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Abstract 

A method for the classification of ST events through 

the use of reconstructed phase spaces of the ECG signal 

is proposed. There is a clinical need for the creation of an 

automated system for classification of ST events as 

ischemic or non-ischemic as existing ischemia detection 

methods are expensive, invasive, or both. The algorithm 

proposed herein attempts to classify events using the 16 

beats surrounding a given ST event. The ST segment and 

T wave of each of these beats is embedded in a phase 

space and then modelled and classified through the use of 

Gaussian Mixture Models (GMM). Using ten-fold cross 

validation of available training data the sensitivity and 

specificity were 81.0% and 88.1% respectively. 

 

 

1. Introduction 
 

Myocardial ischemia is a common heart condition that 

is often difficult to detect from routine ECG recordings. 

Ischemia occurs when oxygen and nutrient-rich blood is 

not adequately supplied to part of the cardiac tissue. This 

deficiency takes only a short time to lead to infarction 

(tissue death). Myocardial infarction and ischemia can 

lead to serious complications such as lethal arrhythmias 

and heart failure [1]. Early detection of ischemia is crucial 

to preserving cardiac tissue and improving patient health. 

There are several methods currently employed for the 

detection of myocardial ischemia. The most accurate 

method for detection is coronary angiography. This, the 

most invasive method of detection, requires the insertion 

of a catheter into the blood vessels of the heart. Another 

common method for detection is called exercise testing. 

This method requires the patient to perform rigorous 

exercise in order to increase heart rate and blood flow [2]. 

The heart is examined using an echocardiogram to look 

for abnormalities in heart function. This method requires 

at least three personnel and has accuracies of detection 

around 85% [3]. Due to the cost and difficulty in 

performing angiographies and echocardiograms, patients 

are examined for myocardial ischemia only if they are 

experiencing chest pains or thought to be at high risk. 

This can lead to missed diagnosis, as ischemia often 

causes no pain to the patient. 

Electrocardiogram (ECG) recordings are a noninvasive 

method for monitoring the electrical signals of a patient’s 

heart. The ECG can provide information for diagnosing 

cardiac abnormalities. The correlation between changes in 

the ECG signal and ischemia often been explored. 

The loss of life-sustaining oxygen to cardiac tissue 

causes changes in the depolarization of the heart’s 

ventricular tissue [4]. Because the oxygen-deprived tissue 

conducts the depolarizing electrical signal abnormally, 

the period following depolarization can be disrupted. This 

normally isoelectric period is represented in the ECG 

waveform as the ST segment (the time between the QRS 

and repolarizing T wave). Cardiac tissue that is ischemic 

or injured does not properly depolarize. This leads to so-

called “injury current.” This current causes a depression 

in the T-Q segment and an elevation in the ST segment, 

which appears on most medical monitoring equipment as 

a large ST elevation because of processes such as baseline 

correction [5-7]. 

Several techniques for detecting myocardial ischemia 

using ECG signals have been examined. Currently, 

medical equipment can alert a physician to possible 

changes in ST and T wave deviations, but an expert must 

still examine these changes to determine whether they are 

due to ischemia. Current methods of automatic ischemia 

classification are very slow and cannot detect ischemia in 

real-time. This demonstrates a need for an effective and 

efficient algorithm for automatic ischemia detection [8].  

The ischemia classification algorithm presented here 

was developed in response to the 2003 Computers in 

Cardiology Challenge. This challenge was to develop an 

algorithm to determine the difference between transient 

ST changes that are caused by ischemia and those that are 

not. Current methods, which use only the ECG signal for 

ischemia detection, are highly sensitive but have low 

specificity. For this reason it is desirable to create a 

method that can provide both high sensitivity and 

specificity. The data supplied for use in the challenge is 

the Long-Term ST Database (LTSTDB) and a set of files 

which define the beginning of ST events to be classified 

and the channel on which the event was observed. 

This paper describes an automated method for 
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distinguishing ST events as ischemic or non-ischemic 

using reconstructed phase spaces of Holter ECG data. A 

reconstructed phase space (RPS) is a way of extracting 

the multidimensional data that is embedded in a time-

series signal by plotting the signal against delayed 

versions of itself [9]. RPS based methods have provided 

significant results in other fields such as speech 

recognition. By embedding multiple, consecutive ST 

segments of ECG and then modeling them with a 

Gaussian Mixture Model (GMM), an algorithm can make 

a determination as to whether a given set of heart beats 

represent ischemic or non-ischemic ST events [10, 11]. 

