sojourn Time (MST) is the amount of time

that a user request spends on average in each microservice;

the length of MST is equal to the mean waiting time plus

the mean service time. As a microservice may provide its

clients multiple APIs, hundreds of thousands of requests are

performed and aggregated through the API gateway before

routing to specific microservices. TOPOSCH exploits instru-

mentation to trace each request and record footprints of all

requests through each microservice. We can then calculate the

average sojourn (processing) time on individual microservice

and average transmission time. We detail them in §4.A.

Identification of vulnerable microservices via latency criti-

cal path. Critical path analysis (CPA) is the most effective

means to navigate and breakdown the E2E response time.

The requests in DLRA are unpredictable but traceable in a

short period of time [19]. In our context, a critical path is

referred to as the chain of invocations with the longest E2E

latency across all microservices. To address [Q2], TOPOSCH
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Fig. 2. Architecture overview of TOPOSCH

periodically constructs a request calling graph based on the mi-

croservice dependency graph and extracts components on the

critical path. Those components are regarded as performance

victims and have higher risks of further slowdown and failures

as longer stay time of multiple requests has already been

observed. This indicates a reduced suitability of co-locating

other tasks. We describe the details in §4.B.

Adaptive adjustment of visible resources and the allowed

number of co-located tasks in the scheduling. To cope

with [Q3], TOPOSCH recalculates and throttles the resource

amount visible to YARN capacity scheduler – according to

the current risk assessment on per-node basis – so that only

a fraction of real available resources can be assigned to batch

tasks. Equivalently, the active number of batch tasks should

be controlled for adaption to the changing saturation degree

of the hosting node. Relevant details are depicted in §5.

B. System Architecture

TOPOSCH is a YARN-based resource management system

that takes into account both microservice’s latency and batch

job’s throughput. TOPOSCH inherits the main modules and ter-

minologies from YARN and employs a loose-coupled design

via lightweight RPC communication. The main components

are depicted in Fig. 2.

DLRA and Job Master. To align with the design of AM

in YARN, we have designed a specific programming frame-

work for launching a DLRA consisting of microservices

and requesting resources from the central RM. The working

mechanism is similar to the AM of DAG jobs; users can

outline the topological relationships among microservices and

specify resource amount in the configuration file.

DLRA Analyzer. It is the key component that can track the re-

quest footprints, and then conduct the critical path monitor by

aggregating the trace data. Tracker is responsible for collecting

massive distributed request logs generated within a certain

time frame. Graph Constructor will read the aggregated data

and build a weighted DAG that depicts the calling relationship

and encompasses request’s sojourn time through different

microservices and the transmission latency between dependent

microservices. Critical Path Analyzer will output the transient

critical path and the pertaining microservices that contribute

the most latency and are susceptible to resource saturation.

RM and NM. To enable the awareness of DLRA-level latency,

the distinct departure from the default RM is that all available

nodes reporting to RM are labelled and scored, primarily



TABLE I
DEFINITIONS OF IDENTIFIERS

Parameter Meaning

url DLRA-level API

serviceName Microservice name in DLRA

requestID
Unique identifier of the request, i.e.,
UUID in DLRA

callID Unique identifier for the given call

nextServiceID The down-streaming microservice of the request

timestamp Timestamp of event occurrence

eventType Event type (i.e., send or receive)

statusCode Event status (i.e., success or failure)

based on the estimation of victim microservices on it. Batch

task placement can be therefore intervened when allocating

resources within the RM once node’s risk of performance

degradation is perceptible. We inherit the main functionalities

of default NM and further employ Docker containers to

support the execution of microservices.

IV. LATENCY-AWARE MICROSERVICE RISK ANALYSIS

This section discusses how to track latency footprints and

investigate the key microservices at risk of latency increase.

