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Abstract

The smoothing parametern.(£) of a Euclidean latticeZ, introduced by Micciancio and Regev
(FOCS'04; SICOMP’07), is (informally) the smallest amowfitGaussian noise that “smooths out” the
discrete structure of (up to errore). It plays a central role in the best known worst-case/aye@ase
reductions for lattice problems, a wealth of lattice-baspgbtographic constructions, and (implicitly)
the tightest known transference theorems for fundameattade quantities.

In this work we initiate a study of the complexity of approxiting the smoothing parameter to
within a factory, denotedy-GapSPP. We show that (foe = 1/ poly(n)):

e (24 0(1))-GapSPP € AM, via a Gaussian analogue of the classic Goldreich-Goldwasstocol
(STOC98);

e (1+ 0(1))-GapSPP € coAM, via a careful application of the Goldwasser-Sipser (STEBL5et
size lower bound protocol to thin shellsR¥;

e (2+0(1))-GapSPP € SZK C AM N coAM (whereSZK is the class of problems having statistical
zero-knowledge proofs), by constructing a suitable instaslependent commitment scheme (for a
slightly worseo(1)-term);

e (1 + 0(1))-GapSPP can be solved in determinist’™) polylog(1/<) time and2®(™) space.

As an application, we demonstrate a tighter worst-casedmge-case reduction for basing cryptography
on the worst-case hardness of tGepSPP problem, with()(\/ﬁ) smaller approximation factor than
the GapSVP problem. Central to our results are two novel, and nearlyttigharacterizations of the
magnitude of discrete Gaussian sums o¥ethe first relates these directly to the Gaussian measure of
the Voronoi cell ofZ, and the second to the fraction of overlap between Euclibelis centered around
points of L.
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1 Introduction

A (full-rank) n-dimensional latticeC = £(B) = {>_7" ; ¢;b; : ¢; € Z} is the set of all integer linear com-
binations of a seB = {by,...,b,} C R" of linearly independent vectors, called a basis of theckaitit
may also be seen as a discrete additive subgrols’ ot attices have been studied in mathematics for hun-
dreds of years, and more recently have been at the centermyfim@ortant developments in computer sci-
ence, such as the LLL algorithin [LLL82] and its applicatidosryptanalysis| [Cop97] and error-correcting
codes [[CH11], and lattice-based cryptography [Ajt96] Iikang the first fully homomorphic encryption
scheme/[Gen09]).

Much recent progress in the computational study of lattiespecially in the realms of worst-case/average-
case reductions and cryptography (as initiated by Ajtai98j), has been made possible by the machin-
ery of Gaussian measures and harmonic analysis. Theseweddsfirst employed for such purposes by
Regev [Reg03] and Micciancio and Regev [MR04] (see also, [A®R04,/Reg05, Pei07, GPV08, GenlO,
Peil0]), following their development by Banaszczyk [BariBan95/ Ban96] to prove asymptotically tight
(or nearly tight) transference theorems.

In particular, the notion from [MR04] of themoothing parameten. (L) of a lattice £ plays a central
role (sometimes implicitly) the above-cited works, andtsis ia key concept in the study of lattices from
several perspectives. Informally, (L) is the smallest amountof Gaussian noise that completely “smooths
out” the discrete structure @, up to statistical errot. Formally, it is the smallest > 0 such that the total
Gaussian mass, /;(w) := exp(—ms?||w||?), summed over all nonzeuual lattice vectorsw € £*\ {0},
is at moste[l This condition is equivalent to the following “smoothingdmdition: the distribution of a
continuous Gaussian of width reduced modulaC, has point-wise probability density within@ + ¢)
factor of that of the uniform distribution ové&™ /L.

Given the smoothing parameter’s central role in many maéiiead and computational aspects of lat-
tices, we believe it to be of comparable importance to otheddmental and well-studied geometric lattice
guantities like the minimum distance, successive minirogedng radius, etc. While the smoothing param-
eter can be estimated by relating it to these other quas{iBR04,[Pei0FF|, GPV(8], the bounds are quite
coarse, typically yielding onl§2(y/n)-factor approximations.

We therefore initiate a study of the complexity of computihg smoothing parameter, with a focus on
approximations. More formally, for an approximation facto> 1 and somé) < ¢ < 1 (which may both
be functions of the lattice dimensiot), we definey-GapSPP, to be the promise problem in which YES
instances are lattice for whichn.(£) < 1, and NO instances are those for whighi£) > ~.

The dependence om. To understand the nature @apSPP, itis important to notice that the value ohas
a large impact on the complexity of the problem. In partiguby known relations between the smoothing
parameter and the shortest nonzero dual vector (see [MR@dhave that

Viog(1/e)/m /A (L") <ne(L) < \/ﬁ/)‘l(ﬁ*)’

and hence for exponentially small error= 2-%") the quantities;.(£) and /n/\(L£*) are within a
constant factor of each other. Therefore, the (decision)t8bt Vector Probleny-GapSVP is equivalent to
7-GapSPP, awy, Up to a constant factor loss in the approximation. Howavest uses of the smoothing
parameter in the literature (e.g., worst-case to average-ceductions and transference theorems) work
with either inverse polynomiad = n~°") or “just barely” negligiblee = n=«M) (e.g.,e = n~logm),

The dual latticeC* of £ is the set of ally € R™ for which (x,y) € Z for everyx € L.



For such values of, the loss in approximation factor betwe&apSPP and GapSVP or other standard
lattice problems can be as largefas,/n), and as we will see, in this regin&apSPP behaves qualitatively
differently from these other problems.

1.1 Results and Techniques

In this work, we prove several (possibly surprising) uppeurs on the complexity of-GapSPP,. Unless
otherwise specified, the stated results hold for the settingn—°(}). (We obtain results for smalleras
well, but with slowly degrading approximation factors.rfiliar results hold for a generalization GhpSPP
which uses different values effor YES and NO instances (see Definition]2.3 and Corollarif@.%urther
details).

At a high level, we obtain several of our main results by nogjcdhat the classic Goldreich-Goldwasser
protocol [GG98], which was originally designed for appioaiting (the complement of) tHeapSVP prob-
lem, can in fact be seen as more directly and tightly appratimgy the smoothing parameter (of the dual
lattice). When viewed from this perspective, we show thighslvariants of the GG protocol obtain an
2+ o(1) approximation foiGapSPP, improving on the approximation f@apSVP by aé(\/ﬁ) factor. Fur-
thermore, using the known relations betw&aipSVP andGapSPP, one recover the original approximation
factor for GapSVP. To obtain these tight approximation factors, as part ofntfaén technical contributions
of this paper, we develop two novel and nearly tight (up fojao(1) factor) geometric characterizations of
the smoothing parameter (L) that elucidate the geometric content of the parameter

Arthur-Merlin Protocols.  We show that(2 + o(1))-GapSPP € AM N coAM, and moreover, that
(14 o(1))-GapSPP € coAM. That is, we give constant-round interactive proof systedieh allow an un-
bounded prover to convince a randomized polynomial-timdigethat the smoothing parameter is “small,”
and that it is “large.” In contrast with these positive résulve note that since the smoothing parameter is
effectively determined by a sum over exponentially mangdatpoints, it is unclear whetherGapSPP is

in NP or coNP for v = o(y/n). (Fory = Q(y/n), known connections to other lattice quantities imply that
~v-GapSPP, € NP N coNP.)

One important consequence @ + o(1))-GapSPP € AM N coAM is that the problem is naiP-
hard (under Karp reductions, or “smart” Cook reductions 88y unlesscoNP C AM [BHZ87] and the
polynomial-time hierarchy collapses. Our result shoukbdle contrasted with analogous results for ap-
proximating the Shortest and Closest Vector Problems, vhie only known to be ilNP N coAM for
factorsy > cy/n/logn [GG98], and inNP N coNP for factorsy > ¢/n [AR04], as well as the results
for approximating the Covering Radius Problem, whssgpproximation is iPAM but is incoAM only for
v > ¢y/n/logn, and inNP N coNP for v > /n [GMRO4].

To prove that(2 + o(1))-GapSPP € AM, we use a Gaussian analogue of the Goldreich-Goldwasser
protocol on the dual lattic€*, where the verifier samples from a Gaussian instead of a (betiérestingly,
this leads to imperfect completeness, which turns out toipoitant for the tightness of the analysis.) More
precisely, the verifier samples € R™ from a Gaussian, reducesmodulo (a basis of) the latticé*, and
sends the result to the prover. The prover’s task is to gueaad the verifier accepts or rejects accordingly.
To prove that the protocol is complete and sound, we crycially on the following novel characterization
of the smoothing parameter:

Voronoi Cell Characterization. For anye € (0, 1), a scaling of the Voronoi CQIV(E*) by a factor

The Voronoi cellV(£*) is the set of points ifR™ that are closer t@ than any other lattice point af*, underés norm.



2n-(L) has Gaussian measure at least ¢, and ann.(£)-scaling has Gaussian measure at most
1/(1+¢).

