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Abstract

The smoothing parameterηε(L) of a Euclidean latticeL, introduced by Micciancio and Regev
(FOCS’04; SICOMP’07), is (informally) the smallest amountof Gaussian noise that “smooths out” the
discrete structure ofL (up to errorε). It plays a central role in the best known worst-case/average-case
reductions for lattice problems, a wealth of lattice-basedcryptographic constructions, and (implicitly)
the tightest known transference theorems for fundamental lattice quantities.

In this work we initiate a study of the complexity of approximating the smoothing parameter to
within a factorγ, denotedγ-GapSPP. We show that (forε = 1/ poly(n)):

• (2+ o(1))-GapSPP ∈ AM, via a Gaussian analogue of the classic Goldreich-Goldwasser protocol
(STOC’98);

• (1 + o(1))-GapSPP ∈ coAM, via a careful application of the Goldwasser-Sipser (STOC’86) set
size lower bound protocol to thin shells inRn;

• (2+ o(1))-GapSPP ∈ SZK ⊆ AM∩ coAM (whereSZK is the class of problems having statistical
zero-knowledge proofs), by constructing a suitable instance-dependent commitment scheme (for a
slightly worseo(1)-term);

• (1 + o(1))-GapSPP can be solved in deterministic2O(n) polylog(1/ε) time and2O(n) space.

As an application, we demonstrate a tighter worst-case to average-case reduction for basing cryptography
on the worst-case hardness of theGapSPP problem, withÕ(

√
n) smaller approximation factor than

theGapSVP problem. Central to our results are two novel, and nearly tight, characterizations of the
magnitude of discrete Gaussian sums overL: the first relates these directly to the Gaussian measure of
the Voronoi cell ofL, and the second to the fraction of overlap between Euclideanballs centered around
points ofL.

http://arxiv.org/abs/1412.7979v1


1 Introduction

A (full-rank) n-dimensional latticeL = L(B) = {∑n
i=1 cibi : ci ∈ Z} is the set of all integer linear com-

binations of a setB = {b1, . . . ,bn} ⊂ R
n of linearly independent vectors, called a basis of the lattice. It

may also be seen as a discrete additive subgroup ofR
n. Lattices have been studied in mathematics for hun-

dreds of years, and more recently have been at the center of many important developments in computer sci-
ence, such as the LLL algorithm [LLL82] and its applicationsto cryptanalysis [Cop97] and error-correcting
codes [CH11], and lattice-based cryptography [Ajt96] (including the first fully homomorphic encryption
scheme [Gen09]).

Much recent progress in the computational study of lattices, especially in the realms of worst-case/average-
case reductions and cryptography (as initiated by Ajtai [Ajt96]), has been made possible by the machin-
ery of Gaussian measures and harmonic analysis. These toolswere first employed for such purposes by
Regev [Reg03] and Micciancio and Regev [MR04] (see also, e.g., [AR04, Reg05, Pei07, GPV08, Gen10,
Pei10]), following their development by Banaszczyk [Ban93, Ban95, Ban96] to prove asymptotically tight
(or nearly tight) transference theorems.

In particular, the notion from [MR04] of thesmoothing parameterηε(L) of a latticeL plays a central
role (sometimes implicitly) the above-cited works, and so it is a key concept in the study of lattices from
several perspectives. Informally,ηε(L) is the smallest amounts of Gaussian noise that completely “smooths
out” the discrete structure ofL, up to statistical errorε. Formally, it is the smallests > 0 such that the total
Gaussian massρ1/s(w) := exp(−πs2‖w‖2), summed over all nonzerodual lattice vectorsw ∈ L∗ \ {0},
is at mostε.1 This condition is equivalent to the following “smoothing” condition: the distribution of a
continuous Gaussian of widths, reduced moduloL, has point-wise probability density within a(1 ± ε)
factor of that of the uniform distribution overRn/L.

Given the smoothing parameter’s central role in many mathematical and computational aspects of lat-
tices, we believe it to be of comparable importance to other fundamental and well-studied geometric lattice
quantities like the minimum distance, successive minima, covering radius, etc. While the smoothing param-
eter can be estimated by relating it to these other quantities [MR04, Pei07, GPV08], the bounds are quite
coarse, typically yielding onlỹΩ(

√
n)-factor approximations.

We therefore initiate a study of the complexity of computingthe smoothing parameter, with a focus on
approximations. More formally, for an approximation factor γ ≥ 1 and some0 < ε < 1 (which may both
be functions of the lattice dimensionn), we defineγ-GapSPPε to be the promise problem in which YES
instances are latticesL for whichηε(L) ≤ 1, and NO instances are those for whichηε(L) > γ.

The dependence onε. To understand the nature ofGapSPP, it is important to notice that the value ofε has
a large impact on the complexity of the problem. In particular, by known relations between the smoothing
parameter and the shortest nonzero dual vector (see [MR04]), we have that

√

log(1/ε)/π/λ1(L∗) ≤ ηε(L) ≤
√
n/λ1(L∗),

and hence for exponentially small errorε = 2−Ω(n) the quantitiesηε(L) and
√
n/λ1(L∗) are within a

constant factor of each other. Therefore, the (decision) Shortest Vector Problemγ-GapSVP is equivalent to
γ-GapSPP2−Ω(n) , up to a constant factor loss in the approximation. However,most uses of the smoothing
parameter in the literature (e.g., worst-case to average-case reductions and transference theorems) work
with either inverse polynomialε = n−O(1) or “just barely” negligibleε = n−ω(1) (e.g., ε = n− logn).

1The dual latticeL∗ of L is the set of ally ∈ R
n for which 〈x,y〉 ∈ Z for everyx ∈ L.
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For such values ofε, the loss in approximation factor betweenGapSPP andGapSVP or other standard
lattice problems can be as large asΩ̃(

√
n), and as we will see, in this regimeGapSPP behaves qualitatively

differently from these other problems.

1.1 Results and Techniques

In this work, we prove several (possibly surprising) upper bounds on the complexity ofγ-GapSPPε. Unless
otherwise specified, the stated results hold for the settingε = n−O(1). (We obtain results for smallerε as
well, but with slowly degrading approximation factors.) Similar results hold for a generalization ofGapSPP
which uses different values ofε for YES and NO instances (see Definition 2.3 and Corollary 2.5for further
details).

At a high level, we obtain several of our main results by noticing that the classic Goldreich-Goldwasser
protocol [GG98], which was originally designed for approximating (the complement of) theGapSVP prob-
lem, can in fact be seen as more directly and tightly approximating the smoothing parameter (of the dual
lattice). When viewed from this perspective, we show that slight variants of the GG protocol obtain an
2+ o(1) approximation forGapSPP, improving on the approximation forGapSVP by aÕ(

√
n) factor. Fur-

thermore, using the known relations betweenGapSVP andGapSPP, one recover the original approximation
factor forGapSVP. To obtain these tight approximation factors, as part of themain technical contributions
of this paper, we develop two novel and nearly tight (up to a2 + o(1) factor) geometric characterizations of
the smoothing parameterηε(L) that elucidate the geometric content of the parameterε.

Arthur-Merlin Protocols. We show that(2 + o(1))-GapSPP ∈ AM ∩ coAM, and moreover, that
(1 + o(1))-GapSPP ∈ coAM. That is, we give constant-round interactive proof systemswhich allow an un-
bounded prover to convince a randomized polynomial-time verifier that the smoothing parameter is “small,”
and that it is “large.” In contrast with these positive results, we note that since the smoothing parameter is
effectively determined by a sum over exponentially many lattice points, it is unclear whetherγ-GapSPP is
in NP or coNP for γ = o(

√
n). (Forγ = Ω(

√
n), known connections to other lattice quantities imply that

γ-GapSPPε ∈ NP ∩ coNP.)
One important consequence of(2 + o(1))-GapSPP ∈ AM ∩ coAM is that the problem is notNP-

hard (under Karp reductions, or “smart” Cook reductions [GS88]), unlesscoNP ⊆ AM [BHZ87] and the
polynomial-time hierarchy collapses. Our result should also be contrasted with analogous results for ap-
proximating the Shortest and Closest Vector Problems, which are only known to be inNP ∩ coAM for
factorsγ ≥ c

√

n/ log n [GG98], and inNP ∩ coNP for factorsγ ≥ c
√
n [AR04], as well as the results

for approximating the Covering Radius Problem, whose2-approximation is inAM but is incoAM only for
γ ≥ c

√

n/ log n, and inNP ∩ coNP for γ ≥ √n [GMR04].
To prove that(2 + o(1))-GapSPP ∈ AM, we use a Gaussian analogue of the Goldreich-Goldwasser

protocol on the dual latticeL∗, where the verifier samples from a Gaussian instead of a ball.(Interestingly,
this leads to imperfect completeness, which turns out to be important for the tightness of the analysis.) More
precisely, the verifier samplesx ∈ R

n from a Gaussian, reducesx modulo (a basis of) the latticeL∗, and
sends the result to the prover. The prover’s task is to guessx, and the verifier accepts or rejects accordingly.
To prove that the protocol is complete and sound, we crucially rely on the following novel characterization
of the smoothing parameter:

Voronoi Cell Characterization. For anyε ∈ (0, 1), a scaling of the Voronoi cell2 V(L∗) by a factor

2The Voronoi cellV(L∗) is the set of points inRn that are closer to0 than any other lattice point ofL∗, underℓ2 norm.
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2ηε(L) has Gaussian measure at least1 − ε, and anηε(L)-scaling has Gaussian measure at most
1/(1 + ε).

With this tool in hand, the analysis of the protocol is very simple. By the maximum likelihood principle, the
optimal prover guesses correctly if and only if the verifier’s original sample lands inside the Voronoi cell,
and hence the verifier’s acceptance probability is exactly the Gaussian measure ofV(L∗). See Section 3 for
further details.

For proving (1 + o(1))-GapSPP ∈ coAM, we rely on the classic set-size lower bound protocol of
Goldwasser and Sipser [GS86]. In order to prove that the discrete Gaussian mass onL∗ \ {0} is large,
we apply the protocol to thin shells inRn, and rely on a discrete Gaussian concentration inequality of
Banaszczyk [Ban93]. See Section 6 for an overview and full details.