A. End-to-end Request Latency Tracing

To obtain as many footprints as possible, we aim to record

per-request and per-microservice latency. We instrument the

incoming requests and output responses by tracking informa-

tion including endpoints destination, inbound/outbound times-

tamp and request status. We design and implement a set of

identifiers to depict the information of each RPC call including

url, requestID, serviceID, callID, eventType, nextServiceID,

timestamp, statusCode (see Table I).

We are able to infer the elapsed latency of a specific request

within a microservice. Those traces will be aggregated into

a centralized database, e.g., redis (https://redis.io), for

its negligible overheads in storing and adhoc querying trace

data, particularly on the occasion of periodical data update.

TOPOSCH integrate redis with DLRA’s AM to ensure effective

data access whilst reducing the memory consumption of RM.

B. Finding the Longest Latency Path

The aggregated requests/responses over a period of time

constitute the latency trace graph (LTG). Formally, LTG =
(V, E , φ) comprises: a set of microservice vertices V and a

set of edges E denoting the interconnection links between

microservices, i.e., φ : E → (si, sj)|(si, sj) ∈ V2 ∧ si 6= sj
where an incidence function maps each edge to an ordered

pair of distinct microservices.

There are a number of hierarchical execution entities in the

system. A microservice provides multiple access points and

massive requests attempt to access those RESTful APIs. A

physical node can simultaneously hold multiple microservices.

TOPOSCH estimates the average sojourn time per request on

microservices and transmission time between microservices.

We then use these timing statistics to set weights in the graph.

TABLE II
SYMBOL NOTATIONS

Symbols Descriptions

ti
k

inbound timestamp of ith request to the microservice sk

t̂
j
k

outbound timestamp of ith request to the microservice sk
ST i

k
the sojourn latency within microservice sk

TT
j
k→l

transmission latency of the a request j between sk and sl
Gkl the set of requests between microservice sk and sl
Gk the set of requests sent to sk
Ek the set of error requests sent to sk

The critical path problem will be formulated as the longest

path problem in the DAG.

Request sojourn and transmission latency. t and t̂ represent

the inbound and outbound timestamp. Through the latency

instrumentation and tracing, we can easily obtain the en-

trance/exit timestamps of a given request into a microservice.

For a given request, the sojourn latency within microservice

sk and the transmission latency of the a given request j

between microservice sk and sl can be calculated using two

adjacent timestamps (Eq. 1):

ST i
k = t̂i

k
− tik

TT
j
k→l

= t
j
l
− t̂

j
k

(1)

Latency trace graph and critical path. At the core of LTG

generation is weight setting of vertice and edges. We assign the

edge weight as the mean transmission latency TT k→l (Eq. 2).

TTk→l =

∑
j∈Gkl

(tj
l
− t̂

j
k
)

|Gkl|
(2)

where Gkl is the set of requests between microservice sk
and sl, and the size is denoted by |Gkl|. Notably, we do

not differentiate the latency among different endpoints within

a microservice based on the assumption of uniform RPC

communication. Similarly, we assign the weight of a single

vertex as the mean sojourn latency of all requests passing

through the microservice sk.

STk =

∑
i∈Gk

(t̂i
k
− ti

k
)

|Gk|
(3)

where Gk is the entire request set of microservice sk.

To implement LTG, we divide vertices into two distinct

categories: functional vertices and auxiliary vertices to em-

bed the sojourn latency and transmission latency, respec-

tively. To facilitate the graph algorithms, we retain main

attributes including the service id and relevant microservices

upstream id/downstream id, and the timing information. We

exploit Bellman-Ford [20] for finding the longest path of LTG.

Working Example. Take an e-commerce DLRA (structured as

Fig. 1) as an example. At a certain time, the dependency graph

has been generated by aggregating request traces over a fixed

period. As shown in Fig. 3, the values on the vertices represent

the sojourn latency of request, while the values on the edges

represent the transmission latency between the microservices.