With this tool in hand, the analysis of the protocol is vempgie. By the maximum likelihood principle, the
optimal prover guesses correctly if and only if the veriestiginal sample lands inside the Voronoi cell,
and hence the verifier's acceptance probability is exab#yGaussian measure W{L*). See Sectionl3 for
further details.

For proving (1 + o(1))-GapSPP € coAM, we rely on the classic set-size lower bound protocol of
Goldwasser and Sipser [GS86]. In order to prove that theets@Gaussian mass dii \ {0} is large,
we apply the protocol to thin shells IR", and rely on a discrete Gaussian concentration inequality o
Banaszczyk [Ban93]. See Sect[dn 6 for an overview and fudite

Statistical Zero Knowledge Protocol. We prove that(2 + o(1))-GapSPP € SZK, the class of prob-
lems having statistical zero-knowledge proofs. We noté tihia result does not subsume the inclusion in
AM N coAM described above (as one might suspect, givenSAgt C AM N coAM), due to a slightly worse
dependence in theo(1) term. To prove the theorem, we construct a new instancendiepe commitment
schem@ based orGa pSPP, which is sufficiently binding (for an honest committer) drding (to a dishon-
est receiver). Constructing such a commitment scheme @mitie additionals observations in our case) is
known to be sufficient for obtaining &¥ K protocol [[0S97].

Our construction can be viewed as a generalization of aanestdependent commitment scheme for
O(y/n/log n)-GapSVP implicit in [MV03], which was also based on the Goldreichi@easser protocol
and is perfectly binding. At a very high level, the commitrheoheme is based on revealing a “random”
perturbed lattice point i, where the perturbation is taken uniformly from a ball ofiuad. Roughly speak-
ing, we get the binding property when there is only one lattitthin distance- of the revealed perturbation,
and get the hiding property when there are multiple suckcéafioints (which allow for equivocation). It
turns out that the main measure of quality for the binding lsidthg property corresponds to the fraction of
overlap between the balls of radiugplaced around lattice points dF. less overlap means better binding,
and more overlap yields better hiding. In [MMO03], this oegrlis analyzed in terms of the length of the
shortest nonzero vector df. In particular, ifr < \;/2, then the balls are completely disjoint (perfect bind-
ing), and ifr > Q(y/n/logn) - A1, then al/ poly(n) fraction of the ball around any lattice point overlaps
with that of its nearest neighbor in the lattice, which gimes-negligible hiding.

The main insight which allows us obtain improved approxioratactors when basing the commitment
scheme orGapSPP is a new characterization of the smoothing parameter, walichvs to get very fine
control on the overlap.

Ball Overlap Characterization. Fore > 2-°("), Euclidean balls of radiug = /n/(27)/(2n.(L*))
centered at all points af overlap in at most @ fraction of their mass, and balls of radi(&+o(1)) R
overlap in at least an/2 fraction of their mass.

From the above we are able to determine, to within a fa2tero(1), whether balls placed at points
of £ overlap in at most or at least arfraction of their mass, based solely on the smoothing paemgef
the dual lattice). Intuitively, this is because the smaamgiparameter takes into account all the lattice points
in £, and hence is able to provide much better “global” informathbout the overlap. We refer the reader
to Sectiori ¥ for further details and discussion.

3Roughly speaking, an instance-dependent commitment sf@ma languagéd. is a commitment scheme that can depend on
the instancer and such that only one of the (statistical) hiding and biggiroperties are required to hold, depending on whether
z € L.



Application to Worst-Case/Average-Case Reductions. As an application, we also obtain a worst-case
to average-case reduction fraapSPP to the Learning With Errors problenh\VE) [Reg05], which has a
tighter connection factor than the known reductions fiGapSVP [Reg05/ Pei09]. Roughly speaking, the
goal of LWE is to solven-dimensional random noisy linear equations modulo sgmméhere Gaussian noise
with standard deviatiomgq is added to each equation. Th&/E problem is extremely versatile as a basis
for numerous cryptographic constructions (e.g., [PWO08VGR[CHKP10, BV11]). Regev’'s celebrated
result [Reg05] showed a quantum reduction from solving woasey-GapSVP (among other problems) to
solving LWE with v = O(n/«a). Furthermore, Peikert [PeiD9] showed a correspondingsidialsreduction,
when the modulug > 2"/2. Therefore, the security dfWE-based cryptographic constructions can be
based on the worst-case hardness of@hgSVP problem.

We observe that the reductions [of [Red05, Pei09] in factiiritfyl solve theGapSPP problem. Thus, by
slightly modifying the last step of those reductions, weadbttorresponding quantum/classical reductions
from v-GapSPP, (with ¢ = negl(n)) to LWE with v = O(y/n/a). As a consequence, the securitylW¥E-
based cryptographic constructions can be based on the-gagsthardness of a potentially harder lattice
problem.

The application to worst-case/average-case reductidgowfslby noting that the reduction df [Pei09]
solvesGapSVP by running the Goldreich-Goldwasser protocol, where tlevgr's strategy is simulated by
using a bounded distance decodiBPQ) oracle, which in turn is implemented using th&E oracle. To
obtain a tighter reduction froraapSPP to LWE, we observe that the quality of thi&DD oracle depends
directly on the smoothing parameter, as opposed to theHeofgthe shortest vector. In light of this, we
instead solv&sapSPP using the Gaussian analogue of the Goldreich-Goldwasséoqnl described above,
while still using a bounded distance decodiBP) oracle to simulate the prover’s strategy. See Setfion 5
for further details.

Algorithm for GapSPP. We give a deterministie® (™ polylog(1/¢)-time and29(™-space algorithm for
deciding(1 + o(1))-GapSPP. For this we use recent algorithms of [MV10, DPV11] for enuatiag lattice
points inL* to estimate the Gaussian mass. The full details are in $€¢ih

Perspectives and Open Questions. Our initial work on the complexity of th&apSPP problem opens up
several directions for further study of the smoothing patnfrom a computational perspective. Perhaps
the most intriguing question is wheth@+ o(1))-GapSPP is SZK-complete. A positive answer might lead
to progress on the long-standing goal of basing cryptographgeneral complexity classes. Some reason
for optimism comes from its rather unusual complexity: I8&K-complete problemg2 + o(1))-GapSPP

is in SZK but is not known to be ilNP or coNP. We are unaware of any other problems (aside from
SZK-complete ones) having these characteristics.

In a related direction, in this work we focus on the standakd,“notion” of the smoothing parame-
ter n.(L£), whereas the complexity of a related“ notion” of the smoothing parameter, denobé&)(ﬁ),
also seems quite interesting. More precisgly,L) can be defined equivalently as the smallest paranseter
such that the distribution of a continuous Gaussian of widtleduced moduld, has point-wise probability
density within a(1 + ¢) factor of that of the uniform distribution oR" /L. The L, variantngl)(ﬁ) of the
smoothing parameter instead is defined to be the smallestngéers such that the statistical distance (i.e.,
half of the L; distance) between the above two distributions is at mogClearly, né”(,c) < n-(L).) By
definition, the problem of approximating tlle smoothing parameter, denotedSapSPPél), appears to nat-
urally reduce to a well-know8ZK-complete problem called Statistical Difference (SD) peat [SV03],
which is a promise problem asking whether two input distidns (specified by circuits) have statistical
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distance less than or greater tharg. Thus, the problem appears to beSAK and is another candidate
SZK-complete lattice problem. Unfortunately, the above argnnrelies onngl)(ﬁ) being a monotonic
function ine, which is a basic property that we do not know how to prove (sprve)! In fact, we know
very little about thel.,; smoothing parameter. Given the potentially interestingexity ofy-GapSPPgl),

it seems worthwhile to further investigate the smoothing parameter, from both the geometric and compu-
tational perspectives.

Finally, we note that our results generally apply only in sieéting where < 1. It seems quite inter-
esting to understand how the complexity@pSPP changes for larget. We remark that our geometric
characterizations only “half fail” for larger. More precisely, in the regime).(£) > 1, ¢ > 1, we still
get upper bounds on the Gaussian measure of the Voronoaselgll as lower bounds on the fraction of
overlap for balls centered at lattice points. For élul protocol, this implies that the prover generally fails
to convince the verifier, and for our instant-dependent cament scheme, this implies that it is always
hiding. Interestingly, outoAM protocol still applies for larget, almost without change. Here the main
issue is that we do not know a “good” geometric interpretatid the statemenp(L \ {0}) < ¢ for any
e>1.

Organization. The rest of the paper is organized as follows. In Se¢tlon 2iwethe basic preliminaries.
In Sectior 8, we give our Arthur-Merlin protocol for showititat(2+ o(1))-GapSPP € AM (Theoreni 3.11).
In Section[4 we construct a statistical zero-knowledge fofoo GapSPP (Theorem 4.11). In Section 5,
we describe the reduction fro@apSPP to LWE (Theoren{5.b). In Sectidn 6, we show that+ o(1))-
GapSPP € coAM (Theorem[6.11). In Section 7.2 we give a deterministic atami for computing the
smoothing parameter (Theoréml7.1).

