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Abstract— We consider a multi-agent resource sharing prob-
lem that can be represented by a linear program. The amount
of resource to be shared is fixed, and each agent adds to
the linear cost and constraint a term that depends on some
randomly extracted parameters, thus modelling heterogeneity
among agents. We study the probability that the arrival of a
new agent does not affect the optimal value and the resource
share of the other agents, which means that the system cannot
accommodate the request of a further agent and has reached
its saturation limit. In particular, we determine the maximum
number of requests for the shared resource that the system
can accommodate in a probabilistic sense. This result is proven
by first formulating the dual of the resource sharing linear
program, and then showing that this is a random linear
program. Using results from the scenario theory for randomized
optimization, we bound the probability of constraint violation
for the dual optimal solution, and prove that this is equivalent
with the primal optimal value and resource share remaining
unchanged upon arrival of a new agent. We discuss how this
can be thought of as probabilistic sensitivity analysis and offer
an interpretation of this setting in an electric vehicle charging
control problem.

I. INTRODUCTION

Systems with multiple agents interacting with each other
sharing common resources appear in many engineering dis-
ciplines. Power networks [1], [2], [3], demand side man-
agement [4], [5], social networks [6], [7], [8], consensus
and flocking [9], [10], robotic and sensor networks [11],
[12], constitute only some multi-agent application domains
of contemporary research interest.

According to the particular application, and the behaviour
governing the agents’ interaction, two cases can be distin-
guished: a cooperative set-up, where agents aim to share
common resources in view of achieving a social welfare
optimum; and a non-cooperative set-up, where agents act as
self-interested entities, competing against shared resources.
In the former case, research has been mainly concentrated
towards the development of distributed optimization regimes
based on iterative algorithms (see [13] and references therein,
and [14], [15], [16], [17] for recent contributions), that enable
parallelizing computation with agents solving at each itera-
tion only a local problem without exchanging with the other
agents information that is considered private (e.g., utility and
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constraint functions). In the latter case where agents act in
a non-cooperative manner, a multi-agent gaming set-up is
typically adopted. Main research objective in this direction
has been the characterization and distributed computation of
Nash equilibrium strategies for the associated game [18],
[19], [20].

Despite the intense research activity in control and opti-
mization for multi-agent systems, most of the effort has been
devoted towards the development of distributed algorithms
for social welfare optimum or Nash equilibrium computation.
To the best of our knowledge, there have only been just a
few attempts in quantifying the capacity of the system (either
in a cooperative or a non-cooperative setting) in terms of the
maximum number of agents that can be accommodated so
that, upon arrival of a new agent, the solutions of the others
remain unaltered; see [4] for such an attempt in demand side
management. Motivated by such concerns, in this paper we
aim at addressing this problem, offering theoretical support
for the developments in [4].

We consider a multi-agent resource sharing problem that
can be represented by a linear program subject to budget
constraints. We assume that the amount of resource to be
shared is fixed, and each agent adds to the linear cost and
constraint terms that are random, drawn from some fixed but
possibly unknown probability distribution, thus modelling
heterogeneity among agents. We study the probability that
the arrival of a new agent does not affect the optimal value
and the resource share of the other agents. As a result, the
system has reached saturation, and can not accommodate
the request of a further agent. In particular, we determine
the maximum number of requests for the shared resource
that the system can accommodate in a probabilistic sense.
An alternative interpretation is that, after reaching a certain
capacity limit, there is no incentive for a new agent to join
a multi-agent resource sharing scheme.

This is proven by first formulating the dual of the resource
sharing linear program, and then showing that this is a
random linear program. Using results from the scenario
approach theory for randomized optimization [21], [22],
[23], we bound the probability of constraint violation for
the dual optimal solution, and prove that this is equivalent
to the primal optimal value and resource share remaining
unchanged upon arrival of a new agent. We discuss how this
can be thought of as probabilistic sensitivity analysis and
offer an interpretation of this setting in an electric vehicle
charging control problem.

The remainder of the paper is structured as follows.
Section II states the resource sharing program under study
and introduces the problem of identifying the maximum



agent capacity, in a probabilistic sense. In Section III we pro-
vide some introductory results based on linear programming
theory, whereas the main result of maximum agent capacity
is proven in Section IV. Finally, Section V presents some
numerical simulations, while Section VI concludes the paper
and provides directions for future work.