The longest latency path A-B-E-G-H will be output.
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C. Risk Analysis of Victim Microservices

The goal of microservices risk analysis is to identify and sort

out the victim microservices. The estimation is on the premise

of an important implication – victim microservices tend to

exist on the critical path, since any increases in their latency

will be amplified to the overall responsiveness. To distinguish

further the specific risk level of those victim microservices,

we take into account the following several factors:

• Request sojourn time. A risky microservice tends to

consume longer time to process and respond to requests.

• Request failure rate. Higher request rate indicates a

reduced reliability of request handling on the microservice.

Without further resource adjustment, those microservices have

higher risks of QoS violation.

• API calling frequency. The microservice with a higher

number of requests would have a greater impact on the overall

QoS. We differentiate the weight of request by recognizing the

calling frequency of the pertaining DLRA-level API url.

We count the request number to the url u and calculate

the proportion against the overall request number. ωu =
|Gu|∑

u∈URL
(|Gu|)

where Gu and |Gu| are the request set and its

size within the url u. The weight of request ωi will have the

identical weight of its url ωu.

Specifically, the risk level rk of a given microvervice sk
is based on the weighted sojourn proportion (WSP ) over all

requests and the weighted request failure proportion (WFP ),

as demonstrated in Eq. 4 and Eq. 5.

WSPk =

∑
i ωiTT i

k∑
l∈S

∑
j∈Gl

ωjTT
j
l

(4)

WFPk =
|Ek|

|Gk|
(5)

We integrate them into the risk assessment by setting a

configurable weight α, which indicates a consideration balance

between sojourn latency and failure rate.

rk = α ∗WSPk + (1− α) ∗WFPk (6)

V. ADAPTIVE RESOURCE SCHEDULING

In this section, we introduce how to maximize the probabil-

ity of meeting performance requirements of DLRAs and batch

jobs in scheduling.

Algorithm 1 Adaptive Scheduling Algorithm

Input: Q – task waiting queue consisting of pending batch tasks

1: for task in Q.sort(waiting time) do
2: for n in N do

3: Rvis
n = Rreal

n (1−An)
4: if Rvis

n >= task.resReq do

5: assign(task, n)
6: break

7: if locality(n, task) & task.retry >= 1 do

8: assign(task, n);
9: break

10: if ! locality(n, task) & task.retry >= 1 do

11: randomRisk ← generate random num(0, 1)
12: if An < randomRisk do

13: assign(task, n)
14: break

15: task.retry += 1

A. Node-level Risk Assessment of QoS Violation

At the essence of task scheduling is to find a match between

tasks that await resources and nodes with available resources.

TOPOSCH infers the risk level of QoS violation on a per-node

basis – aggregating the risk score of each microservice i.e.,

Rn =
∑

k∈Gn
rk, where Gn is the microservice set of node

n and normalizing the overall risk level Rn (e.g., using min-

max normalization) among all running nodes. Estimating the

QoS violation risk is an effective means to reduce unnecessary

tasks placed and co-located with victim microservices from

a holistic cluster view. All node information over a fixed

time frame are maintained within RM and used in resource

allocation when new tasks arrives or available resources are

released. RM transforms the obtained risk information into a

dynamic adjustment of the amount of available resources for

batch tasks and reserved resources exclusively for DLRAs.

This resource elasticity ensures TOPOSCH can permit suitable

resources to batch tasks.

B. Task Delay Scheduling under Resource Reservation

The most critical step is to specify the resource reservation

for QoS assurance. We mainly use the overall risk assessment

to calculate the resource reservation ratio An. Meanwhile, we

enable a balancing configuration avoidfactor for cluster ad-

ministrators to specify to what degree the proposed risk-based

QoS protection mechanism is applied within the scheduling.