2 Preliminaries

For setsA, B C R", denote their Minkowski sum byl + B = {a+b:ac A,b € B}. We letB} =
{x € R": ||x||2 < 1} denote the unit Euclidean ball R, andS™"~! = 9B the unit sphere iiR". Unless
stated otherwisé|-|| denotes the Euclidean norm.

Lattices. A lattice £ C R™ with basisB, and its dualL*, are defined as in the introduction. For a
basisB and a vectox € R”, we letx mod B denote the uniqu& € £ + x such thatk = >~ | ¢;b;
for ¢; € [—%, %). It can be computed efficiently from and B (treated as matrix of column vectors) as
% = x — B| B~ 'x]. We sometimes instead writemod £ when the basis is implicit.

The Voronoi cellV(£) is the set of points ifiR™ that are at least as close@qunder the/, norm) as to

any other vector irC:
V(L) ={xeR": [x]l2 < [x —yl2, Vy € L\{0}}
={xeR": (x,y) <5(y,x), VyeL\{0}}.

When the lattice in question is clear we shorigf) to V. Note that) is a symmetric polytope that tiles
space with respect t6, i.e., £ +V = R™ and for all distinctz, y € L, the sets + V andy + V are interior
disjoint.

Gaussian measures. Define the Gaussian functign R™ — R+ asp(x) = e~ "II*, and for reals > 0,
defineps(x) = p(x/s) = e ™IXI*/s* For a countable subset C R, we defineps(A) = 3" 4 ps(x).
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For a measurable subsétC R™, we define the Gaussian measuredofparameterized by > 0) as
vs(A) = & [, ps(x) dx. Note thaty,(R") = 1, so~; is a probability measure. For parameter 0, we
let D, be the corresponding continuous Gaussian distribution parameteg centered around:

Dy(A) =~s(A) V measurablel C R".

Similarly, for any countable subs&t C R™ for which p,(T) converges, define the discrete Gaussian distri-
bution D, overT by
ps(x)
DT78(X) pS(T) VxeT.
We usually consider the discrete Gaussian over a lafi¢e., wherel’ = £, though there will be situations
whereT’ corresponds a union of cosetsfIn all these case,(7") converges.
The following gives the standard concentration boundsherdontinuous and discrete Gaussians.

Lemma 2.1 ([Ban93/ Ban9b]).Let X € R" be distributed asD, or D, , for an n-dimensional latticeC.
Foranyv € R" \ {0} andt¢ > 0, we have

Pr{(X,v) > t|v]|] < e ™7,

and fore > 0 we have
PJIX|? 2 (1+)s* 5] < ((1+)e )2,

which for0 < e < L is bounded by—"<"/6.

The smoothing parameter. We recall the definition of the smoothing parameter from [MR@nd define
the associated computational probl&apSPP.

Definition 2.2 (Smoothing Parameter). For a lattice £ and reale > 0, the smoothing parametex (L) is
the smallest > 0 such thatp, /,(£* \ {0}) <e.

Definition 2.3 (Smoothing Parameter Problem).For v = ~«(n) > 1 and positivesy = ey (n),eny =
en(n) with ey < ey, an instance ofy-GapSPP_,. . is a basisB of ann-dimensional latticeZ = L£(B).
It is a YES instance if., (£) < 1, and is a NO instance if., (£) > 7. Wheney = ey = ¢, we write
~v-GapSPP..

Notice that YES and NO instances are disjoint, since for a ¥&8&nce we have(L* \ {0}) < ey,
whereas for a NO instance we haweC* \ {0}) > p1/,(L*\ {0}) > en > ey

For the design and analysis of our interactive protocols d@ften convenient to use separate, 5
parameters. The following lemma and its corollary then getltaw conclusions abo@apSPP for a single
€ parameter, for an (often slightly) larger approximatiootda.

Lemma2.4. Let L C R” be ann dimensional lattice. Ifps(£ \ {0}) < e < 1, then lettingt =
V/1+1log(r)/log(e~1) for anyr > 1, we have

ps/(LN\{0}) < Zps(L\{0}) <e/r.




Proof. By scalingZ, it suffices to prove the claim for = 1. Sincet > 1, we have

pl/t(E \ {0}) = Z e_WHtY||2 — Z (E_W”yHQ)tQ

yeL\{0} ye£\{o}
2
(X ) <o fon” <ot o)
yeL\{0}
To finish the proof, note that”~! = 1/r, as needed. O
Corollary 2.5. For anyey < 1, there is a trivial reduction from/-GapSPP__, to v-GapSPP,, .., Where

v =7+ y/log(=y")/ 1og =5

The proof follows by a routine calculation, letting= ¢y andr = ey /ey in the above lemma. As
a few notable examples, ify ande are both fixed constants, then the laggy in approximation factor
from the reduction is a constant strictly greater thaBut if ¢y is constant andy = (1 + o(1)) - ey, or if
ey = o(1) anden < C - ey for a constanC' > 1, then the loss in approximation factor is orly- o(1).

3 AM Protocol for GapSPP

Here we give an Arthur-Merlin protocol f@-GapSPP_,, ., defined formally in Protocdll1. Itis simply
a Gaussian variant of the classic Goldreich-Goldwassdp@ob[GG98], which was originally developed
to prove that approximating the Closest and Shortest Vdatoblems to within a+/n/logn factor is in
coAM. In our protocol, instead of choosing an error vestdrom the ball of radius:y/n/ log n, the verifier
choosesx from a continuous Gaussian distribution of paraméteiit then reducesx modulo the lattice
(actually, the dual lattic&* in our setting) and challenges the prover to find the origiegkorx.

For intuition on why this protocol is complete and sound fiisserve that the optimal prover strategy
is maximum likelihood decoding of the verifier's challenge= x mod £*, i.e., to return a most-likely
element in the coset’ € £* + x. Because the Gaussian function is decreasinjgIi, the prover should
therefore return the shortest elemehte £* + x, i.e., the uniquex’ € V(L£*) N (£* 4+ x). (We can ignore
the measure-zero event thais equidistant from two or more points ). The verifier can therefore be
made to accept with probability(V(L£*)), and no more. Note that unlike the original Goldreich-Galdger
protocol, ours does not have perfect completeness, andtithia is essential for establishing such a small
approximation factor foGapSPP.

For completeness, consider a YES instance wher¢l) < 1/2, i.e., po(L* \ {0}) < ey. (For
convenience, here we scale té&apSPP problem so that NO instances hayg, (£) > 1.) Intuitively,
because the measure @ri \ {0} is small, these lattice points are all far from the origin awd/(L*)
captures most of the Gaussian measydeemmd 3.4 makes this formal. Finally, for soundness weidens
the case where the discrete measure on nonzero lattices ppirdlatively large, i.ep1(L£* \ {0}) > en.
Conversely to the above, this intuitively means that thetinapus Gaussian measuy€)(L£*)) cannot be
too large, and Lemnia_3.4 again makes this precise.

Theorem 3.1. For 0 < e < § < 4, Protocol1 on latticel = £(B) satisfies:

1. Completenesdf 7. (L) < % then there exists a prover that makes the verifier accept prabability
at leastl — .



Algorithm 1 Gaussian Goldreich-Goldwasser (GGG) Protocol

Input: BasisB C R” of a latticeL = L(B).
1: Verifier chooses Gaussian«+ D; and sends = x mod L£* to prover.
2: Prover returns ag’ € R™.
3: Verifier accepts ik’ = x.

2. Soundnessif n o (L) > 1, then the verifier rejects with probability at leakst
1—

In particular, 2-GapSPP_ 5,,_s) € AM whend — e > 1/poly(n). Moreover, where = negl(n) the
protocol is honest-verifier statistical zero knowledge,, 2-GapSPP. 5 /;_5 € HVSZK = SZK.

By applying Corollanyf 2.5, we obtain the following upper Inols on the complexity of-GapSPP, for
different ranges of.

Corollary 3.2. For the followinge(n) < 1, we havey-GapSPP, € AM for the following~y(n):

e If £(n) < negl(n), theny = O(y/log(¢~1)/logn).
e If 1/poly(n) <e(n) < o(1), theny = (2 + o(1)).
e If (n) > Q(1), theny = O(1).

The next two lemmas provide the crux of the proof of Thedrefh 3.
Lemma 3.3. Let.S C R™ be symmetric (i.e$ = —S) measurable set. Then for agye R”,
Ys(S+y) = 75(59) - ps(y)-

Proof. By scalingS andy, it suffices to prove the claim for = 1. For anyt € R, note thatcosh(t) =
$(e' +e7) > 1. We have

(S +y)= / eIy =X g = / %(e‘””y"‘”2 eIy g (symmetry ofS)
s s
= e vl / e~ mIIxII® . % <e2”<x’y> + e‘zﬂ(x’”) dx (expanding the squares)
s
> p(y) /Sp(X) dz = p(y) - (S). O

The following crucial lemma establishes a tight relatiapdtetween discrete Gaussian sumsfoand
the Gaussian mass of the Voronoi cell.