II. PROBLEM STATEMENT

Consider the following multi-agent resource sharing prob-
lem with m agents:

Pm : min
{xi∈Rni}mi=1

m∑
i=1

c>i xi (1)

subject to:
m∑
i=1

Aixi = b

x1, . . . , xm ≥ 0,

where the vector b ∈ Rp is given and represents the total
amount of an available resource that has to be shared among
the m agents. For all i = 1, . . . ,m, xi ∈ Rni denotes
the vector of decision variables for agent i, ci ∈ Rni and
Ai ∈ Rp×ni . Possibly, ni 6= nj , i 6= j. Problem Pm then
involves m agents trying to share the resource vector b, so as
to minimize a global cost. All equalities and all inequalities
are meant componentwise.

Each agent i, i = 1, . . . ,m, is fully characterized by
the tuple δi = (ni, ci, Ai). Here, we assume that, for each
i = 1, . . . ,m, δi denotes a sample/extraction of a random
quantity δ = (n̄, c̄, Ā) defined over a probability space
(∆,D,P), and all samples are extracted in an i.i.d. fashion. ∆
denotes a generic set, not necessarily endowed with a metric,
which, together with the σ-algebra D and the probability
measure P, forms a probability space. It should be noted
that P corresponds to the joint probability distribution of the
elements of (n̄, c̄, Ā); in the particular case where all agents
have decision vectors of the same length, then the marginal
probability of n̄ will be concentrated to that value. Since
all samples are i.i.d., the collection {δi}mi=1 is distributed
according to the product measure Pm.

Under this setting, Pm becomes a random linear program,
with the number of agents serving as the number of realiza-
tions of the uncertain tuple (n̄, c̄, Ā) that have instantiated
Pm. We further impose the following assumption on Pm.

Assumption 1: For any m ∈ N, the linear program Pm is
feasible and admits a unique minimizer almost surely with
respect to Pm. �

The uniqueness part of the assumption can be relaxed, by
assuming that in case of multiple minimizers we single out
a specific one by means of a deterministic tie-break rule.

Suppose that a new agent characterized by δ = (n̄, c̄, Ā)
joins the resource sharing problem, and let x̄ ∈ Rn̄ denote
its decision vector. The resulting Pm+1 program accounting

also for the new δ is denoted as Pm,δ and is given by

Pm,δ : min
{xi∈Rni}mi=1,x̄∈Rn̄

m∑
i=1

c>i xi + c̄>x̄ (2)

subject to:
m∑
i=1

Aixi + Āx̄ = b

x1, . . . , xm, x̄ ≥ 0.

Denote by n =
∑m
i=1 ni the total number of decision

variables in Pm, and let x = [x>1 . . . x>m]> ∈ Rn. Similarly,
xδ = [x> x̄>]> ∈ Rn+n̄ is a vector containing the decision
variables of Pm,δ . Let also x? and x?δ denote the optimal
solutions of Pm and Pm,δ , respectively, which are considered
to be unique based on Assumption 1.

For a resource sharing problem with m agents, our ob-
jective is to quantify how likely it is that the arrival of
a new agent does not alter the optimal solution achieved
by the initial m agents alone. In other words, since agents
are characterized by a stochastic tuple, we are interested in
establishing a probabilistic statement of the form

P
{
δ = (n̄, c̄, Ā) ∈ ∆ : x?δ = (x?, 0)

}
≥ 1− ε, (3)

i.e., the probability that a new agent shows up such that its
optimal decision vector x̄? is zero, and hence x?δ = (x?, 0), is
no less than a certain threshold 1−ε. Note, however, that x?

is itself a random variable defined on the product space ∆m,
since it depends on the samples {δi}mi=1 (this dependency is
not shown explicitly to simplify notation). Therefore, claim
(3) can only be true with a certain confidence with respect
to Pm. The evaluation of this confidence for any given
probability level ε ∈ (0, 1) and number of agents m is the
main result of this paper and is established in Section IV. To
achieve this, Section III provides some theoretical machinery
and intermediate results from linear programming.

III. LINEAR PROGRAMMING RESULTS

A. Optimality condition

Consider the random program Pm and let A =
[A1 · · · Am] ∈ Rp×n and c = [c>1 . . . c>m]> ∈ Rn. We
are interested in the case where n > p, i.e., Pm has
more decision variables than coupling constraints, as it is
typically the case in resource sharing problems. Without loss
of generality, we will henceforth assume that A is full row-
rank, i.e., all redundant constraints have been removed.