Zero value indicates the 100% switch-off of TOPOSCH and

the default YARN scheduler is enabled, while setting 1 means

the per-node risk assessment and latency-aware scheduler is

entirely activated. As shown in Eq. 7, the avoidfactor will

further tweak the reservation degree when calculating available

resources.
An = avoidfactor ∗Rn (7)

Alg. 1 describes the procedure of resource allocation and

task placement. We select the task from the waiting queue

in a descend order by the waiting time (Line 1) and we

will go through all potential nodes and filter out a node

list N where each node has sufficient capacity to meet the

task’s requirement. The scheduler will calculate each node’s

visible available resource (Rvis
n ) based on the real available



resource (Rreal
n ) and the reservation ratio (Line 3). If the

visible resource surpass the requested amount, it is safe to

place this task (Line 4-6). We will delay the task scheduling

for only once (by adding up the retry times) if no current

visible resources are satisfactory.

Despite a round of delay, this mechanism will prioritize the

QoS protection without longer delay of batch task executions.

Once a task await the second time resource, TOPOSCH tries

best efforts to allocate resources as soon as possible, even

having to breach the resource reservation strategy for DLRAs.

Specifically, tasks with data locality requirements will be

directly placed onto any nodes with enough resources (Line

7-9). For tasks without locality specifications, TOPOSCH is

more likely to place the task onto a node with lower risk

level to reduce the impact of co-location on the increased

latency. To achieve this, we adopt a random number based

approach to implicate the tendency of choosing low risk nodes

with higher probability (Line 11-14). Furthermore, to dominate

DLRA’s QoS, RM has the privilege to preempt and evict

running batch tasks to rescue the detected QoS degradation.

Jobs with lower degree of completion and jobs without data

locality requirement are likely to be preempted.

VI. IMPLEMENTATION

Module Implementation. We have implemented TOPOSCH in

around 3K lines of Java and integrated with YARN 3.0-Beta1.

We exemplify an implementation of DLRA AM. The

topology of microservices is specified in a configuration

file DAG_SERVICE.xml. The AM is firstly responsible for

collecting request footprints in a shape of identifiers shown

in Table. I and storing them into a redis key-value database.

We provide a tracker probe package for the program in any

AMs to easily record the request and response information and

persist in the redis.

We also implement DLRA Analyzer as an independent

service, which fetches data records of a given DLRA from

redis and fulfills the core functionalities of §4. By using the

programming libraries provisioned in the service, any user-

defined DLRA AM can call and obtain the output of per-

microservice risk level. AM instantiates an exclusive DLRA

Analyzer and uses it to periodically calculates microservices’

risk level at a time interval such as 60s or 120s. AM then

maintains the dynamic information or microservices, their host

node, and the results of risk assessment. One can follow the

same steps to implement an individual DLRA and integrated

with our TOPOSCH resource scheduler. We modify the RM to

realize node risk assessment (§5.A) and the delay scheduling

with an adaptive resource reservation (§5.B). RM obtains and

aggregates per-microservice risk level from all running AMs.

Parameter Setting. Finding a suitable system parameter con-

figuration is a non-trivial task. One common practice based

on our large-scale engineering experience is to initially set

conservative avoidfactor for validation in a small-scale test

system that has the same hardware configurations before

deploying into larger-scale production. This procedure can

significantly help towards understanding system behavior in

TABLE III
EXPERIMENT ENVIRONMENT

Software
Kernel version Linux version 4.15.0 -54-generic

Release version Ubuntu 7.4.0-1

Hardware

CPU version
Intel(R) Xeon(R) E5-2630 v3
CPU @2.4GHz

CPU physical cores 16 (2 physical CPUs * 8 cores/CPU)

CPU logical cores
32 (2 physical CPUs * 16
logical cores/CPU)

Memory 125GB

a controlled manner. We can start from 1.0 and gradually

relax the parameter to allow for more co-located batch tasks

by a step of 0.1 while observing the latency variations (e.g.,

slowdowns or failures) through daily regression tests. This

procedure can help us gradually revise the configuration with

a small step until all regression tests deliver stable outputs and

achieve acceptable performance level of both latency-sensitive

applications and batch jobs.