Lemma 3.4 (Voronoi Cell Characterization). Let £ C R™ be a lattice with Voronoi cell = V(£), and

lets > 0. Then £\ {0})
Ps
W <1—7V) < p28(£\{0})'

In particular, lettings. = 7.(L*) for somes € (0,1), we have that/(2s.V) > 1 — ¢ andy(s:V) < 1i=.



Proof. By scalingZ, it suffices to prove the claim for = 1. We first show the upper bound. L&t € R"
be distributed a®,, and note that — (V) = Pr[X ¢ V]. By the union bound and Lemrha 2.1,

PriX ¢ V=Pr[ |J {(X,y)>3N< D PrX,y)>3(y,y)]
yeL\{o} yeL\{0}
< D0 e = g {oy).
yeL\{o}

We now prove the lower bound. Sintk&tiles space with respect 0, by applying Lemma_3]3 witly = V),
we have

L—y(V) =R\ V)= > (V+y) =v(V)-p(L\{0}),

ye£\{o}
Rearranging terms and usipg{0}) = 1, we havel — (V) > 1—1/p(L) = p(L\ {0})/p(L), as desired.
Finally, the “in particular” claim follows fromy(rV) = v/, (V) and an easy calculation. O

Proof of Theoreri 3]11As already argued above, the optimal prover strategy given R™ is maximum
likelihood decoding, and the optimal prover can make théieemaccept with probabilityy(V(L£*)). Com-
pleteness and soundness now follow immediately from Lem#za3 already outlined in the overview.
For honest-verifier statistical zero-knowledge when negl(n), the simulator just chooses<+ D; as
the verifier's randomness, and outputss the message from the prover. Because the prover alsngetur
with probability at leasti — ¢ in the real protocol, the simulated transcript is within ligggle statistical
distance of the real transcript. O

4 SZK Protocol for GapSPP

This section is devoted to showing tHat+ o(1))-GapSPPy /1y IS in SZK.

Theorem 4.1. For everye : N — [0, 1] such that—1— < £(n) < 4, we have2 - (1 + §)-GapSPP, 1. €

poly(n)
SZK, wheres = /2 In 2.

As before, the following corollary gives the implied uppe@und on the complexity of-GapSPP. (by
applying Corollary 2.b).

Corollary 4.2. For everye : N — (0,1), if 1/poly(n) < e(n) < o(1), then(2 + o(1))-GapSPP, € SZK.
If (n) < negl(n), thenO( %)-Gapsppe € SZK. Finally, if Q(1) < (n) < 1/3, thenO(1)-
GapSPP, € SZK.

Our construction follows a classic approach of constrgctininstance-dependent (ID) commitment
schemdor GapSPP, which is known to be sufficient for obtainingSZK protocol [I0OS97]. With an addi-
tional observation, we show thatsgnificantly weakenotion of ID commitment schemes is sufficient to
obtain SZK protocols; roughly speaking, we only need an ID bit-comreittnscheme that is sufficiently
binding for anhonestsender, and hiding (from a dishonest receiver). Specijidals sufficient to construct
a “non-trivial” ID commitment scheme defined as follows.



Definition 4.3. LetII be a promise problem. A (non-interactive) instance-depantdit-commitment scheme
Com forlT is a PPT algorithm that on input an instangec {0,1}" and a bitb € {0, 1}, outputs a commit-
ment Com(b) € {0,1}". Letp = p(n),q = q(n) € (0,1). We define (weak) binding and hiding properties
of Com as follows.

e Statistical honest-sendetbinding for YES instancestor everyz € Ily andb € {0, 1},
Pr[Com,(b) € supgCom,(b))] < q(|z])-

(Note that when Coptb) ¢ supdCom, (b)), the commitment Cop(b) cannot be opened ta Thus,
the above condition implies that the binding property carblmken with probability at mosf.)

e Statisticalp-hiding for NO instancesFor everyx € 11y,
A(Com(0), Com; (1)) < p(z|).

(The above condition implies that given Cgit) for a randomb, one can only predidi correctly with
probability at most(1 + p)/2, which means that the hiding property can be broken with athge at
mostp.)

Com isnon-trivial if Com is statisticalp-hiding and statistical honest-senderbinding withp 4+ ¢ <
1- 1/poly(n)B Com issecuref Com is statisticalp-hiding and statistical honest-sendgibinding with
negligiblep andgq.

In the next subsection, we focus on constructing a noratrild commitment schemes f@2 + o(1))-
GapSPPy/ poly(n)- We present more detailed background for ID commitmentrseiseand discuss why it is
sufficient to construc$ZK protocols in Sectioh 413.

4.1 A Non-Trivial ID Commitment Scheme for GapSPP

In this section, we construct a non-trivial ID bit-commitmtecheme SPCom f¢2+0(1))-GapSPP1 / 1y ()
Our construction can be viewed as a generalization of aangstdependent commitment scheme implicit
in [MVO03] for O(y/n/ log n)-GapSVPE To explain the intuition behind our construction, it is mnstive
to first consider the construction of ID commitment schemeGipSVP (for simplicity, below we describe
commitment to a randorh): To commit, a sender first selects a “random” lattice paint L (see Fig-
ure[4.1 for the precise distribution) and adds a random naseore drawn from a ball of certain radius
(say,r = 1/2) tov; letw = v + e. Intuitively, the vectomw is binding tov if the noise is sufficiently short.
To actually commit to a bit, the sender also samples a randsh functionk, and commits to the hashed
bit b = h(v). Namely,(w, h) is a commitment Com(b) to b = h(v).

Intuitively, if the length of the shortest vectas (£) > 1, then all balls centered at lattice points= £
of radiusr = 1/2 are disjoint, and thus Copib) = (w, h) is perfect binding. On the other hand, if the
shortest vector is too short, say,(£) < O(y/(logn)/n), thenw may fall in the intersection region of two

“This is in contrast to the fact that one can construct a éiyi-hiding andg-binding commitment scheme for evesy- ¢ > 1.
For example, defining Cogtb) = b givesp = 1 andg = 0, and defining Com(b) = 0 givesp = 0 andg = 1. More generally,
defining Com (b) to beb with probability o and00 with probability 1 — « givesp = aandg =1 — a.

SWhile [MV03] constructed their protocol by combining thedtztion fromGapSVP to GapCVP with Goldreich-Levin hard-
core predicate, their construction can be interpreted afiditly constructing an ID bit-commitment scheme GapSVP by first
constructing one witlperfecthinding but weak hiding, and then amplifying the hiding pedy.
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(or more) balls with non-negligible probability, using tegmmetry of the lattice and the fact that the balls
centered around the origin and a shortest non-zero vecter tan-negligible overlap. Whew lies in the
balls centered at; andv, andh(vy) # h(vsy), the commitment Com(b) = (w, h) does not reveal the
committed valué, which intuitively achieves hiding. Indeed, the above angat can be formalized readily,
yielding an ID bit-commitment scheme fa?(\/n/logn)-GapSVP with perfect biding and weak hiding
properties.

Note that in the above commitment scheme, the quality of idhiedn property depends on how much the
ball v + By overlaps with the balls around surrounding lattice poirtswever, in the above analysis, we
only exploit the overlap contributed by a nearest latticenpto v, ignoring the overlap contributed by all
other balls. In general, such an approach can only give acaayse approximation of the overlap, which
one can see from the example of extremal lattices where #inerexponentially many lattice points of length
roughly equal to that of the shortest vector. As a resulhgigtiis approach one can only obtain a non-trivial
ID bit-commitment scheme foy-GapSVP with v > Q(y/n/logn).

Our key observation is that, when we switch fr&apSVP to GapSPP, the above construction gives a
non-trivial ID bit-commitment scheme for-GapSPP /.1y (,,) With v = 24 o(1). This stems from our new
ball overlap characterization of the smoothing parametkich gives us much finer control on the amount
overlap we obtain in the above protocol. We formalize thigrabterization as follows:

Lemma 4.4 (Ball Overlap Characterization). Let £ be ann dimensional lattice. For > 0, define

st Voln (Uyecgoy (7BE 0 (1B +)) )
Overlap(L,r) = vol, (r B )
n\T 5y

which denotes the fraction of overlap of a ball of radiusentered at a point it with balls of equal radius
centered at all other lattice points. Then for (2°-™),1/3), settingr. = /2% /(2-(£*)), the following
holds:

1. For0 <r <., we haveOverlap(L,r) < 2e.

2. Foranyr > 2(1+ ) - r. whered = \/% In %, we haveOverlap(L,r) > €/2.

The above lemma says that up to a facto ef o(1), the smoothing parameter(L*) characterizes the
required radius for balls o to have roughly fraction of overlap. As we shall see shortly, the amount of
overlap tightly characterizes the binding and hiding prgpef the commitment scheme described above.
As such, by choosingy ande 5 with a small constant factor gap, the above constructioldyia non-trivial
ID bit-commitment scheme foy-GapSPP_,, . with v =2+ o(1).