Statistical Zero Knowledge Protocol. We prove that(2 + o(1))-GapSPP ∈ SZK, the class of prob-
lems having statistical zero-knowledge proofs. We note that this result does not subsume the inclusion in
AM∩ coAM described above (as one might suspect, given thatSZK ⊆ AM∩ coAM), due to a slightly worse
dependenceε in theo(1) term. To prove the theorem, we construct a new instance-dependent commitment
scheme3 based onGapSPP, which is sufficiently binding (for an honest committer) andhiding (to a dishon-
est receiver). Constructing such a commitment scheme (withsome additionals observations in our case) is
known to be sufficient for obtaining anSZK protocol [IOS97].

Our construction can be viewed as a generalization of an instance-dependent commitment scheme for
O(
√

n/ log n)-GapSVP implicit in [MV03], which was also based on the Goldreich-Goldwasser protocol
and is perfectly binding. At a very high level, the commitment scheme is based on revealing a “random”
perturbed lattice point inL, where the perturbation is taken uniformly from a ball of radiusr. Roughly speak-
ing, we get the binding property when there is only one lattice within distancer of the revealed perturbation,
and get the hiding property when there are multiple such lattice points (which allow for equivocation). It
turns out that the main measure of quality for the binding andhiding property corresponds to the fraction of
overlap between the balls of radiusr placed around lattice points ofL: less overlap means better binding,
and more overlap yields better hiding. In [MV03], this overlap is analyzed in terms of the lengthλ1 of the
shortest nonzero vector ofL. In particular, ifr ≤ λ1/2, then the balls are completely disjoint (perfect bind-
ing), and ifr ≥ Ω(

√

n/ log n) · λ1, then a1/poly(n) fraction of the ball around any lattice point overlaps
with that of its nearest neighbor in the lattice, which givesnon-negligible hiding.

The main insight which allows us obtain improved approximation factors when basing the commitment
scheme onGapSPP is a new characterization of the smoothing parameter, whichallows to get very fine
control on the overlap.

Ball Overlap Characterization. Forε ≥ 2−o(n), Euclidean balls of radiusR =
√

n/(2π)/(2ηε(L∗))
centered at all points ofL overlap in at most a2ε fraction of their mass, and balls of radius(2+o(1))R
overlap in at least anε/2 fraction of their mass.

From the above we are able to determine, to within a factor2 + o(1), whether balls placed at points
of L overlap in at most or at least anε fraction of their mass, based solely on the smoothing parameter (of
the dual lattice). Intuitively, this is because the smoothing parameter takes into account all the lattice points
in L, and hence is able to provide much better “global” information about the overlap. We refer the reader
to Section 4 for further details and discussion.

3Roughly speaking, an instance-dependent commitment scheme for a languageL is a commitment scheme that can depend on
the instancex and such that only one of the (statistical) hiding and binding properties are required to hold, depending on whether
x ∈ L.
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Application to Worst-Case/Average-Case Reductions. As an application, we also obtain a worst-case
to average-case reduction fromGapSPP to the Learning With Errors problem (LWE) [Reg05], which has a
tighter connection factor than the known reductions fromGapSVP [Reg05, Pei09]. Roughly speaking, the
goal ofLWE is to solven-dimensional random noisy linear equations modulo someq, where Gaussian noise
with standard deviationαq is added to each equation. TheLWE problem is extremely versatile as a basis
for numerous cryptographic constructions (e.g., [PW08, GPV08, CHKP10, BV11]). Regev’s celebrated
result [Reg05] showed a quantum reduction from solving worst-caseγ-GapSVP (among other problems) to
solvingLWE with γ = Õ(n/α). Furthermore, Peikert [Pei09] showed a corresponding classical reduction,
when the modulusq ≥ 2n/2. Therefore, the security ofLWE-based cryptographic constructions can be
based on the worst-case hardness of theGapSVP problem.

We observe that the reductions of [Reg05, Pei09] in fact implicitly solve theGapSPP problem. Thus, by
slightly modifying the last step of those reductions, we obtain corresponding quantum/classical reductions
from γ-GapSPPε (with ε = negl(n)) to LWE with γ = O(

√
n/α). As a consequence, the security ofLWE-

based cryptographic constructions can be based on the worst-case hardness of a potentially harder lattice
problem.

The application to worst-case/average-case reduction follows by noting that the reduction of [Pei09]
solvesGapSVP by running the Goldreich-Goldwasser protocol, where the prover’s strategy is simulated by
using a bounded distance decoding (BDD) oracle, which in turn is implemented using theLWE oracle. To
obtain a tighter reduction fromGapSPP to LWE, we observe that the quality of theBDD oracle depends
directly on the smoothing parameter, as opposed to the length of the shortest vector. In light of this, we
instead solveGapSPP using the Gaussian analogue of the Goldreich-Goldwasser protocol described above,
while still using a bounded distance decoding (BDD) oracle to simulate the prover’s strategy. See Section 5
for further details.

Algorithm for GapSPP. We give a deterministic2O(n) polylog(1/ε)-time and2O(n)-space algorithm for
deciding(1+ o(1))-GapSPP. For this we use recent algorithms of [MV10, DPV11] for enumerating lattice
points inL∗ to estimate the Gaussian mass. The full details are in Section 7.2.

Perspectives and Open Questions.Our initial work on the complexity of theGapSPP problem opens up
several directions for further study of the smoothing parameter from a computational perspective. Perhaps
the most intriguing question is whether(2+ o(1))-GapSPP is SZK-complete. A positive answer might lead
to progress on the long-standing goal of basing cryptography on general complexity classes. Some reason
for optimism comes from its rather unusual complexity: likeSZK-complete problems,(2 + o(1))-GapSPP
is in SZK but is not known to be inNP or coNP. We are unaware of any other problems (aside from
SZK-complete ones) having these characteristics.

In a related direction, in this work we focus on the standard “L∞ notion” of the smoothing parame-
ter ηε(L), whereas the complexity of a related “L1 notion” of the smoothing parameter, denotedη

(1)
ε (L),

also seems quite interesting. More precisely,ηε(L) can be defined equivalently as the smallest parameters
such that the distribution of a continuous Gaussian of widths, reduced moduloL, has point-wise probability
density within a(1 ± ε) factor of that of the uniform distribution onRn/L. TheL1 variantη(1)ε (L) of the
smoothing parameter instead is defined to be the smallest parameters such that the statistical distance (i.e.,
half of theL1 distance) between the above two distributions is at mostε. (Clearly,η(1)ε (L) ≤ ηε(L).) By

definition, the problem of approximating theL1 smoothing parameter, denotedγ-GapSPP(1)
ε , appears to nat-

urally reduce to a well-knownSZK-complete problem called Statistical Difference (SD) problem [SV03],
which is a promise problem asking whether two input distributions (specified by circuits) have statistical
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distance less thanα or greater thanβ. Thus, the problem appears to be inSZK and is another candidate
SZK-complete lattice problem. Unfortunately, the above argument relies onη(1)ε (L) being a monotonic
function inε, which is a basic property that we do not know how to prove (or disprove)! In fact, we know
very little about theL1 smoothing parameter. Given the potentially interesting complexity ofγ-GapSPP(1)

ε ,
it seems worthwhile to further investigate theL1 smoothing parameter, from both the geometric and compu-
tational perspectives.

Finally, we note that our results generally apply only in thesetting whereε < 1. It seems quite inter-
esting to understand how the complexity ofGapSPP changes for largerε. We remark that our geometric
characterizations only “half fail” for largerε. More precisely, in the regimeηε(L) ≥ 1, ε ≥ 1, we still
get upper bounds on the Gaussian measure of the Voronoi cell,as well as lower bounds on the fraction of
overlap for balls centered at lattice points. For ourAM protocol, this implies that the prover generally fails
to convince the verifier, and for our instant-dependent commitment scheme, this implies that it is always
hiding. Interestingly, ourcoAM protocol still applies for largerε, almost without change. Here the main
issue is that we do not know a “good” geometric interpretation of the statementρ(L \ {0}) ≤ ε for any
ε ≥ 1.

Organization. The rest of the paper is organized as follows. In Section 2 we give the basic preliminaries.
In Section 3, we give our Arthur-Merlin protocol for showingthat(2+o(1))-GapSPP ∈ AM (Theorem 3.1).
In Section 4 we construct a statistical zero-knowledge proof for GapSPP (Theorem 4.1). In Section 5,
we describe the reduction fromGapSPP to LWE (Theorem 5.5). In Section 6, we show that(1 + o(1))-
GapSPP ∈ coAM (Theorem 6.1). In Section 7.2 we give a deterministic algorithm for computing the
smoothing parameter (Theorem 7.1).

2 Preliminaries

For setsA,B ⊆ R
n, denote their Minkowski sum byA + B = {a+ b : a ∈ A,b ∈ B}. We letBn

2 =
{x ∈ R

n : ‖x‖2 ≤ 1} denote the unit Euclidean ball inRn, andSn−1 = ∂Bn
2 the unit sphere inRn. Unless

stated otherwise,‖·‖ denotes the Euclidean norm.

Lattices. A lattice L ⊂ R
n with basisB, and its dualL∗, are defined as in the introduction. For a

basisB and a vectorx ∈ R
n, we letx mod B denote the uniquēx ∈ L + x such that̄x =

∑n
i=1 cibi

for ci ∈ [−1
2 ,

1
2). It can be computed efficiently fromx andB (treated as matrix of column vectors) as

x̄ = x−B⌊B−1x⌉. We sometimes instead writex mod L when the basis is implicit.
The Voronoi cellV(L) is the set of points inRn that are at least as close to0 (under theℓ2 norm) as to

any other vector inL:

V(L) = {x ∈ R
n : ‖x‖2 ≤ ‖x− y‖2, ∀ y ∈ L \ {0}}

= {x ∈ R
n : 〈x,y〉 ≤ 1

2 〈y,x〉 , ∀ y ∈ L \ {0}}.