VII. EXPERIMENTS

A. Experiment Setup

Workloads. We select Piggymetrics [21] benchmark as a

representative DLRA and BigDataBenchmark [22] to generate

batch jobs. The testbed environment is detailed in Table III.

• Piggy Metrics. It is a personal financial management

service consisting of 12 components. Each component in Piggy

Metrics is encapsulated in a docker image. We embed the

instrumentation and tracing mechanisms detailed in §4.A into

each component. We use JMeter [23] to generate workloads

to Piggy Metrics and leverage TPC-W [24] to simulate user

behaviors – new users register their accounts and log into the

system to complete a series of transactions, whilst old users di-

rectly log into the system before browsing and visiting; tourist

users are only permitted to browse some basic functionalities.

• Batch jobs. To differentiate workload types and data

locality sensitivity, we use three batch jobs generated by Big-

DataBenchmark, including WordCount (IO-intensive with data

locality), PI calculation (CPU-intensive without data locality)

and Kmeans (CPU-intensive with data locality). Specifically,

each PI job is set to has 600 mappers and each mapper

contains 150 millions sampling points. Each WordCount job

conducts an analysis of 70G of wiki textual data while Kmeans

job performs a cluster analysis over an 8G Facebook graph

data with initial number of clusters set to be 10.

Methodology. We first deployed a Piggy Metrics instance

and then submitted a set of HTTP requests and batch jobs.

To minimize the noise, we repeat each experiment 10 times

independently and compute the average running time or perfor-

mance. TOPOSCH is compared against the following baselines:

• YARN. The native capacity scheduler of Apache YARN

used for default co-location.

• Run-Alone. The run-alone case where Piggy Metrics or

batch jobs are independently executed without interference.

We measure the latency of Piggy Metrics to reveal the

effectiveness of QoS assurance during co-location. Meanwhile,



Fig. 4. The number of tasks and corresponding scores of nodes

we monitor the overall makespan of submitted batch jobs to

evaluate the impact of TOPOSCH mechanisms on the perfor-

mance of batch jobs.

B. Evaluation

Effectiveness of adaptive scheduling. We further demonstrate

the effectiveness of TOPOSCH in QoS guarantee through

functional analysis of adaptive scheduling. In this experiment,

we submit mixed batch workloads during the execution of the

latency-sensitive application, and then constantly observe the

change of per-node risk level and the number of co-located

tasks using TOPOSCH. The frequency of calculating critical

path in the DLRA Analyzer is set to be 2 minutes.

Fig. 4 visualizes the changing risk evaluation of two nodes

(one is the node that has the highest risk level and the other

is a random node) and the resultant batch tasks that can be

launched and executed on the two nodes. It is observable that

the number of batch tasks that can be launched on a node is

negatively correlative to the change of per-node risk level. As

a result of an increase in node risk assessment, our adaptive

scheduler will then reduce the resources available for new task

assignments, thereby diminishing the performance interference

between batch tasks and victim microservices.

Effectiveness of QoS assurance for DLRAs. Fig. 5 illus-

trates the results of latency when the Piggy Metrics bench-

mark co-exists with different batch jobs (PI, WordCount, and

KMeans). Compared against native YARN, the average latency

of TOPOSCH is observably reduced by 33.9%, 23.4% and

20.9% in the co-location case of PI, WordCount and KMeans

jobs, respectively. Correspondingly, the 99th percentile latency

is reduced by 39.8%, 35.3% and 28.2%. This is because PI

tasks have no locality requirements and thus are likely to be

placed on low-risky nodes, thereby having the most significant

latency improvement. Meanwhile, our policy has to balance

the execution delay and QoS assurance, i.e., tasks with locality

preference will not be delayed twice and task placement will

be then performed with the node risk level loosened. This

results in a lower improvement in WordCount and KMeans

jobs compared against the cases of colocation with PI jobs.