We proceed to formally define our ID bit-commitment schem€&®&fR for GapSPP in Fig[ll, and estab-
lish its binding and hiding properties. We prove the bindamgl hiding properties in Lemnia 4.5 and]4.6,
respectively, and summarize the properties of SPCom in Lal@dl. We defer the proofs of all geometric
lemmas (in particular, the Ball Overlap Characterizatimndubsectiof 4]2.

We remark that since we are approximatipg.), the following protocol operates directly aii. For
simplicity of notation, for a basi® of £, we write B* = (B~!)! to denote the corresponding dual basis of
L*.

The following two technical lemmas establish the (weak}ivig and hiding properties of SPCom.

Lemma 4.5. For everyb € {0, 1},
Pr[SPCong(b) € supfSPCong(b))] < Overlap(L*,r).

11



LetH = {h:{0,1}" — {0,1}} be a pairwise-independent hash family.
On input a lattice basi® and a bith € {0, 1},

e Sample uniformly random «+ {0, 1}" andh + H jointly subject toh(z) = b. (This can be done
by rejection sampling, or equivalently by sampling unifozre— {0,1}" first, and then sampling
h < H conditioned orh(z) = b.)

e Samplee < rBj withr = 1, /2.
e Letv = B*zandw = (v + e mod 2B*).
e Output SPComg(b) = (w, h).

Figure 1: SPCom: a non-trivial ID commitment schemeGapSPP.

Proof. LetS = Uy e oy (B3 N (rBy +)). By definition, SPComg(b) is generated by sampling«
rBY andh « H,z € {0,1}" such thath(z) = b, and outputtingw, h) = (v + e mod 2B*, h), where
v = B*z. Thus, we can writev = v + u + e for someu € 2£*.

The event SPCom(b) € supSPCong (b)) means that there exists somiec {0,1}", e’ € r B} such
thath(z') = b andw = (v/ + € mod 2B*), wherev’ = B*z'. Similarly, we can writew = v/ +u’ + ¢/
for someu’ € 2L*.

Lety = v/ +u’ — v — u, and note thay € £*. The facts thav = v+ u+e = v/ +u’ + € and
e’ € rB2 imply thate € rBY + y, which impliese € S. As the event in the LHS implies € S, it follows

that
- vol, (S5)

Pr[SPCong(b) € supgSPCong(b))] < Prle € S] = ol (" BY) = Overlap(L*, 7).
n\T53

O

Lemma 4.6.
A(SPCong(0),SPCong (1)) <1 — (Overlap(L*,7)/2).

Proof. Let S = U,z (o3 (1B N (rB3 +)). Define random variable§Vy, Hy) = SPCong(0) and
(W1, Hy) = SPCong(1). Observe that the marginal distributionsi&f andWW; are identical (following by
the fact thath + H maps every € {0,1}" to a uniformly random bit), we have

WP O[(w, h)] — wlifm[(w’ h)]‘

A(SPCong(0), SPConp(1)) = (1/2)-)
w,h

= (1/2)-)_Prlw]- )
w h

Pr|h|\Wy = — Pr[h|W; =
P 35 [Prlali¥o = w] - Prlti = w)

= E [A(Holwy=w, Hilw,=w)]

w+— Wy

For everyw € (R™ mod 2B*), defineTy, = (rBY + w) N L* andTy, = (Tyw mod 2B*). we rely on
the following two technical claims to upper bound the stai#d distance. Note that the evefit,| > 2 is
equivalent to the evert € S, wheree is the error vector used to generateand hence

Pr[|Tw| > 2] = Pr[e € S] = Overlap(L*, 7).

12



Claim 4.7.

Pr [IT,>2 = Pr [T >2.
Wo

w+ Wy W4

Claim 4.8. For everyw € (R" mod 2B*) with [T/ | > 2,
A(I{Oh/Vo:Wa H1|W1=W) S 1/2
The above two claims imply that
A(SPCong(0),SPCong(1)) < Pr [|T]>2]-(1/2)+ Pr [T =1] 1
WHWO WHWO

= Overlap(L*,r) - (1/2) + (1 — Overlap(L*, 7))
= 1— Overlap(L*,r)/2,

as desired. It remains to prove the claims.

Proof. (of Claim[4.7) Let{y1,...,y:} = Tw = L£* N (rB2" + w), where they;s are ordered such that
|lyi—w|l2 < |lyis1—w]2. By assumption, we have that- 2. To prove thatT’, | = |Ty, (mod 2B*)| > 2,

it suffices to show thag; # y» (mod 2B*). Assume not, then note thit= 1 (y1 + y2) € £*, ¥ # y1,

y # yo. Furthermore, by the triangle inequality

_ 1 1 1
17 = wll2 =I5 (1 +y2) = wll2 < Slly1 = wl2 + Slly2 = wllz < ly2 = x[l2 < »

Hencey € T,. We now examine two cases. [If'1 — w||2 = |ly2 — w||2, then sincey; # y2, the above
inequality must hold strictly. But thefly —w/||> < |y1 —w/||2, which contradicts the fact thgt; is a closest
lattice vector tow. If ||y — w2 < [ly2 — w|2, then|ly — w2 < [ly2 — w/||2, which contradicts thag- is
a closest lattice vector t& aftery;. The claim thus follows. O

Proof. (of Claim[4.8) LetT}, = {vi,...,v:} and letz; be the coordinates of; with respect to the basis
B* for everyi € [t]. Note that by construction, conditioned an the random variable € {0,1}" becomes
uniform over the{z,, ...,z }.

Now, consider a probability space defined by independent random variablésH ), where! is a
uniformly random index ifit] and H is a random hash function . Define a random variablB = H (z;).
Note that by the construction, fore {0, 1}, the random variabléf; |y, - has identical distribution to the
random variabled |z in P. Thus, our goal can be rephrased as to upper bauiid|z—o, H|p=1).

By Bayes' rule,

Pr[H = h| Pr[B = b|H = h]
Pr[B = 0]

#{i: h(z;) = b}

Pr[H|g—p = h| = =2Pr[H =h|- ; ,

thus

() = 0} — #4i  h(z) = 1}

A(H|p=o, H|p=1) = Y Pr[H = h] naliL t
h

Intuitively, since? is a pairwise-independent hash-family, the discrepat¢y : h(z;) = 0} — #{i :
h(z;) = 1} should be small on expectation. We prove this presently.

Claim 4.9. For ¢t > 2, Ep g [|#{i : h(z;) = 0} — #{i : h(z;) =1} < §
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Proof. Fori € [t], let X; = (—=1)"#) ¢ {~1,1}. SincePr[h(z;) = 0] = Pr[h(z;) = 1] = 1/2, we
have thatE[X;] = 0 for all i € [t]. Furthermore, by pairwise independence we have fhat; X ;| =
E[X;] E[X;] = 0 for distincts, j € [t]. By definition of X;, it is easy to verify that

[#{i : h(zi) = 0} — #{i : h(z;) = 1} = ’ZXJ-
=1

By Jensen’s inequality and pairwise independence, werthaiinequality

[ =+|(Ex)

Taking a square root, the above inequality give&E{jg-{i : h(z;) = 0} — #{i : h(z;) = 1}|] < V/t. Since

V't < t/2fort > 4, the claim holds for alt > 4.

It remains to prove the claim far= 2, 3. Fort = 2, h acts like a truly random hash function, and hence a
direct computation yields

t

>

i=1

t

= Y EXXj]=) E[X]]=t

1<i,j<t i=1

E[| X1 + Xa|] = 2Pr[X; = Xo] + 0Pr[ Xy # X5 =2(1/2) +0=1, (4.2)
as needed. For the case- 3, we have that

EHXI + Xo + Xg” = 3PI‘[X1 =Xy = Xg] +1 PI‘[Xl,XQ,Xg not all equal]
= 3PI‘[X1 =Xy = Xg] + 1(1 — PI‘[Xl =Xy = Xg]) =1+ 2PI‘[X1 =Xy = Xg]

By inclusion exclusion we get that

1=Pr[3X; =1]+Pr[X; = Xy = X3 = —1]

3
=> PriX;=1]— > Pr[X;=X;=1]+Pr[X; = X = X3 = 1] + Pr[X; = Xp = X3 = —1]
i=1

1<i<j<3
3
= PriX;=11— > Pr[X;=X;=1]+Pr[X; = X, = X3 O
i=1 1<i<j<3

By rearranging the above equality and using pairwise indégece, we get

3
PriXy = Xp = Xg] =1-) Pr[X; =1+ > Pr[X;=X;=1=1-3(1/2)+3(1/4) = i (4.2)
i=1 1<i<j<3

Combining Equationg{4.1) and (#.2), we get tR3tX; + Xo + X3|] = 1+ 2(1/4) = 3/2, as needed.
From the above claim, we observe tdstH | o, H|p=1) < ”72 < 1/2 for everyt > 2 as needed. [

Finally, we prove the ID binding and hiding properties of Cbhy Lemma 44, 415, aiid 4.6.