The equality constraint in Pm, together with the non-
negativity constraints, defines almost surely a polyhedron,
say Q = {x ≥ 0 : Ax = b} ⊆ Rn. Consider the vertices
of Q. By Theorems 2.3-2.4 of [24], to any vertex xv there
exists a set J = {j1, . . . , jp} ⊂ {1, . . . , n} of indices with
|J | = p (i.e., its cardinality equals the number of rows of
A) such that:

i) the columns Aj , j ∈ J , of A, are linearly independent;
ii) xvj = 0 for all j /∈ J , where xvj is the j-th component

of xv .
Thus, any vertex xv determines a partition of itself into
two sub-vectors xvB and xvN , where xvB is a stacked vector
containing the decision variables of agents with indices in



J , while xvN those with indices in the complement of J .
The elements of xvB and xvN are referred to as basic and
non-basic variables, respectively.

Corresponding to the partition of a vertex xv in basic
and non-basic variables, denote by AB = [Aj1 · · · Ajp ] the
matrix obtained by the columns of A corresponding to the
indices in J and by AN the matrix constructed by removing
from A the columns with indices in J . Since xv is feasible
for Pm, we have that

Axv = ABx
v
B +ANx

v
N = b. (4)

Due to the fact that AB has linearly independent columns
by i) and xvN = 0 by ii), we have that xvB = A−1

B b.
Under Assumption 1, almost surely with respect to Pm, it

is well known that the optimal solution x? of Pm occurs at
a vertex of Q; see e.g. Theorem 2.7 of [24]. We then have
the following proposition whose proof follows from [24]
and the distinction between basic and non-basic variables
presented above; we present it here for completeness. To
this purpose, let cB and cN be a partition of c corresponding
to the partition of some vertex xv in basic and non-basic
variables.

Proposition 1: Under Assumption 1, for any m ∈ N and
almost surely with respect to Pm, we have that

c>N − c>BA−1
B AN ≥ 0, (5)

if and only if xv is the optimal solution x? of Pm. �
Proof: Under Assumption 1, x? and Q are well defined

almost surely with respect to Pm. For any given vertex xv of
Q, consider a feasible point x ∈ Q, and let z = x− xv . By
feasibility of the solutions, Axv = b = Ax, and as a result,
Az = A(x − xv) = 0, and hence ABzB + ANzN = 0,
where zB and zN is the partition of z corresponding to the
partition of xv in basic and nonbasic variables. We thus have
that zB = −A−1

B ANzN . Letting xB and xN be the partition
of x corresponding to the partition of xv , consider the cost
function increment c>z when moving from xv to x. We have
that

c>z = c>BzB + c>NzN

= (c>N − c>BA−1
B AN )zN

= (c>N − c>BA−1
B AN )(xN − xvN )

= (c>N − c>BA−1
B AN )xN , (6)

where the second equality follows by substitution of zB =
−A−1

B ANzN , and the last one is due to the fact that xvN = 0.
Since xN ≥ 0 as a result of x being feasible for Pm, (5) is
satisfied if and only if c>z ≥ 0 for all admissible z. Since
c>z ≥ 0 for all admissible z is equivalent to c>x ≥ c>xv for
all x ∈ Q, i.e., the optimality condition for xv , we eventually
have that (5) is satisfied if and only if xv is optimal for Pm.
This concludes the proof.
The quantity on the left-hand side of (5) is referred to as
vector of “reduced costs”. In the sequel, with a slight abuse of
notation, we will denote by AB , AN and cB , cN the partition
of A and c corresponding to the partition of the optimal
solution x? (and not of an arbitrary vertex in Q) into its basic

and non-basic variables x?B and x?N . Given this notation, note
also that as a result of (4), by Proposition 1 we have that

x?B = A−1
B b. (7)

Finally, it is perhaps worth mentioning that in case Assump-
tion 1 is relaxed and the minimizer of Pm is not unique the
aforementioned statements hold for some of the minimizers
of Pm.

B. The dual problem

Consider now the dual program corresponding to Pm (see
Chapter 5 of [25]):

Dm : max
λ∈Rp

− λ>b (8)

subject to: c>i + λ>Ai ≥ 0, for all i = 1, . . . ,m.

where λ ∈ Rp is the vector of dual variables, each of them
corresponding to every row-wise coupling constraint in Pm.

We then have the following proposition, which provides
an expression for the optimal vector of dual variables.