When the lattice in question is clear we shortenV(L) to V. Note thatV is a symmetric polytope that tiles
space with respect toL, i.e.,L+ V = R

n and for all distinctx, y ∈ L, the setsx+ V andy+ V are interior
disjoint.

Gaussian measures. Define the Gaussian functionρ : Rn → R
+ asρ(x) = e−π‖x‖

2
, and for reals > 0,

defineρs(x) = ρ(x/s) = e−π‖x‖
2/s2 . For a countable subsetA ⊆ R

n, we defineρs(A) =
∑

x∈A ρs(x).
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For a measurable subsetA ⊆ R
n, we define the Gaussian measure ofA (parameterized bys > 0) as

γs(A) =
1
sn

∫

A ρs(x) dx. Note thatγs(Rn) = 1, soγs is a probability measure. For parameters > 0, we
let Ds be the corresponding continuous Gaussian distribution with parameters centered around0:

Ds(A) = γs(A) ∀ measurableA ⊆ R
n.

Similarly, for any countable subsetT ⊆ R
n for which ρs(T ) converges, define the discrete Gaussian distri-

butionDT,s overT by

DT,s(x) =
ρs(x)

ρs(T )
∀ x ∈ T.

We usually consider the discrete Gaussian over a latticeL, i.e., whereT = L, though there will be situations
whereT corresponds a union of cosets ofL. In all these cases,ρs(T ) converges.

The following gives the standard concentration bounds for the continuous and discrete Gaussians.

Lemma 2.1 ([Ban93, Ban95]).LetX ∈ R
n be distributed asDs or DL,s for ann-dimensional latticeL.

For anyv ∈ R
n \ {0} andt > 0, we have

Pr[〈X,v〉 ≥ t‖v‖] ≤ e−π(t/s)
2
,

and forε > 0 we have

Pr[‖X‖2 ≥ (1 + ε)s2
n

2π
] ≤ ((1 + ε)e−ε)n/2,

which for0 < ε < 1
2 is bounded bye−nε

2/6.

The smoothing parameter. We recall the definition of the smoothing parameter from [MR04], and define
the associated computational problemGapSPP.

Definition 2.2 (Smoothing Parameter).For a latticeL and realε > 0, the smoothing parameterηε(L) is
the smallests > 0 such thatρ1/s(L∗ \ {0}) ≤ ε.

Definition 2.3 (Smoothing Parameter Problem).For γ = γ(n) ≥ 1 and positiveεY = εY (n), εN =
εN (n) with εY ≤ εN , an instance ofγ-GapSPPεY ,εN is a basisB of ann-dimensional latticeL = L(B).
It is a YES instance ifηεY (L) ≤ 1, and is a NO instance ifηεN (L) > γ. WhenεY = εN = ε, we write
γ-GapSPPε.

Notice that YES and NO instances are disjoint, since for a YESinstance we haveρ(L∗ \ {0}) ≤ εY ,
whereas for a NO instance we haveρ(L∗ \ {0}) ≥ ρ1/γ(L∗ \ {0}) > εN ≥ εY .

For the design and analysis of our interactive protocols, itis often convenient to use separateεY , εN
parameters. The following lemma and its corollary then let us draw conclusions aboutGapSPP for a single
ε parameter, for an (often slightly) larger approximation factor.

Lemma 2.4. Let L ⊆ R
n be ann dimensional lattice. Ifρs(L \ {0}) ≤ ε < 1, then lettingt =

√

1 + log(r)/ log(ε−1) for anyr ≥ 1, we have

ρs/t(L \ {0}) ≤ 1
rρs(L \ {0}) ≤ ε/r.

6



Proof. By scalingL, it suffices to prove the claim fors = 1. Sincet ≥ 1, we have

ρ1/t(L \ {0}) =
∑

y∈L\{0}
e−π‖ty‖

2
=

∑

y∈L\{0}
(e−π‖y‖

2
)t

2

≤
(

∑

y∈L\{0}
e−π‖y‖

2

)t2

= ρ(L \ {0})t2 ≤ ρ(L \ {0}) · εt2−1.

To finish the proof, note thatεt
2−1 = 1/r, as needed.

Corollary 2.5. For anyεN < 1, there is a trivial reduction fromγ′-GapSPPεY to γ-GapSPPεY ,εN , where

γ′ = γ ·
√

log(ε−1Y )/ log(ε−1N ).

The proof follows by a routine calculation, lettingε = εN andr = εN/εY in the above lemma. As
a few notable examples, ifεY andεN are both fixed constants, then the lossγ′/γ in approximation factor
from the reduction is a constant strictly greater than1. But if εY is constant andεN = (1 + o(1)) · εY , or if
εY = o(1) andεN ≤ C · εY for a constantC ≥ 1, then the loss in approximation factor is only1 + o(1).

3 AM Protocol for GapSPP

Here we give an Arthur-Merlin protocol for2-GapSPPεY ,εN , defined formally in Protocol 1. It is simply
a Gaussian variant of the classic Goldreich-Goldwasser protocol [GG98], which was originally developed
to prove that approximating the Closest and Shortest VectorProblems to within ac

√

n/ log n factor is in
coAM. In our protocol, instead of choosing an error vectorx from the ball of radiusc

√

n/ log n, the verifier
choosesx from a continuous Gaussian distribution of parameter1. It then reducesx modulo the lattice
(actually, the dual latticeL∗ in our setting) and challenges the prover to find the originalvectorx.

For intuition on why this protocol is complete and sound, first observe that the optimal prover strategy
is maximum likelihood decoding of the verifier’s challengex̄ = x mod L∗, i.e., to return a most-likely
element in the cosetx′ ∈ L∗ + x̄. Because the Gaussian function is decreasing in‖x′‖, the prover should
therefore return the shortest elementx′ ∈ L∗ + x̄, i.e., the uniquex′ ∈ V(L∗) ∩ (L∗ + x̄). (We can ignore
the measure-zero event thatx̄ is equidistant from two or more points inL∗). The verifier can therefore be
made to accept with probabilityγ(V(L∗)), and no more. Note that unlike the original Goldreich-Goldwasser
protocol, ours does not have perfect completeness, and in fact this is essential for establishing such a small
approximation factor forGapSPP.

For completeness, consider a YES instance whereηεY (L) ≤ 1/2, i.e., ρ2(L∗ \ {0}) ≤ εY . (For
convenience, here we scale the2-GapSPP problem so that NO instances haveηεN (L) > 1.) Intuitively,
because the measure onL∗ \ {0} is small, these lattice points are all far from the origin andso V(L∗)
captures most of the Gaussian measureγ; Lemma 3.4 makes this formal. Finally, for soundness we consider
the case where the discrete measure on nonzero lattice points is relatively large, i.e.,ρ1(L∗ \ {0}) > εN .
Conversely to the above, this intuitively means that the continuous Gaussian measureγ(V(L∗)) cannot be
too large, and Lemma 3.4 again makes this precise.

Theorem 3.1. For 0 < ε ≤ δ < 1
2 , Protocol 1 on latticeL = L(B) satisfies:

1. Completeness:If ηε(L) ≤ 1
2 , then there exists a prover that makes the verifier accept with probability

at least1− ε.
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Algorithm 1 Gaussian Goldreich-Goldwasser (GGG) Protocol
Input: BasisB ⊂ R

n of a latticeL = L(B).
1: Verifier chooses Gaussianx← D1 and sends̄x = x mod L∗ to prover.
2: Prover returns anx′ ∈ R

n.
3: Verifier accepts ifx′ = x.

2. Soundness:If η δ
1−δ

(L) ≥ 1, then the verifier rejects with probability at leastδ.

In particular, 2-GapSPPε,δ/(1−δ) ∈ AM whenδ − ε ≥ 1/poly(n). Moreover, whenε = negl(n) the
protocol is honest-verifier statistical zero knowledge, i.e.,2-GapSPPε,δ/(1−δ) ∈ HVSZK = SZK.

By applying Corollary 2.5, we obtain the following upper bounds on the complexity ofγ-GapSPPε for
different ranges ofε.

Corollary 3.2. For the followingε(n) < 1, we haveγ-GapSPPε ∈ AM for the followingγ(n):

• If ε(n) ≤ negl(n), thenγ = O(
√

log(ε−1)/ log n).

• If 1/poly(n) ≤ ε(n) ≤ o(1), thenγ = (2 + o(1)).

• If ε(n) ≥ Ω(1), thenγ = O(1).

The next two lemmas provide the crux of the proof of Theorem 3.1.

Lemma 3.3. LetS ⊆ R
n be symmetric (i.e.,S = −S) measurable set. Then for anyy ∈ R

n,

γs(S + y) ≥ γs(S) · ρs(y).

Proof. By scalingS andy, it suffices to prove the claim fors = 1. For anyt ∈ R, note thatcosh(t) =
1
2(e

t + e−t) ≥ 1. We have

γ(S + y) =

∫

S
e−π‖y−x‖

2
dx =

∫

S

1

2
(e−π‖y−x‖

2
+ e−π‖y+x‖2) dx (symmetry ofS)

= e−π‖y‖
2

∫

S
e−π‖x‖

2 · 1
2

(

e2π〈x,y〉 + e−2π〈x,y〉
)

dx (expanding the squares)

≥ ρ(y)

∫

S
ρ(x) dx = ρ(y) · γ(S).

The following crucial lemma establishes a tight relationship between discrete Gaussian sums onL and
the Gaussian mass of the Voronoi cell.

Lemma 3.4 (Voronoi Cell Characterization). LetL ⊆ R
n be a lattice with Voronoi cellV = V(L), and

let s > 0. Then
ρs(L \ {0})

ρs(L)
≤ 1− γs(V) ≤ ρ2s(L \ {0}).