Lemma 4.10. For everye : N — [0, 1] such thatl/poly(n) < ¢(n) < 1/36, SPCom is a non-trivial ID
commitment scheme far- (1 + §)-GapSPP_ ;5. with § = |/ In 2. Specifically, SPCom i&¢)-binding
for the YES-instances arfd — 3¢)-hiding for the NO-instances @f- (1 + 0)-GapSPP_ ;,., respectively.
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Proof. For YES-instances wherg(£) < 1, by Part 1. of Lemmg4l4 and noting that r.,
Overlap(L,7) < 2e.

Thus, by Lemma4]5, SPCom ({8¢)-binding for the YES-instances. On the other hand, for N&&nces
wheren. (L) > 2- (1 +¢), by Part 2. of Lemmpg_4l4 and noting that 2 - (1 +9) - 7,

Overlap(L,r) > 12¢/2 = 6¢.
Thus, by Lemma&a 416, Com id — 3¢)-hiding for the NO-instances. O

Theoreni 4.1l then follows by combining Lemina 4.10 and Thed€ld stated in the next section. We
remark that ouBZK protocol for(2 + o(1))-GapSPP; ;1) d0€s not have efficient prover strategy, since
we do not know if the problem is iNP or coNP.

4.2 Geometric Lemmas

Here we prove several geometric lemmas with the goal of ksltity the ball overlap characterization
(Lemmal4.4). The first lemma gives a standard upper bound @vdlume of the intersection of two
euclidean balls (see [Bal97, Lemma 2.2], noting that theibirsection volume is at most twice that of the
spherical cap).

Lemma4.11. For r > 0, lets = /27 /n. Then for any € R",

vol, (rBY N (y +rBY))

< 2e~ I
voly, (rBY) v

The following lemma will allows us to transfer lower bounds the gaussian measure of the overlap
region to lower bounds on uniform measure, and will be ingodrin the proof of the ball overlap character-
ization.

Lemma 4.12. Let K C R" be a convex body containing the origin. Then for any > 0 we have that
vs(rBy \ K) - vol, (rBY \ K)
vs(rBY)  —  vol,(rBY)

Proof. The plan of the proof is to show that since gaussian measunelie biased towards the origin than
the uniform measure, switching from gaussian to uniformhpasmeasures outside &f. To make this
precise, we note that

t2

vs(rBy \ K) / / 1
_— 7 [t ¢ K| ————t"""dtdf (4.3)
Vs(rBy) gn—1 g ( rBy)s"
wheredd is the Haar measure on the unit sphsfe! C R™. Furthermore, note that
vol, (rBy \ K) 1 1
—n e 7 It ¢ K|———t" "dtdf 4.4
voly, (rBY) /Sn 1/ £ ]VOI (rBy) (44)
Since both the uniform and gaussian measure are sphersyatiynetric, we must have that
r 1 . /T —7(t/s)? L
— " dt = —— "7 dt (4.5)
/o voly (rBy) o s"s(rBy)
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—T S 2 . -
Let f,g : [0,7] — Ry be defined byf(t) = m andg(t) = %;/B);) Since f is constant,g

is decreasing, and, f(t)t"'dt = [ g(t)t"~'dt (by equation[(4))), there exists€ (0,r) such that
f(t) < g(t)on]0,b] andf(t) > ¢(t) on (b, r]. Given this geometry, we clearly have that fora# [0, r]

/T fttat > /Tg(t)t"_ldt (4.6)

Since K C R™ is a convex body containin@, for every line segmen{tf : 0 < ¢ < r}, we have that
{td:0<t<r}\ K ={th:c<t<r}forsomec > 0. From the above inequality (equatidn (4.6)), we
now see that

/ I[th ¢ K|f(t)t" tdt > / Ith ¢ K]g(t)t" ‘dt (4.7)
0 0
for all @ € S*~!. Combining equation$ (4.3) arld (4.4) with the above ingtyu@.7) yields the result. O

The following lemma establishes the necessary bounds foiball overlap characterization of the
smoothing parameter.

Lemma 4.13. Let £ denote am-dimensional lattice. For > 0,0 < ¢ < 1 ands = r/2Z, the following

holds: £\ o
(%(\ﬁ{)}) — 6—2:?‘52> < Overlap(L,7) < 2p25(L \ {0}).

Proof. For simplicity of notation, we defing = Uyeﬁ\{o} (rBy N (rBY +y)), noting thatOverlap(L,r) =
voly, (S)/ vol, (rBy). For the upper bound, by the union bound and Lehmd 4.11, we hav

vol,, (.5) vol, (rBy NrBy +y)
— <
vol,(rBY) — Z voly, (rBY)

< 3 2R o (20 {0))

yeL\{0} yeL\{0}

as needed.
For the lower bound, l1e¥ = V(L£). We claim that-B% \ V C S. To see this tak& € B3 \ V. Since
x ¢ V, there existgz € £\ {0} such thatly — x|| < [|x]| < r Thereforex € rBy Ny + rB3 as needed.

Lets' = 5. By Lemma 3.4, we have that, (V) < p—() Let X € R™ denote the gaussian with
distribution~. By the standard gaussian tailbound (Len@ 2.1), we have tha
(R \ 7BY) = Pr[ls'X||* > ] = Pr[| X|[* > (14 6)*3 ]< Pr{| X" > (14 20)o— ] e
Therefore we have that
BB \V) 2 1= e (R V) = (R \rBg) 2 2SN o
By Lemmd4.1R, we have that
ps(L\{0}) - (rBy\'V) < vol, (rBy \ V) < voly, (.9)
psr (L) ~ v« (rBY) T wvol,(rBY) T vol,(rBY)
as needed. O
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Proof of Lemma4l4 (Ball Overlap Chacterizatio)et r. = W’/% ands = Note that by

1
775(5*) ’
definition of s, we have thap,(L£) < . For Partl, by Lemmd 4.1B, using the fact that 2r, 27” we get

Overlap(L,7:) < 2ps(L) < 2e.

Furthermore, for everg < r < r., sincen.(£) is a monotonically decreasing functiondnr = r.. for
somee’ < e. Thus,
Overlap(L,r) < 2¢’ < 2e.

For Part 2, by 213 and the fact that°™ < e < 1/3andé = /22 In2 < 1/4, we get

p(LN{0}) mp e e e
: Te) > e — > — — — > .
Overlap(£,2-(140) -1z) > ) e 2o T2
Again, for everyr > 2 - (1 + §)r., by the monotonicity of).(£) in e, r = r. for some:z’ > ¢, and thus,
Overlap(L,r) > €'/2 > ¢/2. O

4.3 Background and From ID Commitment Schemes t&ZK Protocols

An ID commitment scheme Com for a promise problHns a commitment scheme that can depend on the
instancex and such that only one of the hiding and binding propertiesrequired to hold, depending on
whetherz is an YES or NO instance. Since only one of the hiding and bopgiroperties needs to hold at a
time, it is possible to achieve both the statistical hiding atatistical binding properties, and thus useful for
constructingSZK protocols.

Typically, one requires the hiding property to hold for thEYinstances and the binding property to hold
for the NO instances, and such an ID commitment scheme yegidds aSZK protocol with soundness error
1/2. On the other hand, an ID commitment scheme with reverseagtess, i.e., binding for YES instances
and hiding for NO instances, also readily gives a honestige6ZK protocol, where the verifier commits
to a random bib and the prover’s task is to guess thetbdorrectly. Furthermore, since the verifier (who
is the sender of the ID commitment scheme) is honest, thergjmitoperty only needs to hold with respect
to the honest sender (referred to as “honest-sender bidmgegy”). SinceHVSZK = SZK [GSV9E],
an ID commitment scheme that is honest-sender binding fo ¥iStances and hiding for NO instance
is also sufficient for showing that the promise problem iS¥K. Note that since only honest-sender
binding property is required, we can without loss of gengralssume that a commitment scheme is non-
interactive (by letting the sender emulate the receiversamt! the emulated view to the receiver). Thus,
such a commitment scheme is simply an algorithm.

We observe that, the existing security amplification teghes for regular commitment schemes can
be applied to the instance-dependent setting. As a conseguany ID commitment scheme withdn-
trivial” honest-sender binding and hiding properties is sufficterdbtainSZK protocols. More precisely,
as formally defined in Definition 4.3, we consider ID commitrhechemes Com with weakhiding and
g-binding properties, where the hiding and binding propertian be broken with “advantage” at mpsind
q, respectively, and we say Com is “non-trivial’jif+ ¢ < 1 — 1/ poly(n). Known security amplification
results for commitment schemes (for the case of statisiealrity) [DKS99] state that any non-trivial
commitment scheme can be amplified to one with full-fledgeisgc(i.e., bothp andq are negligible). The
same conclusion holds for ID commitment schemes, and thesnstruct &ZK protocol for a languagé,
it suffice to construct a non-trivial honest-sender bindibgommitment scheme fak.
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Theorem 4.14. LetII be a promise problem. Suppose there existemtrivial ID commitment scheme for
II, thenII € SZK.