Due to the nature of CPU-intensive, compared with the case

of WordCount, KMeans will incur additional CPU overhead

when co-locating with DLRAs. The increased CPU contention

will slow down the coexisting DLRA, leading to a reduced

degree of improvement.

Fig. 5 also depicts the detailed cumulative distributed func-

tion (CDF) results. In particular, TOPOSCH is much closer

Fig. 5. Latency of Piggy Metrics when co-locating with different batch jobs

to the case of Run-alone; the latency below 300ms accounts

for more than 60% of all samples. By contrast, no more than

30% samples can be observed within 300ms in YARN. This

is because TOPOSCH reduces the probability of accumulating

more batch tasks with the key microservices without further

diminishing its QoS through risk assessment and the following

adaptive scheduling. As a result, the performance interference

caused by resource contention can be minimized, with the

DLRA performance guaranteed.

Impact on the execution of batch jobs. Fig. 6 shows the

impact of TOPOSCH on the execution time of different batch

jobs. As TOPOSCH is integrated with native YARN, the value

of avoidfactor can tune the degree of adoption of the proposed

scheduling based on risk assessment. We evaluate the impact

of parameter setting in the adaptive scheduling algorithm

on the job performance. We gradually increase the value of

avoidfactor and examine the execution time.

There is an increasing trend in the makespan of all batch

jobs when the value of avoidfactor grows. Specifically, the

E2E makespan of PI jobs in the case of TOPOSCH with entire

QoS assurance has increased by 53% compared against the

zero case. In comparison, the Kmeans jobs and WordCount

jobs experience a 24.4% and 18% increase, respectively. This

increment can be regarded as the sacrifice of a given batch

job for the QoS guarantee of latency-sensitive applications.

Task s without data locality (such as PI tasks) can be delayed

for multiple times. It is more likely to be throttled or evicted

for provisioning sufficient resources for victim microservices.

Tasks with data locality requirement, on the other hand, will be

directly launched from the second retry for rapid task startup,

even if the node is risky. This will lead to reduced pending

time and makespan of Kmeans and Wordcount jobs, although

the latency of the co-existing microservices is increased. This

is certainly aligned with the results of QoS assurance.

C. System Overhead

We analyze a per-AM overhead from DLRA Analyzer in

terms of time complexity and memory consumption. (i) Time

Consumption. As shown in Fig. 7, the time cost linearly

increases but slows down when the amount of trace data



Fig. 6. The performance of both latency-sensitive applications and batch jobs

Fig. 7. Time consumption for critical path analysis

reaches 30,000. The maximal measured time is no more than

1.6 seconds. Considering the overall time consumption in the

resource allocation, the incurred increase to the scheduling

latency is less than 1% compared with the native YARN. (ii)

Memory Cost. The additional memory used for fast data access

using redis is roughly 126MB, less than 2% increase compared

against native YARN. Given the intrinsic diversity in request

number and arrivals, the number of traces for tracking latency

in TOPOSCH over a given period can be customized in AM to

balance the scheduling precision and the incurred overhead. It

is worth noting that the overhead analysis is on a per-AM basis

but can be naturally extended to cases of multiple DLRAs.

For cases of multiple DLRAs, memory cost will be in-

creased by multiple times due to redis is instantiated to

support multi-tenancy; each AM of DLRA will independently

store its own request tracing information. Each AM will be

encapsulated in a Docker container, and thus the AM can

separately run with stringent resource isolation and negligible

interference.

VIII. RELATED WORK

Scheduling for co-located workloads. The ability to co-locate

jobs (i.e., execute within the same CPU or GPU) has been

identified as a means to address under-utilization problem.

Understanding and achieving high resource utilization or high

energy efficiency for heterogeneous workloads in cloud com-

puting is an important topic [25][26][27][9][28][29].