In particular, lettingsε = ηε(L∗) for someε ∈ (0, 1), we have thatγ(2sεV) ≥ 1− ε andγ(sεV) ≤ 1
1+ε .
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Proof. By scalingL, it suffices to prove the claim fors = 1. We first show the upper bound. LetX ∈ R
n

be distributed asD1, and note that1− γ(V) = Pr[X /∈ V]. By the union bound and Lemma 2.1,

Pr[X /∈ V] = Pr[
⋃

y∈L\{0}
{〈X,y〉 > 1

2 〈y,y〉}] ≤
∑

y∈L\{0}
Pr[〈X,y〉 > 1

2 〈y,y〉]

≤
∑

y∈L\{0}
e−π‖y/2‖

2
= ρ2(L \ {0}).

We now prove the lower bound. SinceV tiles space with respect toL, by applying Lemma 3.3 withS = V,
we have

1− γ(V) = γ(Rn \ V) =
∑

y∈L\{0}
γ(V + y) ≥ γ(V) · ρ(L \ {0}),

Rearranging terms and usingρ({0}) = 1, we have1− γ(V) ≥ 1− 1/ρ(L) = ρ(L \ {0})/ρ(L), as desired.
Finally, the “in particular” claim follows fromγ(rV) = γ1/r(V) and an easy calculation.

Proof of Theorem 3.1.As already argued above, the optimal prover strategy givenx̄ ∈ R
n is maximum

likelihood decoding, and the optimal prover can make the verifier accept with probabilityγ(V(L∗)). Com-
pleteness and soundness now follow immediately from Lemma 3.4, as already outlined in the overview.

For honest-verifier statistical zero-knowledge whenε = negl(n), the simulator just choosesx← D1 as
the verifier’s randomness, and outputsx as the message from the prover. Because the prover also returnsx
with probability at least1 − ε in the real protocol, the simulated transcript is within negligible statistical
distance of the real transcript.

4 SZK Protocol for GapSPP

This section is devoted to showing that(2 + o(1))-GapSPP1/ poly(n) is in SZK.

Theorem 4.1. For everyε : N→ [0, 1] such that 1
poly(n) ≤ ε(n) ≤ 1

36 , we have2 · (1 + δ)-GapSPPε,12ε ∈

SZK, whereδ =
√

3
2n ln 4

ε .

As before, the following corollary gives the implied upper bound on the complexity ofγ-GapSPPε (by
applying Corollary 2.5).

Corollary 4.2. For everyε : N → (0, 1), if 1/poly(n) ≤ ε(n) ≤ o(1), then(2 + o(1))-GapSPPε ∈ SZK.

If ε(n) ≤ negl(n), thenO

(

√

log(1/ε)
logn

)

-GapSPPε ∈ SZK. Finally, if Ω(1) ≤ ε(n) ≤ 1/3, thenO(1)-

GapSPPε ∈ SZK.

Our construction follows a classic approach of constructing an instance-dependent (ID) commitment
schemefor GapSPP, which is known to be sufficient for obtaining aSZK protocol [IOS97]. With an addi-
tional observation, we show that asignificantly weakernotion of ID commitment schemes is sufficient to
obtainSZK protocols; roughly speaking, we only need an ID bit-commitment scheme that is sufficiently
binding for anhonestsender, and hiding (from a dishonest receiver). Specifically, it is sufficient to construct
a “non-trivial” ID commitment scheme defined as follows.
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Definition 4.3. LetΠ be a promise problem. A (non-interactive) instance-dependent bit-commitment scheme
Com forΠ is a PPT algorithm that on input an instancex ∈ {0, 1}n and a bitb ∈ {0, 1}, outputs a commit-
ment Comx(b) ∈ {0, 1}∗. Letp = p(n), q = q(n) ∈ (0, 1). We define (weak) binding and hiding properties
of Com as follows.

• Statistical honest-senderq-binding for YES instances:For everyx ∈ ΠY andb ∈ {0, 1},

Pr[Comx(b) ∈ supp(Comx(b̄))] ≤ q(|x|).

(Note that when Comx(b) /∈ supp(Comx(b̄)), the commitment Comx(b) cannot be opened tōb. Thus,
the above condition implies that the binding property can bebroken with probability at mostq.)

• Statisticalp-hiding for NO instances:For everyx ∈ ΠN ,

∆(Comx(0),Comx(1)) ≤ p(|x|).

(The above condition implies that given Comx(b) for a randomb, one can only predictb correctly with
probability at most(1 + p)/2, which means that the hiding property can be broken with advantage at
mostp.)

Com is non-trivial if Com is statisticalp-hiding and statistical honest-senderq-binding with p + q ≤
1 − 1/poly(n).4 Com issecureif Com is statisticalp-hiding and statistical honest-senderq-binding with
negligiblep andq.

In the next subsection, we focus on constructing a non-trivial ID commitment schemes for(2 + o(1))-
GapSPP1/poly(n). We present more detailed background for ID commitment schemes and discuss why it is
sufficient to constructSZK protocols in Section 4.3.

4.1 A Non-Trivial ID Commitment Scheme for GapSPP

In this section, we construct a non-trivial ID bit-commitment scheme SPCom for(2+o(1))-GapSPP1/poly(n).
Our construction can be viewed as a generalization of an instance-dependent commitment scheme implicit
in [MV03] for O(

√

n/ log n)-GapSVP.5 To explain the intuition behind our construction, it is instructive
to first consider the construction of ID commitment scheme for GapSVP (for simplicity, below we describe
commitment to a randomb): To commit, a sender first selects a “random” lattice pointv ∈ L (see Fig-
ure 4.1 for the precise distribution) and adds a random noisevectore drawn from a ball of certain radius
(say,r = 1/2) to v; let w = v + e. Intuitively, the vectorw is binding tov if the noise is sufficiently short.
To actually commit to a bit, the sender also samples a random hash functionh, and commits to the hashed
bit b = h(v). Namely,(w, h) is a commitment ComL(b) to b = h(v).

Intuitively, if the length of the shortest vectorλ1(L) ≥ 1, then all balls centered at lattice pointsv ∈ L
of radiusr = 1/2 are disjoint, and thus ComL(b) = (w, h) is perfect binding. On the other hand, if the
shortest vector is too short, say,λ1(L) ≤ O(

√

(log n)/n), thenw may fall in the intersection region of two

4This is in contrast to the fact that one can construct a (trivial) p-hiding andq-binding commitment scheme for everyp+ q ≥ 1.
For example, defining Comx(b) = b givesp = 1 andq = 0, and defining Comx(b) = 0 givesp = 0 andq = 1. More generally,
defining Comx(b) to beb with probabilityα and00 with probability1− α givesp = α andq = 1− α.

5While [MV03] constructed their protocol by combining the reduction fromGapSVP to GapCVP with Goldreich-Levin hard-
core predicate, their construction can be interpreted as implicitly constructing an ID bit-commitment scheme forGapSVP by first
constructing one withperfectbinding but weak hiding, and then amplifying the hiding property.
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(or more) balls with non-negligible probability, using thesymmetry of the lattice and the fact that the balls
centered around the origin and a shortest non-zero vector have non-negligible overlap. Whenw lies in the
balls centered atv1 andv2 andh(v1) 6= h(v2), the commitment ComL(b) = (w, h) does not reveal the
committed valueb, which intuitively achieves hiding. Indeed, the above argument can be formalized readily,
yielding an ID bit-commitment scheme forO(

√

n/ log n)-GapSVP with perfect biding and weak hiding
properties.

Note that in the above commitment scheme, the quality of the hiding property depends on how much the
ball v + rBn

2 overlaps with the balls around surrounding lattice points.However, in the above analysis, we
only exploit the overlap contributed by a nearest lattice point to v, ignoring the overlap contributed by all
other balls. In general, such an approach can only give a verycoarse approximation of the overlap, which
one can see from the example of extremal lattices where thereare exponentially many lattice points of length
roughly equal to that of the shortest vector. As a result, using this approach one can only obtain a non-trivial
ID bit-commitment scheme forγ-GapSVP with γ ≥ Ω(

√

n/ log n).
Our key observation is that, when we switch fromGapSVP to GapSPP, the above construction gives a

non-trivial ID bit-commitment scheme forγ-GapSPP1/poly(n) with γ = 2+ o(1). This stems from our new
ball overlap characterization of the smoothing parameter,which gives us much finer control on the amount
overlap we obtain in the above protocol. We formalize this characterization as follows:

Lemma 4.4 (Ball Overlap Characterization). LetL be ann dimensional lattice. Forr > 0, define

Overlap(L, r) def
=

voln

(

⋃

y∈L\{0} (rB
n
2 ∩ (rBn

2 + y))
)

voln(rB
n
2 )

,

which denotes the fraction of overlap of a ball of radiusr centered at a point inL with balls of equal radius
centered at all other lattice points. Then forε ∈ (2o(−n), 1/3), settingrε =

√

n
2π/(2ηε(L∗)), the following

holds:

1. For 0 ≤ r ≤ rε, we haveOverlap(L, r) ≤ 2ε.

2. For anyr ≥ 2(1 + δ) · rε whereδ =
√

3
2n ln 4

ε , we haveOverlap(L, r) ≥ ε/2.

The above lemma says that up to a factor of2+ o(1), the smoothing parameterηε(L∗) characterizes the
required radius for balls onL to have roughlyε fraction of overlap. As we shall see shortly, the amount of
overlap tightly characterizes the binding and hiding property of the commitment scheme described above.
As such, by choosingεY andεN with a small constant factor gap, the above construction yields a non-trivial
ID bit-commitment scheme forγ-GapSPPεY ,εN with γ = 2 + o(1).

We proceed to formally define our ID bit-commitment scheme SPCom forGapSPP in Fig 1, and estab-
lish its binding and hiding properties. We prove the bindingand hiding properties in Lemma 4.5 and 4.6,
respectively, and summarize the properties of SPCom in Lemma 4.10. We defer the proofs of all geometric
lemmas (in particular, the Ball Overlap Characterization)to subsection 4.2.

We remark that since we are approximatingηε(L), the following protocol operates directly onL∗. For
simplicity of notation, for a basisB of L, we writeB∗ = (B−1)t to denote the corresponding dual basis of
L∗.