Proposition 2: For any m ∈ N, consider the dual program
Dm corresponding to Pm. Under Assumption 1,

λ? = −
(
cB
>A−1

B

)>
, (9)

is an optimal solution of Dm almost surely with respect to
Pm. �

Proof: We will first show that λ? = −(cB
>A−1

B )> is
a feasible solution for Dm. To this end, by Proposition 1,
we have that c>N + (λ?)>AN = c>N − c>BA

−1
B AN ≥ 0, while

c>B + (λ?)>AB = c>B − c>BA
−1
B AB = 0. Therefore,

c>i + (λ?)>Ai ≥ 0, for all i = 1, . . . ,m,

implying that λ? is feasible for Dm. It remains to show that
it is also optimal; to this end, consider the dual objective
function evaluated at λ?. In particular,

−(λ?)>b = c>BA
−1
B b

= c>Bx
?
B

= c>Bx
?
B + c>Nx

?
N

= c>x?, (10)

where the second equality is due to (7) and the third equality
is due to the fact that x?N = 0. By weak duality [25], −λ>b ≤
c>x? for any λ feasible for (8). Equation (10) then implies
that λ? is optimal for Dm, thus concluding the proof.

IV. PROBABILISTIC MAXIMUM AGENT CAPACITY

In this section we will use the scenario approach theory
for random convex programs [21], [22], [23], to quantify
the probability that the arrival of a new agent will not
affect the optimal solution of Pm. This theory was originally
developed to accompany the primal solution of a random
convex program with a probabilistic certificate regarding
its feasibility properties. The random primal program Pm,
however, does not exhibit the structure required by the
aforementioned references for the theory to be applicable. In
this section, we will show that such a structure pertains the
dual program; we will thus employ the scenario approach



theory for Dm, and by means of Propositions 1 and 2,
provide, with certain confidence, a statement of the form
of (3).

A. The scenario approach

We revisit in this subsection the standard scenario ap-
proach theory by applying it to the linear program Dm, i.e.,
the dual of Pm. It should be noted that the scenario approach
results hold for convex programs, and are not necessarily
limited to linear programs; here we limit our presentation to
linear programs due to our interest in Dm and Pm.

Consider Dm and recall that λ?, as defined by (9), denotes
an optimal solution of Dm. Fix ε, β ∈ (0, 1) such that

p−1∑
k=0

(
m

k

)
εk(1− ε)m−k ≤ β. (11)

Under Assumption 1, Theorem 1 of [22] ensures that

Pm
{

(δ1, . . . , δm) ∈ ∆m :

P
{
δ = (n̄, c̄, Ā) ∈ ∆ : c̄> + (λ?)>Ā ≥ 0

}
≥ 1− ε

}
≥ 1− β, (12)

i.e., with confidence at least 1−β (measured with respect to
Pm), the optimal solution λ? of Dm remains feasible for a
constraint generated by a new extraction δ = (n̄, c̄, Ā) with
probability at least 1− ε.

B. Effect of a new agent arriving

Consider a new agent arriving, being characterized by
the tuple δ = (n̄, c̄, Ā), thus giving rise to Pm,δ . We will
show that, with certain probability, the arrival of the new
agent does not alter the optimal solution vector x? of the m
agents, as this was identified by solving Pm. Recalling that
x?δ denotes the optimal solution of Pm,δ , this is summarized
in the following theorem.

Theorem 1: Fix any m ∈ N. Fix ε, β ∈ (0, 1) such that
(11) holds. Under Assumption 1,

Pm
{

(δ1, . . . , δm) ∈ ∆m :

P
{
δ = (n̄, c̄, Ā) ∈ ∆ : x?δ = (x?, 0)

}
≥ 1− ε

}
≥ 1− β, (13)

i.e., with confidence at least 1 − β, x?δ = (x?, 0) with
probability at least 1− ε. �

Proof: Fix δ1, δ2, . . . , δm and consider Pm,δ . Take xvδ =
(x?, 0), which is clearly feasible for Pm,δ and moreover it
is a vertex of the polyhedron of feasible solutions for Pm,δ .
Since x̄vδ = 0 (i.e., the variables corresponding to the new
agent are 0), the new agent will not contribute to the basic
components of xvδ . Thus the decomposition of [c> c̄>]> and
[A Ā] corresponding to the basic and non-basic variables of
xvδ will be [c> c̄>]>B = cB , [A Ā]B = AB and [c> c̄>]>N =
[c>N c̄>]>, [A Ā]N = [AN Ā], where, we recall, AB , AN and
cB , cN are the partition of A and c corresponding to basic
and non-basic variables of x?, the optimal solution to Pm.