Existing work on effective co-location of latency-sensitive

applications and batch jobs has two distinct categories: (i)

reducing the probability of resource contention by either

granting isolated execution environments to LRAs [30][31]

or adjusting task placement to reduce the resource contention

on a certain node [32][33], primarily for runtime QoS of LRA.

(ii) reducing performance interference caused by resource

contention through performance prediction and resource in-

ference, prioritizing the resource requests of latency-sensitive

LRAs [32][10][11][12][26][34][35][36]. However, since they

are merely applicable to guarantee performance for monolithic

applications, none of them can be directly adopted to resolve

performance interference caused by co-location of DLRAs

and batch jobs due to the tempo-spatial latency fluctuations.

By contrast, TOPOSCH exploits the latency of requests across

microservices to intervene the original scheduling of batch

jobs and is able to infer suitable co-location degree on a per-

node basis.

Performance tracing and diagnostics. Many prior work are

devoted into anomaly diagnosis and behavior analysis of large-

scale distributed applications. They can be classified into two

categories: (i) black-box approaches using external application

states to infer and analyze the problems. [2][37] rely on a

tremendous number of log files to extract performance infor-

mation and infer the dependency models. [38] trains models

to predict and localize latent errors in microservices based

on log information comprising a set of predefined features.

[39] uses fault injections to measure the execution and data

flows of distributed applications and find the bottlenecks for

diagnosis. (ii) white-box approaches by monitoring causality

within microservices instead of inferences through statistical

analysis. [40][41] infer the execution path of the application

based on the static analysis and symbolic execution. [42][43]

provide developers with tracing frameworks to add trace-

points within the application to collect runtime footprints. In

comparison, TOPOSCH uses a white-box methodology to track

and trace the requests over the whole DLRA and avoids over-

dependencies upon prior diagnosis conditions, typically pre-

defined in black-box approaches. Instead of using existing fine-

grained tracking instrumentation, TOPOSCH adopts a light-

weight tracking method to trace DLRA-level latency data,

thereby significantly reducing per-DLRA runtime overhead.

IX. CONCLUSIONS AND FUTURE WORK

Balancing cluster utilization and applications’ QoS is a non-

trivial task. In this paper, we present TOPOSCH, a scheduling

system to adaptively co-locate latency-sensitive applications

and batch jobs. TOPOSCH periodically identifies the risk level

of running microservices by monitoring and analyzing the

critical path of a large number of requests and their end-

to-end latency. we then propose an effective mechanism for

the upcoming task placement that can prioritize and the QoS

assurance of DLRAs. Scheduling of batch tasks are delayed

on risky nodes, thereby reducing latency increase as a result of

node over-saturation. TOPOSCH is integrated with YARN and

experiments show that the latency of DLRAs can be reduced

by up to 39.8% against the default capacity scheduling in

YARN. Main conclusions can also be drawn as follows:

• Tackling workload co-location plays an increasingly cru-

cial role in resource management and job scheduling. Im-

proving the resource utilization and guaranteeing the QoS

of running applications has become a severe dilemma



which requires constant efforts to resolve. It is still chal-

lenging to realize innovations in terms of interference-

aware job scheduling and fine-grained resource manage-

ment in uncertain and extra-dynamic environments.

• Application behavior analysis is an effective means to

fundamentally analyze the performance of concurrent

systems. The procedure usually requires a model of

application behavior that includes the causal relationships

between components and node behaviors that are pro-

duced from observations of component logs.

• It is imperative and challenging to understand an end-to-

end request in a dynamic, highly-concurrent and Internet-

scale distributed system. There is a trend whereby in-

creasing numbers of cloud-based stateful applications

may overwhelm conventional batch jobs, particularly

boosting the requirement for strict QoS guarantees and

interference throttling.

In the future, we plan to investigate the sensitivity of

different microservices to the allocated resources and fine-

grained resource contentions such as CPU/LLC, so that we

can further optimize the co-location number and workload type

that are most suitable for co-locating in a certain node.
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