The following two technical lemmas establish the (weak) binding and hiding properties of SPCom.

Lemma 4.5. For everyb ∈ {0, 1},

Pr[SPComB(b) ∈ supp(SPComB(b̄))] ≤ Overlap(L∗, r).
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LetH = {h : {0, 1}n → {0, 1}} be a pairwise-independent hash family.
On input a lattice basisB and a bitb ∈ {0, 1},

• Sample uniformly randomz← {0, 1}n andh←H jointly subject toh(z) = b. (This can be done
by rejection sampling, or equivalently by sampling uniformz ← {0, 1}n first, and then sampling
h←H conditioned onh(z) = b.)

• Samplee← rBn
2 with r = 1

2

√

n
2π .

• Let v = B∗z andw = (v + e mod 2B∗).

• Output SPComB(b) = (w, h).

Figure 1: SPCom: a non-trivial ID commitment scheme forGapSPP.

Proof. Let S =
⋃

y∈L∗\{0} (rB
n
2 ∩ (rBn

2 + y)). By definition, SPComB(b) is generated by samplinge←
rBn

2 andh ← H, z ∈ {0, 1}n such thath(z) = b, and outputting(w, h) = (v + e mod 2B∗, h), where
v = B∗z. Thus, we can writew = v + u+ e for someu ∈ 2L∗.

The event SPComB(b) ∈ supp(SPComB(b̄)) means that there exists somez′ ∈ {0, 1}n, e′ ∈ rBn
2 such

thath(z′) = b̄ andw = (v′ + e′ mod 2B∗), wherev′ = B∗z′. Similarly, we can writew = v′ + u′ + e′

for someu′ ∈ 2L∗.
Let y = v′ + u′ − v − u, and note thaty ∈ L∗. The facts thatw = v + u + e = v′ + u′ + e′ and

e′ ∈ rB2
n imply thate ∈ rBn

2 + y, which impliese ∈ S. As the event in the LHS impliese ∈ S, it follows
that

Pr[SPComB(b) ∈ supp(SPComB(b̄))] ≤ Pr[e ∈ S] =
voln(S)

voln(rBn
2 )

= Overlap(L∗, r).

Lemma 4.6.

∆(SPComB(0),SPComB(1)) ≤ 1− (Overlap(L∗, r)/2).

Proof. Let S =
⋃

y∈L∗\{0} (rB
n
2 ∩ (rBn

2 + y)). Define random variables(W0,H0) = SPComB(0) and
(W1,H1) = SPComB(1). Observe that the marginal distributions ofW0 andW1 are identical (following by
the fact thath←H maps everyz ∈ {0, 1}n to a uniformly random bit), we have

∆(SPComB(0),SPComB(1)) = (1/2) ·
∑

w,h

∣

∣

∣

∣

Pr
W0,H0

[(w, h)] − Pr
W1,H1

[(w, h)]

∣

∣

∣

∣

= (1/2) ·
∑

w

Pr
W0

[w] ·
∑

h

∣

∣

∣

∣

Pr
H0

[h|W0 = w]− Pr
H1

[h|W1 = w]

∣

∣

∣

∣

= E
w←W0

[∆(H0|W0=w,H1|W1=w)]

For everyw ∈ (Rn mod 2B∗), defineTw = (rBn
2 +w) ∩ L∗ andT ′w = (Tw mod 2B∗). we rely on

the following two technical claims to upper bound the statistical distance. Note that the event|Tw| ≥ 2 is
equivalent to the evente ∈ S, wheree is the error vector used to generatew, and hence

Pr[|Tw| ≥ 2] = Pr[e ∈ S] = Overlap(L∗, r).
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Claim 4.7.

Pr
w←W0

[|T ′w| ≥ 2] = Pr
w←W0

[|Tw| ≥ 2].

Claim 4.8. For everyw ∈ (Rn mod 2B∗) with |T ′w| ≥ 2,

∆(H0|W0=w,H1|W1=w) ≤ 1/2.

The above two claims imply that

∆(SPComB(0),SPComB(1)) ≤ Pr
w←W0

[|T ′w| ≥ 2] · (1/2) + Pr
w←W0

[|T ′w| = 1] · 1

= Overlap(L∗, r) · (1/2) + (1−Overlap(L∗, r))
= 1−Overlap(L∗, r)/2,

as desired. It remains to prove the claims.

Proof. (of Claim 4.7) Let{y1, . . . ,yt} = Tw = L∗ ∩ (rB2n + w), where theyis are ordered such that
‖yi−w‖2 ≤ ‖yi+1−w‖2. By assumption, we have thatt ≥ 2. To prove that|T ′w| = |Tw (mod 2B∗)| ≥ 2,
it suffices to show thaty1 6= y2 (mod 2B∗). Assume not, then note thatȳ = 1

2(y1 + y2) ∈ L∗, ȳ 6= y1,
ȳ 6= y2. Furthermore, by the triangle inequality

‖ȳ −w‖2 = ‖1
2
(y1 + y2)−w‖2 ≤

1

2
‖y1 −w‖2 +

1

2
‖y2 −w‖2 ≤ ‖y2 − x‖2 ≤ r

Henceȳ ∈ Tw. We now examine two cases. If‖y1 −w‖2 = ‖y2 −w‖2, then sincey1 6= y2, the above
inequality must hold strictly. But then‖ȳ−w‖2 < ‖y1−w‖2, which contradicts the fact thaty1 is a closest
lattice vector tow. If ‖y1 −w‖2 < ‖y2 −w‖2, then‖ȳ−w‖2 < ‖y2 −w‖2, which contradicts thaty2 is
a closest lattice vector tow aftery1. The claim thus follows.

Proof. (of Claim 4.8) LetT ′w = {v1, . . . ,vt} and letzi be the coordinates ofvi with respect to the basis
B∗ for everyi ∈ [t]. Note that by construction, conditioned onw, the random variablez ∈ {0, 1}n becomes
uniform over the{z1, . . . , zt}.

Now, consider a probability spaceP defined by independent random variables(I,H), whereI is a
uniformly random index in[t] andH is a random hash function inH. Define a random variableB = H(zI).
Note that by the construction, forb ∈ {0, 1}, the random variableHb|Wb=w has identical distribution to the
random variableH|B=b in P. Thus, our goal can be rephrased as to upper bound∆(H|B=0,H|B=1).

By Bayes’ rule,

Pr[H|B=b = h] =
Pr[H = h] Pr[B = b|H = h]

Pr[B = b]
= 2Pr[H = h] · #{i : h(zi) = b}

t
,

thus

∆(H|B=0,H|B=1) =
∑

h

Pr[H = h]
|#{i : h(zi) = 0} −#{i : h(zi) = 1}|

t
.

Intuitively, sinceH is a pairwise-independent hash-family, the discrepancy#{i : h(zi) = 0} − #{i :
h(zi) = 1} should be small on expectation. We prove this presently.

Claim 4.9. For t ≥ 2, Eh←H[|#{i : h(zi) = 0} −#{i : h(zi) = 1}|] ≤ t
2
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Proof. For i ∈ [t], let Xi = (−1)h(zi) ∈ {−1, 1}. SincePr[h(zi) = 0] = Pr[h(zi) = 1] = 1/2, we
have thatE[Xi] = 0 for all i ∈ [t]. Furthermore, by pairwise independence we have thatE[XiXj ] =
E[Xi]E[Xj ] = 0 for distinct i, j ∈ [t]. By definition ofXi, it is easy to verify that

|#{i : h(zi) = 0} −#{i : h(zi) = 1}| = |
t
∑

i=1

Xi|.

By Jensen’s inequality and pairwise independence, we obtain the inequality

E

[∣

∣

∣

∣

∣

t
∑

i=1

Xi

∣

∣

∣

∣

∣

]2

≤ E





(

t
∑

i=1

Xi

)2


 =
∑

1≤i,j≤t
E[XiXj ] =

t
∑

i=1

E[X2
i ] = t

Taking a square root, the above inequality gives usE[|#{i : h(zi) = 0} −#{i : h(zi) = 1}|] ≤
√
t. Since√

t ≤ t/2 for t ≥ 4, the claim holds for allt ≥ 4.
It remains to prove the claim fort = 2, 3. For t = 2, h acts like a truly random hash function, and hence a
direct computation yields

E[|X1 +X2|] = 2Pr[X1 = X2] + 0Pr[X1 6= X2] = 2(1/2) + 0 = 1, (4.1)

as needed. For the caset = 3, we have that

E[|X1 +X2 +X3|] = 3Pr[X1 = X2 = X3] + 1Pr[X1,X2,X3 not all equal]

= 3Pr[X1 = X2 = X3] + 1(1 − Pr[X1 = X2 = X3]) = 1 + 2Pr[X1 = X2 = X3].

By inclusion exclusion we get that

1 = Pr[∃Xi = 1] + Pr[X1 = X2 = X3 = −1]

=
3
∑

i=1

Pr[Xi = 1]−
∑

1≤i<j≤3
Pr[Xi = Xj = 1] + Pr[X1 = X2 = X3 = 1] + Pr[X1 = X2 = X3 = −1]

=

3
∑

i=1

Pr[Xi = 1]−
∑

1≤i<j≤3
Pr[Xi = Xj = 1] + Pr[X1 = X2 = X3]

By rearranging the above equality and using pairwise independence, we get

Pr[X1 = X2 = X3] = 1−
3
∑

i=1

Pr[Xi = 1]+
∑

1≤i<j≤3
Pr[Xi = Xj = 1] = 1−3(1/2)+3(1/4) =

1

4
(4.2)

Combining Equations (4.1) and (4.2), we get thatE[|X1 +X2 +X3|] = 1 + 2(1/4) = 3/2, as needed.

From the above claim, we observe that∆(H|B=0,H|B=1) ≤ t/2
t ≤ 1/2 for everyt ≥ 2 as needed.

Finally, we prove the ID binding and hiding properties of SPCom by Lemma 4.4, 4.5, and 4.6.