Using Proposition 1 for Pm,δ , which has +1 agents, and
given that c>N − c>BA

−1
B AN ≥ 0 because of Proposition 1

applied to Pm, it holds that xvδ = (x?, 0) is optimal for
Pm,δ if and only if

c̄> − c>BA−1
B Ā ≥ 0. (14)

In turn, since by Proposition 2, λ? = −c>BA
−1
B , (14) is

equivalent to
c̄> + (λ?)>Ā ≥ 0. (15)

Thus, in conclusion, x?δ = (x?, 0) if and only if (15) holds.
Therefore,

P
{
δ = (n̄, c̄, Ā) ∈ ∆ : x?δ = (x?, 0)

}
= P

{
δ = (n̄, c̄, Ā) ∈ ∆ : c̄> + (λ?)>Ā ≥ 0

}
.

For any ε, β ∈ (0, 1) such that (11) holds, this latter relation
together with (12) gives (13). This concludes the proof.

Theorem 1 serves as a probabilistic perturbation analysis,
since it quantifies in a probabilistic sense the effect of
the introduction of a new agent (modeled by means of an
additional term/perturbation in the coupling constraints) on
the objective value of the original multi-agent problem.

An alternative interpretation of Theorem 1 is the follow-
ing. Employing [26], the inequality in (11) can be made
explicit with respect to m, i.e.,

m ≥ e

e− 1

1

ε

(
p− 1 + ln

1

β

)
, (16)

where e is the Euler number. As a result, given ε, β ∈ (0, 1),
if we have a resource sharing problem with m agents, where
m is greater than or equal to the quantity in the right-hand
side of (16), then arrival of a new agent will not affect
the optimal objective value and the optimal solutions of the
other agents with certain probability. The appealing feature
of (16) is that it depends logarithmically on the confidence
level β, which can be selected to be very small without an
unaffordable increase in the number of agents m.

It should be noted that, since the scenario approach theory
is applied to the dual problem of Pm, the number of agents
m plays the role of the number of “scenarios” of the random
parameters, while p in (16) is the number of coupling
constraints of the primal problem Pm which corresponds
to the number of decision variables in Dm; these are the
number of “support constraints” (notion at the basis of the
scenario approach theory) for the dual optimal solution.

C. Interpretation in electric vehicle charging control
Consider the electric vehicle charging control problem

as presented in [27], [28]; an alternative formulation is
considered in [5]. The problem consists of finding an optimal
overnight charging schedule for a fleet of m vehicles, whose
consumption is denoted by xi, i = 1, . . . ,m. The overall
schedule should be compatible with a network-wide con-
straint (e.g., maximum power that the network can deliver)
thus giving rise to a budget type constraint coupling xi,
i = 1, . . . ,m, while each of them has to be non-negative.
For a more detailed formulation local limitations for each
vehicle can be imposed (e.g., desired final state of charge
and maximum charging power); extending our analysis to
such cases is currently under investigation (see also Section
VI).



This problem exhibits the structure of Pm, thus falling into
the proposed theoretical framework. Application of Theorem
1 to this problem provides the means to build an incentive
mechanism for plug-in electric vehicles sharing resources
such as the maximum power that can be delivered by the
network. In particular, our result can serve as a decision
support tool to determine how likely it is for a new electric
vehicle company penetrating the market to obtain benefit
in terms of resource sharing given the existing number of
market participants. Note that a new agent in this case does
not necessarily ought to be a vehicle, but can be a group of
vehicles, e.g., a company, instead.

V. NUMERICAL SIMULATIONS

To support the theoretical developments of Section IV with
numerical evidence, we consider the optimization problem in
(2) for several values of m, namely m = 10, 11, 12, . . . , 100.
Fixing the value of m, the parameters of Pm are set as
follows. Each agent i, i = 1, . . . ,m, has only ni = 1
decision variable and there are p = 3 resources with b =
[0.5377 1.8339 −2.2588]>. The scalar cost associated to
agent i is extracted at random from a chi-squared distribution
with one degree of freedom, i.e., ci ∼ χ2(1), and Ai are
extracted at random (independently from ci and from each
other) from a p-variate standard normal distribution, i.e.,
Ai ∼ Np. Extractions for different agents are independent
and identically distributed in conformance with the devel-
oped theory (see discussion above (2)). This set-up is cap-
tured by the formalism of Section II defining δi = (1, ci, Ai)
and ∆ = {1} × R+ × Rp, where R+ = {ξ ∈ R : ξ ≥ 0}.