 

2. Challenge 
 

The goal of the 2003 Computers in Cardiology 

Challenge was to develop an algorithm that could 

ascertain whether an ST segment event was produced by 

ischemic or non-ischemic causes. For this challenge a 

significant ST episode was defined as follows: “An 

episode begins when the magnitude of the ST deviation 

first exceeds 50µV. The deviation must reach 100µV or 

more throughout a continuous interval of at least 30 

seconds. The episode ends when the deviation becomes 

smaller than 50µV, provided that it does not exceed 50µV 

in the following 30 seconds [12].” The significant episode 

is labeled as: ischemic, axis shift (AS) related, conduction 

change (CC) related, or heart rate (HR) related ST 

change. The axis shift, conduction change, and heart rate 

related episodes are all considered non-ischemic events 

for this challenge.  The start times for each significant 

episode to be classified have been provided along with 

the channel number of the affected signal [4]. 

The performance measure for the challenge was the 

overall accuracy of the algorithm. One point is given for a 

correct classification, i.e., non-ischemic event classified 

as non-ischemic, 1 point is subtracted for an incorrect 

classification i.e., ischemic event classified as non-

ischemic, and no points are added or subtracted for an 

event that is left unclassified or classified as unknown [4]. 

 

3. Long-Term ST Database 
 

The Long-Term ST Database consists of 86 two or 

three channel, 21 to 24 hour Holter ECG recordings. 

These recordings are separated into two groups for this 

challenge. The first group is a training set of 43 records 

from 42 patients, which has been available since the start 

of the challenge. The second group is a test set of 43 more 

recordings against which the developed algorithm will be 

given to determine the challenge score. This set of data 

will be released following the challenge completion [4, 

13]. 

Complete annotations have been provided for the 

database, which label the significant ST shifts and 

episodes. The beginning (J-point) of most ST segments 

has been annotated along with R wave annotations using 

a 16 second averaging window. These annotations have 

been generated using only the first channel of each 

patient’s ECG recording. In cases where the first lead is 

too noisy to allow for detection, a second detection was 

made using the WQRS application available in the 

WFDB applications package from PhysioNet [14]. The 

WQRS program was applied to the signal on which the 

challenge specified that the episode was seen. 

 

4. Reconstructed phase space theory 

The reconstructed phase space (RPS) is used in this 

algorithm as a way of capturing the embedded trajectory 

of the signal. Takens [15] has shown that if the dimension 

of the reconstructed phase space is chosen large enough, a 

topological equivalent to the original system is created. 

To create a reconstructed phase space the original signal 

is plotted against delayed versions of itself. In this 

procedure the RPS is formed according to the equation 
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where xn is the n dimensional phase space, xn is the n
th

 

point in the time series, τ is the time lag, N is the number 

of points in the time series, and d is the dimension of the 

phase space. 

  

5. Algorithm design 
 

The proposed algorithm extracts data from the Long-

Term ST Database by first extracting the J-Points. This is 

first done using the provided 16 beat averaged annotation 

files. Eight J-points before and eight after the time of the 

event are collected for 16 total J-Point times. The beats 

can be described from the indices –8 to 7. If these times 

are found to be more than 400 samples (1.6s) from each 

other, they are determined to be invalid. If any of the J-

points are found to be invalid, the WQRS program is 

used. This program, from the WFDB Software Package, 

uses the length transform to locate the QRS complexes 

and J-points within a signal [14]. Once the J-points are 

collected, the 100 samples (400ms) of waveform 

following the  J-point are extracted. This time duration 

was chosen because it captures the ST segment and the T 

wave for the range of heartbeats found in the database. 

After data extraction, each waveform is embedded in a 

reconstructed phase space. An embedding is done for 

each index and channel combination as shown in Figure 

1. The embedding is done using a dimension of 6 and a 

time lag of 5. These parameters were chosen empirically. 
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Figure 1 - Proposed Classification System 

Prior to any classification, a set of models must be 

created. This is considered the training portion of this 

algorithm. For training, the embeddings of matching 

index, channel, and event type (ischemic, cc or as non-

ischemic, hr non-ischemic) are combined. A Gaussian 

Mixture Model (GMM) is learned for each combination 

of embeddings. For this system, 25 mixtures were used to 

model the data. The choice of this number was based on 

estimation of data complexity and experimentation. This 

process is done using the available t raining data. 