Lemma 4.10. For everyε : N → [0, 1] such that1/poly(n) ≤ ε(n) ≤ 1/36, SPCom is a non-trivial ID

commitment scheme for2 · (1 + δ)-GapSPPε,12ε with δ =
√

3
2n ln 4

ε . Specifically, SPCom is(2ε)-binding

for the YES-instances and(1− 3ε)-hiding for the NO-instances of2 · (1 + δ)-GapSPPε,12ε, respectively.
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Proof. For YES-instances whereηε(L) ≤ 1, by Part 1. of Lemma 4.4 and noting thatr ≥ rε,

Overlap(L, r) ≤ 2ε.

Thus, by Lemma 4.5, SPCom is(2ε)-binding for the YES-instances. On the other hand, for NO-instances
whereηε(L) ≥ 2 · (1 + δ), by Part 2. of Lemma 4.4 and noting thatr ≥ 2 · (1 + δ) · rε,

Overlap(L, r) ≥ 12ε/2 = 6ε.

Thus, by Lemma 4.6, Com is(1− 3ε)-hiding for the NO-instances.

Theorem 4.1 then follows by combining Lemma 4.10 and Theorem4.14 stated in the next section. We
remark that ourSZK protocol for(2 + o(1))-GapSPP1/poly(n) does not have efficient prover strategy, since
we do not know if the problem is inNP or coNP.

4.2 Geometric Lemmas

Here we prove several geometric lemmas with the goal of establishing the ball overlap characterization
(Lemma 4.4). The first lemma gives a standard upper bound on the volume of the intersection of two
euclidean balls (see [Bal97, Lemma 2.2], noting that the ball intersection volume is at most twice that of the
spherical cap).

Lemma 4.11. For r > 0, let s = r
√

2π/n. Then for anyy ∈ R
n,

voln(rB
n
2 ∩ (y + rBn

2 ))

voln(rB
n
2 )

≤ 2e−π‖
y

2s
‖2 .

The following lemma will allows us to transfer lower bounds on the gaussian measure of the overlap
region to lower bounds on uniform measure, and will be important in the proof of the ball overlap character-
ization.

Lemma 4.12. LetK ⊆ R
n be a convex body containing the origin. Then for anyr, s > 0 we have that

γs(rB
n
2 \K)

γs(rBn
2 )

≤ voln(rB
n
2 \K)

voln(rBn
2 )

Proof. The plan of the proof is to show that since gaussian measure ismore biased towards the origin than
the uniform measure, switching from gaussian to uniform pushes measures outside ofK. To make this
precise, we note that

γs(rB
n
2 \K)

γs(rBn
2 )

=

∫

Sn−1

∫ r

0
I[tθ /∈ K]

e−π
t
s

2

γs(rBn
2 )s

n
tn−1dtdθ (4.3)

wheredθ is the Haar measure on the unit sphereSn−1 ⊆ R
n. Furthermore, note that

voln(rB
n
2 \K)

voln(rB
n
2 )

=

∫

Sn−1

∫ r

0
I[tθ /∈ K]

1

voln(rB
n
2 )

tn−1dtdθ (4.4)

Since both the uniform and gaussian measure are sphericallysymmetric, we must have that

∫ r

0

1

voln(rB
n
2 )

tn−1dt =
∫ r

0

e−π(t/s)
2

snγs(rB
n
2 )

tn−1dt (4.5)
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Let f, g : [0, r] → R+ be defined byf(t) = 1
voln(rBn

2 )
and g(t) = e−π(t/s)2

snγs(rBn
2 )

. Sincef is constant,g

is decreasing, and
∫ r
0 f(t)tn−1dt =

∫ r
0 g(t)tn−1dt (by equation (4.5)), there existsb ∈ (0, r) such that

f(t) ≤ g(t) on [0, b] andf(t) ≥ g(t) on (b, r]. Given this geometry, we clearly have that for allc ∈ [0, r]

∫ r

c
f(t)tn−1dt ≥

∫ r

c
g(t)tn−1dt (4.6)

SinceK ⊆ R
n is a convex body containing0, for every line segment{tθ : 0 ≤ t ≤ r}, we have that

{tθ : 0 ≤ t ≤ r} \K = {tθ : c ≤ t ≤ r} for somec > 0. From the above inequality (equation (4.6)), we
now see that

∫ r

0
I[tθ /∈ K]f(t)tn−1dt ≥

∫ r

0
I[tθ /∈ K]g(t)tn−1dt (4.7)

for all θ ∈ Sn−1. Combining equations (4.3) and (4.4) with the above inequality (4.7) yields the result.

The following lemma establishes the necessary bounds for our ball overlap characterization of the
smoothing parameter.

Lemma 4.13. LetL denote ann-dimensional lattice. Forr > 0, 0 < δ < 1
4 ands = r

√

2π
n , the following

holds:
(

ρ s
1+δ

(L \ {0})
ρ s

1+δ
(L) − e−

2n
3
δ2

)

≤ Overlap(L, r) ≤ 2ρ2s(L \ {0}).

Proof. For simplicity of notation, we defineS =
⋃

y∈L\{0} (rB
n
2 ∩ (rBn

2 + y)), noting thatOverlap(L, r) =
voln(S)/ voln(rB

n
2 ). For the upper bound, by the union bound and Lemma 4.11, we have

voln(S)

voln(rBn
2 )
≤

∑

y∈L\{0}

voln(rB
n
2 ∩ rBn

2 + y)

voln(rBn
2 )

≤
∑

y∈L\{0}
2e−π‖

y

2s
‖2 = 2ρ2s(L \ {0})

as needed.
For the lower bound, letV = V(L). We claim thatrBn

2 \ V ⊆ S. To see this takex ∈ rBn
2 \ V. Since

x /∈ V, there existsy ∈ L \ {0} such that‖y − x‖ < ‖x‖ ≤ r. Thereforex ∈ rBn
2 ∩ y + rBn

2 as needed.
Let s′ = s

1+δ . By Lemma 3.4, we have thatγs′(V) ≤ 1
ρs′(L)

. Let X ∈ R
n denote the gaussian with

distributionγ. By the standard gaussian tailbound (Lemma 2.1), we have that

γs′(R
n \ rBn

2 ) = Pr[‖s′X‖2 ≥ r2] = Pr[‖X‖2 ≥ (1 + δ)2
n

2π
] ≤ Pr[‖X‖2 ≥ (1 + 2δ)

n

2π
] ≤ e−

2n
3
δ2 .

Therefore we have that

γs′(rB
n
2 \ V) ≥ 1− γs′(R

n \ V)− γs′(R
n \ rBn

2 ) ≥
ρs′(L \ {0})

ρs′(L)
− e−

2n
3
δ2

By Lemma 4.12, we have that

ρs′(L \ {0})
ρs′(L)

− e−
2n
3
δ2 ≤ γs′(rB

n
2 \ V)

γs′(rB
n
2 )

≤ voln(rB
n
2 \ V)

voln(rBn
2 )

≤ voln(S)

voln(rBn
2 )

as needed.
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Proof of Lemma 4.4 (Ball Overlap Chacterization).Let rε = 1
2ηε(L∗)

√

n
2π ands = 1

ηε(L∗) . Note that by

definition ofs, we have thatρs(L) ≤ ε. For Part1, by Lemma 4.13, using the fact thats = 2rε

√

2π
n , we get

Overlap(L, rε) ≤ 2ρs(L) ≤ 2ε.

Furthermore, for every0 < r ≤ rε, sinceηε(L) is a monotonically decreasing function inε, r = rε′ for
someε′ ≤ ε. Thus,

Overlap(L, r) ≤ 2ε′ ≤ 2ε.

For Part 2, by 4.13 and the fact that2−o(n) ≤ ε ≤ 1/3 andδ =
√

3
2n ln 4

ε < 1/4, we get

Overlap(L, 2 · (1 + δ) · rε) ≥
ρs(L∗ \ {0})

ρs(L∗)
− e−

2n
3
δ2 ≥ ε

1 + ε
− ε

4
≥ ε

2
.

Again, for everyr ≥ 2 · (1 + δ)rε, by the monotonicity ofηε(L) in ε, r = rε′ for someε′ ≥ ε, and thus,

Overlap(L, r) ≥ ε′/2 ≥ ε/2.

4.3 Background and From ID Commitment Schemes toSZK Protocols

An ID commitment scheme Com for a promise problemΠ is a commitment scheme that can depend on the
instancex and such that only one of the hiding and binding properties are required to hold, depending on
whetherx is an YES or NO instance. Since only one of the hiding and binding properties needs to hold at a
time, it is possible to achieve both the statistical hiding and statistical binding properties, and thus useful for
constructingSZK protocols.

Typically, one requires the hiding property to hold for the YES instances and the binding property to hold
for the NO instances, and such an ID commitment scheme readily gives aSZK protocol with soundness error
1/2. On the other hand, an ID commitment scheme with reverse guarantees, i.e., binding for YES instances
and hiding for NO instances, also readily gives a honest verifier SZK protocol, where the verifier commits
to a random bitb and the prover’s task is to guess the bitb correctly. Furthermore, since the verifier (who
is the sender of the ID commitment scheme) is honest, the binding property only needs to hold with respect
to the honest sender (referred to as “honest-sender biding property”). SinceHVSZK = SZK [GSV98],
an ID commitment scheme that is honest-sender binding for YES instances and hiding for NO instance
is also sufficient for showing that the promise problem is inSZK. Note that since only honest-sender
binding property is required, we can without loss of generality assume that a commitment scheme is non-
interactive (by letting the sender emulate the receiver andsend the emulated view to the receiver). Thus,
such a commitment scheme is simply an algorithm.