Proof. (sketch) The theorem can be proved by applying known teciesfiigsults for regular commitment
schemes to the instance-dependent setting. Briefly, $g@miplification of commitment schemes can be
done using the following two operations [DKS99].

e Repetition. Given Com and: € N, define Corh(b) = (Com,(b;ry),...,Com,(b;ry)), i.e., con-
catenation oft commitments of Com using independent randomness. Thisifespihe binding
property but degrades the hiding property. Specificalldfm isp-hiding andg-binding, then Corh
is (1 — (1 — p)¥)-hiding andg*-binding.

e Sharing. Given Com andk € N, define Comi(b) = (Comy(by;r1),...,Com,(bk; 7)), where
b1,..., b, are chosen randomly subjecttp® - - - ® b, = b, andrq, . .., r; are independent random-
ness. This amplifies the hiding property but degrades theifgnproperty. Specifically, if Com is
p-hiding andg-binding, then Corhis p*-hiding andl — (1 — ¢)*-binding.

It can be shown (as in [DKS99)) that as longas ¢ < 1 — 1/ poly(n), one can amplify @-hiding andg-
binding commitment scheme Com to a secure Coyralternately applying repetition and sharing operations
with carefully chosen parametekss, and the resulting Cohealls Com in a black-box wayoly(n) times.

Once we have a secure non-interactive instance-depeniteontmitment scheme fdil, we can readily
construct a two-message honest-verifigk protocol for L as follows: On input: € {0,1}",

e IV samples randorh < {0, 1}, computes and sends Co(h) to P.
e P send9’ toV as his guess df.
e V accepts ifft! = b.

It is not hard to see that the binding and hiding propertiassiate to the completeness an@-soundness
for the protocol, and a simulator can generate the view bylaimg V' and outputting Com,(b), b). Since
HVSZK = SZK, we havell € SZK. O

Remark 4.15.Interestingly, as a by-product, &7 K-complete problem called “Image Intersection Density”
(IID) (defined by [BOGO03] and proved to &7 K-complete by[[CCKVO0B8]) can naturally be interpreted as
a weak ID bit-commitment scheme as defined in Definitioh 48¢ctvallows us to (immediately) obtain an
optimal “polarization” result to the problem.

Specifically, the input to the IID problem is two distribut® (X,Y) specified by circuits, where
the YES instance satisfyind(X,Y) < a and the NO instance satisfyingr[X ¢ supgY)] > b and
PrlY ¢ supgX)] > b, wherea,b € (0,1) are parameters of the problem. By definiigandY” as com-
mitment to0 and 1 respectively, the condition to YES instance correspondgdtsticala-hiding and the
condition to NO instance corresponds to statistical hesestler(1 — b)-bindingE Interpreting the 11D
problem as a weak ID bit-commitment scheme makes it natarapply the security amplification result of
commitment schemes [DKSQ9], which gives an optimal poddian result of the problem, stating that the
[ID problem with parameters(n) — b(n) > 1/ poly(n) is complete folSZK. This improves the previous
known result in[[CCKV08], which holds for constanis> b. In fact, the security amplification and polar-
ization techniques exploit identical operations. Thergyay result from the security amplification literature
is obtained by applying the repetition and sharing openatimore carefully.

®The binding and hiding properties hold for reverse instanbat one can instead consider the complement of the [IDigmob
to obtain a consistent definition sinB&K is close under complement.
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5 Applications to Worst-case to Average-case Reductions

Our study ofGapSPP has natural applications to the context of worst-case toageecase reductions. In
particular, we show that we can relate the hardness of aarage hard learning with erratM/E) problems
and worst-case ha@apSPP problems with a tighter connection factor. Our result diseicnplies the worst-
case to average-case result fréapSVP to LWE obtained by Regey [RegD5] and Peikért [P&i09]. First we
review theLWE problem.

Definition 5.1 (Learning with Error Problem [Reg05]). Letq = ¢(n) € N, @ = «a(n) € (0,1). Let
®,, be the distribution or0, 1) obtained by drawing a sample from the Gaussian distributidth standard
deviationa and reducing it modula. DefineAs s, to be the distribution o} x [0, 1) obtained by choosing
a vectora € Z; uniformly at random, choosing an error teren« @,, and outputting(a, (a,s)/q + )
where the addition is performed in modulo

The goal of the learning with errors problebWE, , in n dimensions is, given access to any desired
poly(n) numbers of samples fror ¢, for a randoms « Zp, to finds (with overwhelming probability).

Following [Reg05%[ PeiQ9], we use the bounded decodbd problem as an intermediate step in our
reduction. Here we instead parameterize 4hBDD problem witha relative to the smoothing parameter
(as opposed to the shortest vector used in literature);ighessential for us to obtain tighter reduction for
GapSPP.

Definition 5.2 (Bounded Distance Decoding Problemu(-BDD.)). Given a lattice basisB and a vector
t such thatdist(t, £(B)) < a/n.(L(B)*), find the lattice vectov € L(B) such thatdist(t,v) <

a/ne(L(B)").

We recall the following Lemma from Regev [Re05] and Peifeei09] that reduce solving worst-case
BDD problem to solving WE through quantum and classic reductions, respectively.

Lemma 5.3 ([Reg05| PeiQ9])Letg(n) € N, a(n) € (0,1), e(n) be a negligible function such that- ¢ >
2,/n. There exists a PPT quantum reduction from solvii@-BDD. in the worst case (with overwhelming
probability) to solvingLWE, ,, usingpoly(n) samples.

If in additiong > 21/2 then there exists a classical reduction from solin@-BDD. in the worst case
(with overwhelming probability) to solvingVE, ., usingpoly(n) samples.

We note that the reasan= negl(n) in the above Lemma is to guarantee that the LWE samples dedera
during the reduction are within neglible statistical digta from “true” LWE samples.

We now establish a new result that relaB#3D andGapSPP. Our new observation is that the prover in
the GGG protocol (Algorithrill) can be implemented BBRD oracle. Thus, if one hasBDD solver, one
can solve thé&apSPP problem. We note that we only need tBBD oracle to work for YES instances, and

hence we requirey = negl(n) while leavinge y = m. More precisely, we have the following lemma.

Lemmab5.4. Let a(n) € (0,1), ey(n) € negl(n) andey € 1/poly(n). There exists a PPT Turing
reduction from solving,/n/a- GapSPP to solvinga-BDD.,, .

€Y HEN

Proof. For convenience, we scale thé:/a-GapSPP problem so that YES instances haxe (£) < a/\/n,

and NO instances havg, (£) > 1. Let B be an input of the problenyn/a-GapSPP. We run the GGG
protocol as AlgorithniL 11 on inpuB, where the prover’s strategy is implemented usingdHgDD., solver.
Then we output the verifier's decision.
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Now we describe the analysis. For NO instances, by an iddraitalysis to Theorefn 3.1, the above al-
gorithm rejects with probability at leasf; /(1+cx) > 1/ poly(n). For YES instances, we observe that the
optimal prover’s strategy can be emulatedi=f| is less than the BDD decoding distanegr., (£) > /n.

By the Gaussian tail bound as Lemmal 2.1, we Hanéx|| > /] < e~ Recall that by Lemma3.4, in
GGG protocol the verifier rejects the optimal prover withlgability 1 — ~, (V(L£*)) < p2(L*\ 0) < ey.
Thus, by a union bound the algorithm rejects with probabdit mostey + e~ < negl(n).

Putting together the above lemmas, we obtain a tighter wgase to average-case reduction from
GapSPP to LWE.

Theorem 5.5. Let¢(n) € N, a(n) € (0,1), ey (n) € negl(n) andey € 1/poly(n) such thate - ¢ >
2y/n. There exists a PPT quantum reduction from so\dRg:/a- GapSPP in the worst case (with
overwhelming probability) to solving/VE, ,, usingpoly(n) samples.

If in addition ¢ > 2"/2, then there exists a classical reduction from solviRgn /a- GapSPP,,, . in
the worst case (with overwhelming probability) to solvitWE, ., usingpoly(n) samples.

€Y HEN

Remark 5.6.By using the following relation of shortest vectors and sthong parameters by Micciancio
and RegeV [MROA4]:

Vlog(l/e) <ne(L) < V1 foree 27", 1],

VT (L) A1(L*)
the above theorem implies that there exists a corresporf@lifig quantum/classical reduction frofn -
)-GapSVP to LWE, ,, for any constant: > 0.

ay/logn

6 Co-AM Protocol for GapSPP

In this section, we describe an co-AM protocol feapSPP. Formally, we establish the following:

Theorem 6.1. For anya > 1/ poly(n) andey, ey suchthaty > (1+1/poly(n)) - ey, we havgl + «)-
GapSPP,,, ., € coAM.