Once the models have been developed on the training 

data, a classification scheme of the test data is derived. 

The data is extracted from the database in the manner 

described above. For a given event time the embedded 

phase space for each combination of index and channel is 

classified with a Bayes’ classifier that calculates the 

likelihood of each class. The logs of the likelihoods are 

then summed across each index and channel. The event is 

classified as the class with the highest summed log-

likelihood as: 
ˆˆ max { ( )}

1
l xi

i C
ω=

=Κ

, 

where x is the test data vector and C is the number of 

classes [16]. 

 

6. Results 
 

6.1. Learning data results 
 

In order to make full use of all of the training data 

provided for the challenge the records were split into a 

development set and a validation set. The validation set 

consisted of the records: s20221, s20501, s30661, s30741, 

and s30742. The development set consisted of the 

remaining 38 records. The development set of the 

remaining 38 records was partitioned into 10 patient 

independent folds. Each fold was balance, as best 

possible, across classes. 

 

Classified As 

 Ischemic AS/CC HR Sensitivity 

Ischemic 268 46 17 81.0% 

AS/CC 111 694 19 84.2% 

HR 3 15 119 86.9% 

Table 1 - Confusion Matrix for Development Set 

For this challenge, it was important to see how well the 

classifier could classify between ischemic and non-

ischemic data. For this reason, the results for the two non-

ischemic classes (AS/CC and HR) are combined. This 

helps to increases the sensitivity of the algorithm. 

 

Sensitivity Specificity Accuracy 

81.0% 88.1% 86.3% 

Table 2 - Folded Results for Development Set Data 

Upon testing the algorithm on the test portion of the 

training data, the results were as follows. 

 

Classified As 

 Ischemic AS/CC HR Sensitivity 

Ischemic 58 14 0 80.6% 

AS/CC 85 197 123 48.6% 

HR 1 1 1 33.3% 

Table 3 - Confusion Matrix for Validation Set 

By combining the results for the two non-ischemic 

classes the actual results shown below are found. 

 

Sensitivity Specificity Accuracy 

80.6% 78.9% 79.1% 

Table 4 - Folded Results for Validation Set 

 

6.2. Test data results 
 

The results of the described algorithm being applied to 

the Computers in Cardiology 2003 Challenge Test data 

are as follows. 

 

Sensitivity Specificity Accuracy 

63.8% 49.9% 55.7% 

Table 5 - Results for Learning Group Data 

 

7. Discussion 
 

There are two hypotheses for the 30.6% drop in 

accuracy for the test set data.  The first hypothesis is that 

the code written contains errors.  The original 

development for this project was done in the Matlab 

environment, while the project code submitted was 

required to be written in ANSI C.  Due to time 

constraints, it was not possible to completely debug the C 

code and some problems were discovered.  After the 

project due date, a difference in J-Point detection and a 

difference in sample extraction were the two areas where 

problems were located.  Differences discovered after the 

final code submission date attribute to over a six percent 

drop in overall accuracy when the C code is tested on the 
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ten-fold cross validation of the training set.  It is possible 

that this problem was amplified due to characteristics of 

the test set data. 

The second hypothesis is that this method captures 

something in the training data that is not present in the 

test data.  It  is difficult to analyze if this is the case since 

the test data is not yet available.  The experiments on the 

development set of data tend to discredit the theory of a 

faulty method.  During development, the models were 

never trained on data that was used for the testing.  This 

should have created conditions identical to classification 

of the test set data.  Since all sets of data were patient 

independent, it is not clear how a faulty algorithm could 

have received accuracies over 30% higher than another 

very similar set of data. 

In conclusion, a novel method for classification of ST 

events as ischemic or non-ischemic has been presented.  

While there is disagreement in some of the results, the 

accuracy of the ten fold cross validation is similar to other 

methods of classification, such as echocardiograms.  

Once the test set data of the database has been released, 

the reason for this discrepancy can be analyzed and 

resolved.  This method has shown that it can be effective 

and that it still needs some work.  It  is clear from the 

results that the use of reconstructed phase spaces for ST 

event classification 
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