We observe that, the existing security amplification techniques for regular commitment schemes can
be applied to the instance-dependent setting. As a consequence, any ID commitment scheme with “non-
trivial ” honest-sender binding and hiding properties is sufficientto obtainSZK protocols. More precisely,
as formally defined in Definition 4.3, we consider ID commitment schemes Com with weakp-hiding and
q-binding properties, where the hiding and binding properties can be broken with “advantage” at mostp and
q, respectively, and we say Com is “non-trivial” ifp + q ≤ 1 − 1/poly(n). Known security amplification
results for commitment schemes (for the case of statisticalsecurity) [DKS99] state that any non-trivial
commitment scheme can be amplified to one with full-fledge security (i.e., bothp andq are negligible). The
same conclusion holds for ID commitment schemes, and thus toconstruct aSZK protocol for a languageL,
it suffice to construct a non-trivial honest-sender bindingID commitment scheme forL.
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Theorem 4.14. LetΠ be a promise problem. Suppose there exists anon-trivial ID commitment scheme for
Π, thenΠ ∈ SZK.

Proof. (sketch) The theorem can be proved by applying known technique/results for regular commitment
schemes to the instance-dependent setting. Briefly, security amplification of commitment schemes can be
done using the following two operations [DKS99].

• Repetition. Given Com andk ∈ N, define Com′x(b) = (Comx(b; r1), . . . ,Comx(b; rk)), i.e., con-
catenation ofk commitments of Com using independent randomness. This amplifies the binding
property but degrades the hiding property. Specifically, ifCom isp-hiding andq-binding, then Com′

is (1− (1− p)k)-hiding andqk-binding.

• Sharing. Given Com andk ∈ N, define Com′x(b) = (Comx(b1; r1), . . . ,Comx(bk; rk)), where
b1, . . . , bk are chosen randomly subject tob1 ⊕ · · · ⊕ bk = b, andr1, . . . , rk are independent random-
ness. This amplifies the hiding property but degrades the binding property. Specifically, if Com is
p-hiding andq-binding, then Com′ is pk-hiding and1− (1− q)k-binding.

It can be shown (as in [DKS99]) that as long asp + q ≤ 1− 1/poly(n), one can amplify ap-hiding andq-
binding commitment scheme Com to a secure Com′ by alternately applying repetition and sharing operations
with carefully chosen parametersk’s, and the resulting Com′ calls Com in a black-box waypoly(n) times.

Once we have a secure non-interactive instance-dependent bit-commitment scheme forΠ, we can readily
construct a two-message honest-verifierSZK protocol forL as follows: On inputx ∈ {0, 1}n,

• V samples randomb← {0, 1}, computes and sends Comx(b) to P .

• P sendsb′ to V as his guess ofb.

• V accepts iffb′ = b.

It is not hard to see that the binding and hiding properties translate to the completeness and1/2-soundness
for the protocol, and a simulator can generate the view by emulatingV and outputting(Comx(b), b). Since
HVSZK = SZK, we haveΠ ∈ SZK.

Remark 4.15.Interestingly, as a by-product, anSZK-complete problem called “Image Intersection Density”
(IID) (defined by [BOG03] and proved to beSZK-complete by [CCKV08]) can naturally be interpreted as
a weak ID bit-commitment scheme as defined in Definition 4.3, which allows us to (immediately) obtain an
optimal “polarization” result to the problem.

Specifically, the input to the IID problem is two distributions (X,Y ) specified by circuits, where
the YES instance satisfying∆(X,Y ) ≤ a and the NO instance satisfyingPr[X /∈ supp(Y )] ≥ b and
Pr[Y /∈ supp(X)] ≥ b, wherea, b ∈ (0, 1) are parameters of the problem. By definingX andY as com-
mitment to0 and1 respectively, the condition to YES instance corresponds tostatisticala-hiding and the
condition to NO instance corresponds to statistical honest-sender(1 − b)-binding.6 Interpreting the IID
problem as a weak ID bit-commitment scheme makes it natural to apply the security amplification result of
commitment schemes [DKS99], which gives an optimal polarization result of the problem, stating that the
IID problem with parametersa(n) − b(n) ≥ 1/poly(n) is complete forSZK. This improves the previous
known result in [CCKV08], which holds for constantsa > b. In fact, the security amplification and polar-
ization techniques exploit identical operations. The stronger result from the security amplification literature
is obtained by applying the repetition and sharing operations more carefully.

6The binding and hiding properties hold for reverse instances, but one can instead consider the complement of the IID problem
to obtain a consistent definition sinceSZK is close under complement.
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5 Applications to Worst-case to Average-case Reductions

Our study ofGapSPP has natural applications to the context of worst-case to average case reductions. In
particular, we show that we can relate the hardness of average-case hard learning with error (LWE) problems
and worst-case hardGapSPP problems with a tighter connection factor. Our result directly implies the worst-
case to average-case result fromGapSVP to LWE obtained by Regev [Reg05] and Peikert [Pei09]. First we
review theLWE problem.

Definition 5.1 (Learning with Error Problem [Reg05]). Let q = q(n) ∈ N, α = α(n) ∈ (0, 1). Let
Φα be the distribution on[0, 1) obtained by drawing a sample from the Gaussian distributionwith standard
deviationα and reducing it modulo1. DefineAs,Φα to be the distribution onZn

q×[0, 1) obtained by choosing
a vectora ∈ Z

n
q uniformly at random, choosing an error terme ← Φα, and outputting(a, 〈a, s〉/q + e)

where the addition is performed in modulo1.
The goal of the learning with errors problemLWEq,α in n dimensions is, given access to any desired

poly(n) numbers of samples fromAs,Φα for a randoms← Z
n
q , to finds (with overwhelming probability).

Following [Reg05, Pei09], we use the bounded decodingBDD problem as an intermediate step in our
reduction. Here we instead parameterize theα-BDD problem withα relative to the smoothing parameter
(as opposed to the shortest vector used in literature); thisis essential for us to obtain tighter reduction for
GapSPP.

Definition 5.2 (Bounded Distance Decoding Problem (α-BDDε)). Given a lattice basisB and a vector
t such thatdist(t,L(B)) < α/ηε(L(B)∗), find the lattice vectorv ∈ L(B) such thatdist(t,v) ≤
α/ηε(L(B)∗).

We recall the following Lemma from Regev [Reg05] and Peikert[Pei09] that reduce solving worst-case
BDD problem to solvingLWE through quantum and classic reductions, respectively.

Lemma 5.3 ([Reg05, Pei09]).Let q(n) ∈ N, α(n) ∈ (0, 1), ε(n) be a negligible function such thatα · q >
2
√
n. There exists a PPT quantum reduction from solvingα/2-BDDε in the worst case (with overwhelming

probability) to solvingLWEq,α usingpoly(n) samples.
If in addition q ≥ 2n/2, then there exists a classical reduction from solvingα/2-BDDε in the worst case

(with overwhelming probability) to solvingLWEq,α usingpoly(n) samples.

We note that the reasonε = negl(n) in the above Lemma is to guarantee that the LWE samples generated
during the reduction are within neglible statistical distance from “true” LWE samples.

We now establish a new result that relatesBDD andGapSPP. Our new observation is that the prover in
the GGG protocol (Algorithm 1) can be implemented by aBDD oracle. Thus, if one has aBDD solver, one
can solve theGapSPP problem. We note that we only need theBDD oracle to work for YES instances, and
hence we requireεY = negl(n) while leavingεN = 1

poly(n) . More precisely, we have the following lemma.

Lemma 5.4. Let α(n) ∈ (0, 1), εY (n) ∈ negl(n) and εN ∈ 1/poly(n). There exists a PPT Turing
reduction from solving

√
n/α- GapSPPεY ,εN to solvingα-BDDεY .

Proof. For convenience, we scale the
√
n/α-GapSPP problem so that YES instances haveηεY (L) ≤ α/

√
n,

and NO instances haveηεN (L) > 1. Let B be an input of the problem
√
n/α-GapSPP. We run the GGG

protocol as Algorithm 1 on inputB, where the prover’s strategy is implemented using theα-BDDεY solver.
Then we output the verifier’s decision.
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Now we describe the analysis. For NO instances, by an identical analysis to Theorem 3.1, the above al-
gorithm rejects with probability at leastεN/(1+εN ) > 1/poly(n). For YES instances, we observe that the
optimal prover’s strategy can be emulated if‖x‖ is less than the BDD decoding distanceα/ηεY (L) ≥

√
n.

By the Gaussian tail bound as Lemma 2.1, we havePr[‖x‖ ≥ √n] < e−Ω(n). Recall that by Lemma 3.4, in
GGG protocol the verifier rejects the optimal prover with probability 1 − γ1(V(L∗)) ≤ ρ2(L∗ \ 0) ≤ εY .
Thus, by a union bound the algorithm rejects with probability at mostεY + e−Ω(n) ≤ negl(n).

Putting together the above lemmas, we obtain a tighter worse-case to average-case reduction from
GapSPP to LWE.

Theorem 5.5. Let q(n) ∈ N, α(n) ∈ (0, 1), εY (n) ∈ negl(n) and εN ∈ 1/poly(n) such thatα · q >
2
√
n. There exists a PPT quantum reduction from solving2

√
n/α- GapSPPεY ,εN in the worst case (with

overwhelming probability) to solvingLWEq,α usingpoly(n) samples.
If in addition q ≥ 2n/2, then there exists a classical reduction from solving2

√
n/α- GapSPPεY ,εN in

the worst case (with overwhelming probability) to solvingLWEq,α usingpoly(n) samples.

Remark 5.6.By using the following relation of shortest vectors and smoothing parameters by Micciancio
and Regev [MR04]:

√

log(1/ε)√
πλ1(L∗)

≤ ηε(L) ≤
√
n

λ1(L∗)
for ε ∈ [2−n, 1],

the above theorem implies that there exists a correspondingPPT quantum/classical reduction from(c ·
n

α
√
logn

)-GapSVP to LWEq,α for any constantc > 0.

6 Co-AM Protocol for GapSPP

In this section, we describe an co-AM protocol forGapSPP. Formally, we establish the following:

Theorem 6.1. For anyα ≥ 1/poly(n) andεY , εN such thatεN ≥ (1+1/poly(n)) · εY , we have(1+α)-
GapSPPεY ,εN ∈ coAM.

By applying Corollary 2.5, we obtain the following upper bound on the complexity ofγ-GapSPPε.