Let x?m be the optimal solution for m agents. According
to Theorem 1,

P
{
δ = (1, c̄, Ā) ∈ ∆ : x?m,δ = (x?m, 0)

}
≥ 1− εm (17)

holds true with confidence at least 1 − β, where c̄ ∼ χ2(1)
and Ā ∼ Np, independently of ci and Ai, i = 1, 2, . . . ,m.
In (17), we introduced the subscript m in εm to emphasize
the fact that the probability level alters for different choices
of m. For a given m and β, εm satisfies (11).

To validate (17), we estimate its left-hand side with a
sample based counterpart P̂Nv

{x?m,δ = (x?m, 0)} computed
based on Nv validation samples. For α, γ ∈ (0, 1), selecting
Nv according to

Nv =

⌈
1

2α2
ln

2

γ

⌉
, (18)

leads to an empirical estimate P̂Nv
{x?m,δ = (x?m, 0)} which

differs at most α from the actual probability that appears in
the left-hand side of (17), with confidence at least 1−γ (see
Section 3.1.1 in [29]). For all values of m, we set β = γ =
10−6 and α = 0.01, resulting in Nv = 72544.

The above procedure was repeated 1000 times for each
value of m. In Figure 1 we report the maximum and
minimum values of P̂Nv{x?m,δ = (x?m, 0)} (blue shaded
area) and 1 − εm (red line) as a function of m. It can be
observed that (17) is indeed satisfied in all simulation trials as
it was expected since, for each m, (17) holds true with very
high confidence 1− 10−6. For the sake of completeness, in
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Fig. 1. Maximum and minimum values of the empirical probability
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Fig. 2. Empirical Cumulative Distribution Function (CDF) of
P̂Nv{x?m,δ = (x?m, 0)} over 1000 trials (surface) and theoretical bound
1− εm (red line), both as a function of the number of agents m.

Figure 2 we also report the empirical cumulative distribution
function of P̂Nv

{x?m,δ = (x?m, 0)} for each value of m
(colored surface) together with 1 − εm (red line). As can
be seen from the picture, for each m, most (more than
1−10−6) of the probability mass of P̂Nv

{x?m,δ = (x?m, 0)} is
confined above the 1−εm threshold as predicted by Theorem
1. Finally, note that 1 − εm approaches 1 (and thus the
mass of P̂Nv

{x?m,δ = (x?m, 0)} concentrates around 1) as
the number of agents m in the network grows, suggesting
that the solution tends to remain unaffected by the arrival of
a new agent when the system comprises of a high number
of agents.

VI. CONCLUDING REMARKS

In this paper we considered a class of multi-agent resource
sharing problem that can be encoded by linear programs.
Such problems are often encountered in many application do-
mains that involve different producers/consumers/market par-
ticipants, like those arising in optimal power flow problems,
electric vehicle charging control, etc. The amount of resource
to be shared is fixed, while agents are heterogeneous, with
each of them contributing to the objective function and the
budget type shared resource constraints by a different (linear)
term. The latter depends on some uncertain parameters that



are extracted at random, modelling heterogeneity among
agents.

In this context, we studied the probability that the arrival
of a new agent leaves the optimal value and the share of
the other agents unaffected. As a result, we determined the
maximum capacity in terms of the number of agents that
the system can accommodate. We followed a probabilistic
analysis that involved formulating the dual of the resource
sharing linear program, and then showing that this is a
random linear program. Using results from the scenario
theory for randomized optimization, we constructed a bound
on the probability of constraint violation for the dual optimal
solution, and showed that this is equivalent with the primal
optimal value and resource share remaining unchanged upon
the arrival of new agent. We provided also discussion on how
this can be thought of as probabilistic sensitivity analysis and
offered an interpretation of this setting in an electric vehicle
charging control problem.

Current work concentrates towards two directions: i) From
a theoretical point of view, we aim at extending the class
of resource sharing problems to linear programs with upper-
bound constraints on the decision variables (here we consider
only non-negativity constraints). This will allow us to capture
a wider class of problems, e.g., optimal power flow in
transmission networks, however, it requires revisiting the
theoretical analysis. In particular, in preliminary investiga-
tions we shall employ recent results in the scenario ap-
proach theory that are based on a “wait-and-judge” paradigm
[30], [31], offering a posteriori probabilistic evaluations, in
contrast to the a priori result of Theorem 1. ii) From an
application point of view, we aim at numerically verifying
the efficacy of the presented theoretical results to the electric
vehicle charging control problem outlined in Section IV-
C. Other applications include identifying the probability of
price changes in optimal power flow and economic dispatch
problems, when a new producer (e.g., intermittent generator)
enters the market.
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