By applying Corollary 2.5, we obtain the following upper Inouon the complexity of-GapSPP..

Corollary 6.2. Foreveryes : N — (0, 1) such that(n) < 1 —1/poly(n), we havegl + o(1))-GapSPP, €
coAM.

Our main tool is the classic set size lower bound protocol bjd@asser and Sipser [GS86]. We use
this protocol to show that the smoothing parameter shouldtbeast as large as some quantity. To show
thatn(L) is large, equivalently we are showing that the discrete Ganswveights are large for the points in
L* inside the,/n ball. (The Gaussian weights outside the ball becomes expotigstiaall.)

The set size lower bound protocol gives a very accurate appation of lattice points inside the/n
ball, but its set size is not sufficient to approximate the €&s&@n weights. The two points inside the ball
could have lengths that differ a lot, and thus their Gaussiights differ even more. Our new observation is
that we can partition the/n ball into different shells (con-centered@t and then use the set size protocol
to approximate the number of lattice points lying in eachllsh&ince every point in the same shell has
roughly the same length and thus Gaussian weight, we canxipyate the total Gaussian weights in a shell

"Actually the radius needs to depend on the paramsteHere for simplicity we thinky as a constant.
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according to the size. Thus, summing up the Gaussian weig#ah shell, we are able to approximate the
Gaussian weights inside thgn ball. Thus, we are able to show that the Gaussian weightddrtbe ball
are large, and thusis large.

First we describe the set size lower bound protocol:

Definition 6.3 (Set size lower bound protocol [GSE&6])Let V be a probabilistic polynomial time verifier,
and P be a (computationally unbounded) prover. SetC {0,1}" be a set whose membership can be
efficiently certified. The two parties hold common inplitend KX € N.

We say(P, V) is a (1 — ~)-approximation protocol of the set siz§| if the following conditions hold:

e (Completeness) |5| > K, then V will always accept.

e (Soundness) IfS| < (1 — ) - K, then V will accept with probability at mosiegl(n) for some
negligible functiomegl(-).

Now we recall the classic construction of the set size loveemial protocol:

Theorem 6.4 ([GS86)). For any setS € {0,1}" whose membership can be efficiently certified, and any
+v = 1/ poly(n), there exists a public-coin, 2-rour{d — ~)-approximation protocol of the set siz€|.

Moreover, for anyk = poly(n), we can run the protocok-times in parallel fork set-number pairs
{(Si, Ki) }iex), and the resulting protocol has perfect completeness agtigitele soundness error. Here
soundness error means the probability that there existsesérg [k| such that|S;| < (1 — ) - K; but V
accepts.

Proof of Theorern 6]11To show the theorem, we first describeodM protocol(P, V) in the following. Note
that the verifier in @oAM protocol must accept the NO instances and reject the YE&rioss of 1 + «)-
GapSPP.,, .. For convenience, the YES or NO instances here are with cespeéheGapSPP problem, so
the completeness means the verifier accepts any NO ins@amtéhe soundness means he rejects any YES
instance.

Let B be ann-dimensional basis of a latticé as input to the prover and verifier, satisfying either
Nen (L) > (1 + «) (NO instance) om., (£) < 1 (YES instance), wheree > 1/poly(n), ey > (1 +
1/poly(n)) - ey. The prover and the verifier agree on the following pararseter

Parameters. Let R = n- (1 +log(1/ey)), 1 — 8 = sff;N, and letT = [%1. We know for

a > 1/poly(n) being noticeable, we hav€ bounded by some polynomial, i.é' < poly(n). Then
we define spaceSy & {v € £*: 0 < ||v| < 1}, andS; & {verl:(1+a)~t <|v[]|<1+a)},for
i € [T]. Pictorially, theses;’s form a partition of space inside the region«ngf_%Bg. EachsS; is a shell that
contains lattice points from length + o)~ to (1 + «)".

Then(P, V) does the following:

e Psend¥y, K1, K>, ... Ky € N as claims of the sizes &, S1,5,,...,57.

e Then for each paifS;, K;), P and V run thé1 — 3)-approximation protocol as its subroutine. These
T approximation protocols are run in parallel. Note tlgéer’;—N < 1 - 1/poly(n) sinceey >
(14+1/poly(n))-ey. Thus,1 — 8 < 1—1/poly(n), which is within the range of parameters of the
set size lower bound.
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e Inthe end, V accepts if and only if all the approximation subpcols are accepted, a@ogig K;-
e~ m(1+a)* > (ey +en)/2.

Itis easy to see that the verifier can be implemented in pibisiEbpolynomial time. It remains to show
the completeness and soundness. We show them by the fajjdwonclaims:

Claim 6.5. If Bis a NO instance, V will always accept the honest proveratsty.

Proof. Let Ky, K1,..., K be the values of the set siz8g, 51, ..., S7, as the honest prover will always
send the correct values. From the promise of NO instanceknowe ., (£) > (1 + «), which implies

¢ 3 emHal V2 S o
vel*\{0}

By rearranging the order of summation, we have

g = Z Ze m(1+a)?|lvI* Z e~ T(1+a)?v]?

0<i<T veS; veL*\(VR-BY)
< Z Z e w(1+a)?|v]? I ey
0<i<T veS;
é Z K l+Oc _|_2—n
0<:i<T

The first equality comes from the rearrangement; the sedordd a tail bound inequality by Lemnia 2.1
by plugging suitable parameters; the last inequality isheyfact that € S; implies||v|| > (1 + «)*~! for
ielT).
Then we have _
Z K; - e_ﬂ(l—’_a)m >eny—2"-ey > (ey +en)/2,

0<i<T
for all sufficiently largen’s. This follows by the fact thaty, > (1 + 1/ poly(n)) - ey, and a straightforward
examination. Thus, the verifier will always accept. O

Claim 6.6. If B is a YES instance, then no prover can convince the verifidr pvibability better than a
negligible quantity.

Proof. From the promise of YES instances, we kngw (£) < 1, which implies
g 3 el < ¢
veL*\{0}

Similarly, we rearrange the order of summation and get

g= 3 ey ST v

0<i<T veS; veL*\(VR-BY)
> 3 Ze—wuvw

0<i<T veS;
> Z |S| m(14a)?

0<i<T
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Suppose the prover sends softig K1 KT such thad ., cp Ki-e ™ 0T9% > (ey 4ey)/2, it must
be the case thati* € [T] such that—=Y - K; = (1 — ) - K; > |S;| from a simple counting argument.

(ey +a )/2
By the soundness of thg — 5)-apprOX|mat|on protocol, the verifier will catch this witihgbability (1 —
negl(n)). Hence the verifier accepts a YES instance with only nedégibobability. O
Together with the two claims, the proof of the theorem is cletep O

7 Deterministic Algorithm for Smoothing Parameter

In this section we show th&l -+ o(1))-GapSPP can be solved deterministically in tin2¢(™). In particular
we are able to show the following theorem.
To show the theorem, use are going to establish the folloeéngna.

Theorem 7.1. For anyey,eny : N — [0,1] such thatsy(n) — ey (n) > 1/272", 1-GapSPP
DTIME(20().

S

EYHEN

Together with Corollarj 2]5, we are able to obtain the follmyvcorollary.
Corollary 7.2. Foranye : N — [0, 1] ande(n) > 27", the problem(14-0(1))-GapSPP. € DTIME(2°().

We will crucially use the following lattice point enumeiati algorithm. The algorithm is a slight tweak
of closest vector problem algorithm of Micciancio and Vauig [MV10Q], which was first used in [DPV11]
to solve the shortest vector problem in general norms.

Proposition 7.3 ((MV10,[DPV11], Algorithm Ball-Enum). There is an algorithm Ball-Enum that given a
radiusr > 0, a basisB of ann-dimensional latticeC, andt € R", lazily enumerates the sétn (rBjy + t)
in deterministic time°™ . (|L N (t +rB%)| + 1) using at mos®™ space.

Now we are ready to prove Theorém]7.1 using the above theorem.

Proof. Let B be ann-dimensional basis of a latticé satisfying either.,, <1 orn., > 1, whereey, ey
are parameters that the conditions in the theorem hold. Nevarne going to describe an algorithmon
input B that distinguishes the two cases.

A runs the enumeration algorithm with the parametees 0, » = /n to enumerate all points in
L*N+/n- Bf. If A has already found™" - ¢ points from the enumeration algorithm, terminates and
rejects immediately. This is because

_ 2 _ 2 —
Z e mIvIE > Z e IVIE > (e™ L en) - eT™ = ey,

veLm\{0} ve(L\{0})Ny/n-By
which already implies the case of no instances.

OtherwiseA computes: = 3_, ¢z joy)nym sy € I*. Aaccepts ifu < (ey +¢x)/2, and otherwise
rejects. The analysis of its completeness and soundneesylsmnllar to that of Theorein 8.1, so we do not
restate it here. Itis not hard to see that this can be donen@2f (™) . ¢™ . ¢y = 20("),
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