Corollary 6.2. For everyε : N→ (0, 1) such thatε(n) < 1− 1/poly(n), we have(1+ o(1))-GapSPPε ∈
coAM.

Our main tool is the classic set size lower bound protocol by Goldwasser and Sipser [GS86]. We use
this protocol to show that the smoothing parameter should beat least as large as some quantity. To show
thatη(L) is large, equivalently we are showing that the discrete Gaussian weights are large for the points in
L∗ inside the

√
n ball7. (The Gaussian weights outside the ball becomes exponentially small.)

The set size lower bound protocol gives a very accurate approximation of lattice points inside the
√
n

ball, but its set size is not sufficient to approximate the Gaussian weights. The two points inside the ball
could have lengths that differ a lot, and thus their Gaussianweights differ even more. Our new observation is
that we can partition the

√
n ball into different shells (con-centered at0), and then use the set size protocol

to approximate the number of lattice points lying in each shell. Since every point in the same shell has
roughly the same length and thus Gaussian weight, we can approximate the total Gaussian weights in a shell

7Actually the radius needs to depend on the parameterεY . Here for simplicity we thinkεY as a constant.
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according to the size. Thus, summing up the Gaussian weight of each shell, we are able to approximate the
Gaussian weights inside the

√
n ball. Thus, we are able to show that the Gaussian weights inside the ball

are large, and thusη is large.
First we describe the set size lower bound protocol:

Definition 6.3 (Set size lower bound protocol [GS86]).Let V be a probabilistic polynomial time verifier,
and P be a (computationally unbounded) prover. LetS ⊆ {0, 1}n be a set whose membership can be
efficiently certified. The two parties hold common inputs1n andK ∈ N.

We say〈P,V〉 is a (1− γ)-approximation protocol of the set size|S| if the following conditions hold:

• (Completeness) If|S| ≥ K, then V will always accept.

• (Soundness) If|S| < (1 − γ) · K, then V will accept with probability at mostnegl(n) for some
negligible functionnegl(·).

Now we recall the classic construction of the set size lower bound protocol:

Theorem 6.4 ([GS86]).For any setS ∈ {0, 1}n whose membership can be efficiently certified, and any
γ = 1/poly(n), there exists a public-coin, 2-round(1− γ)-approximation protocol of the set size|S|.

Moreover, for anyk = poly(n), we can run the protocolk-times in parallel fork set-number pairs
{(Si,Ki)}i∈[k], and the resulting protocol has perfect completeness and negligible soundness error. Here
soundness error means the probability that there exists some i∗ ∈ [k] such that|Si| ≤ (1 − γ) · Ki but V
accepts.

Proof of Theorem 6.1.To show the theorem, we first describe acoAM protocol〈P,V〉 in the following. Note
that the verifier in acoAM protocol must accept the NO instances and reject the YES instances of(1 + α)-
GapSPPεY ,εN . For convenience, the YES or NO instances here are with respect to theGapSPP problem, so
the completeness means the verifier accepts any NO instance,and the soundness means he rejects any YES
instance.

Let B be ann-dimensional basis of a latticeL as input to the prover and verifier, satisfying either
ηεN (L) ≥ (1 + α) (NO instance) orηεY (L) ≤ 1 (YES instance), whereα ≥ 1/poly(n), εN ≥ (1 +
1/poly(n)) · εY . The prover and the verifier agree on the following parameters:

Parameters. Let R = n · (1 + log(1/εY )), 1 − β = 2εY
εY +εN

, and letT = ⌈ log
√
R

log(1+α)⌉. We know for
α ≥ 1/poly(n) being noticeable, we haveT bounded by some polynomial, i.e.T ≤ poly(n). Then

we define spacesS0
def
= {v ∈ L∗ : 0 < ‖v‖ ≤ 1}, andSi

def
=
{

v ∈ L∗ : (1 + α)i−1 < ‖v‖ ≤ (1 + α)i
}

, for
i ∈ [T ]. Pictorially, theseSi’s form a partition of space inside the region of

√
RBn

2 . EachSi is a shell that
contains lattice points from length(1 + α)i−1 to (1 + α)i.

Then〈P,V〉 does the following:

• P sendsK0,K1,K2, . . . KT ∈ N as claims of the sizes ofS0, S1, S2, . . . , ST .

• Then for each pair(Si,Ki), P and V run the(1− β)-approximation protocol as its subroutine. These
T approximation protocols are run in parallel. Note that2εYεY +εN

≤ 1 − 1/poly(n) sinceεN ≥
(1 + 1/poly(n)) · εY . Thus,1− β ≤ 1− 1/poly(n), which is within the range of parameters of the
set size lower bound.
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• In the end, V accepts if and only if all the approximation subprotocols are accepted, and
∑

0≤i≤T Ki ·
e−π(1+α)2i ≥ (εY + εN )/2.

It is easy to see that the verifier can be implemented in probabilistic polynomial time. It remains to show
the completeness and soundness. We show them by the following two claims:

Claim 6.5. If B is a NO instance, V will always accept the honest prover’s strategy.

Proof. Let K0,K1, . . . ,KT be the values of the set sizesS0, S1, . . . , ST , as the honest prover will always
send the correct values. From the promise of NO instances, weknow ηεN (L) ≥ (1 + α), which implies

q
def
=

∑

v∈L∗\{0}
e−π(1+α)2‖v‖2 ≥ εN .

By rearranging the order of summation, we have

q =
∑

0≤i≤T

∑

v∈Si

e−π(1+α)2‖v‖2 +
∑

v∈L∗\(
√
R·Bn

2 )

e−π(1+α)2‖v‖2

≤
∑

0≤i≤T

∑

v∈Si

e−π(1+α)2‖v‖2 + 2−n · εY

≤
∑

0≤i≤T
Ki · e−π(1+α)2i + 2−n · εY .

The first equality comes from the rearrangement; the second line is a tail bound inequality by Lemma 2.1
by plugging suitable parameters; the last inequality is by the fact thatv ∈ Si implies‖v‖ ≥ (1 + α)i−1 for
i ∈ [T ].

Then we have
∑

0≤i≤T
Ki · e−π(1+α)2i ≥ εN − 2−n · εY ≥ (εY + εN )/2,

for all sufficiently largen’s. This follows by the fact thatεN ≥ (1+ 1/poly(n)) · εY , and a straightforward
examination. Thus, the verifier will always accept.

Claim 6.6. If B is a YES instance, then no prover can convince the verifier with probability better than a
negligible quantity.

Proof. From the promise of YES instances, we knowηεY (L) ≤ 1, which implies

q
def
=

∑

v∈L∗\{0}
e−π‖v‖

2 ≤ εY .

Similarly, we rearrange the order of summation and get

q =
∑

0≤i≤T

∑

v∈Si

e−π‖v‖
2
+

∑

v∈L∗\(
√
R·Bn

2 )

e−π‖v‖
2

≥
∑

0≤i≤T

∑

v∈Si

e−π‖v‖
2

≥
∑

0≤i≤T
|Si| · e−π(1+α)2i .
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Suppose the prover sends someK0,K1 . . . KT such that
∑

0≤i≤T Ki ·e−π(1+α)2i ≥ (εY +εN )/2, it must
be the case that∃i∗ ∈ [T ] such that εY

(εY +εN )/2Ki = (1 − β) ·Ki ≥ |Si| from a simple counting argument.
By the soundness of the(1 − β)-approximation protocol, the verifier will catch this with probability (1 −
negl(n)). Hence the verifier accepts a YES instance with only negligible probability.

Together with the two claims, the proof of the theorem is complete.

7 Deterministic Algorithm for Smoothing Parameter

In this section we show that(1 + o(1))-GapSPP can be solved deterministically in time2O(n). In particular
we are able to show the following theorem.

To show the theorem, use are going to establish the followinglemma.

Theorem 7.1. For any εY , εN : N → [0, 1] such thatεN (n) − εY (n) ≥ 1/2−2n, 1-GapSPPεY ,εN ∈
DTIME(2O(n)).

Together with Corollary 2.5, we are able to obtain the following corollary.

Corollary 7.2. For anyε : N→ [0, 1] andε(n) ≥ 2−n, the problem(1+o(1))-GapSPPε ∈ DTIME(2O(n)).

We will crucially use the following lattice point enumeration algorithm. The algorithm is a slight tweak
of closest vector problem algorithm of Micciancio and Voulgaris [MV10], which was first used in [DPV11]
to solve the shortest vector problem in general norms.

Proposition 7.3 ([MV10, DPV11], Algorithm Ball-Enum). There is an algorithm Ball-Enum that given a
radiusr > 0, a basisB of ann-dimensional latticeL, andt ∈ R

n, lazily enumerates the setL∩ (rBn
2 + t)

in deterministic time2O(n) · (|L ∩ (t+ rBn
2 )|+ 1) using at most2O(n) space.

Now we are ready to prove Theorem 7.1 using the above theorem.

Proof. Let B be ann-dimensional basis of a latticeL satisfying eitherηεY ≤ 1 or ηεN ≥ 1, whereεY , εN
are parameters that the conditions in the theorem hold. Now we are going to describe an algorithmA on
inputB that distinguishes the two cases.

A runs the enumeration algorithm with the parameterst = 0, r =
√
n to enumerate all points in

L∗ ∩ √n · Bn
2 . If A has already foundeπ·n · εN points from the enumeration algorithm,A terminates and

rejects immediately. This is because

∑

v∈L∗\{0}
e−π‖v‖

2 ≥
∑

v∈(L∗\{0})∩√n·Bn
2

e−π‖v‖
2 ≥ (eπn · εN ) · e−πn = εN ,

which already implies the case of no instances.
OtherwiseA computesu =

∑

v∈(L∗\{0})∩√n·Bn
2
e−π‖v‖

2
. A accepts ifu ≤ (εY +εN )/2, and otherwise

rejects. The analysis of its completeness and soundness is very similar to that of Theorem 6.1, so we do not
restate it here. It is not hard to see that this can be done in time2O(n) · eπn · εN = 2O(n).
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