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Arttu Lämsä∗, Jaakko Tervonen∗, Jussi Liikka∗, Constantino Álvarez Casado†, Miguel Bordallo López∗†
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Abstract—Human Activity Recognition (HAR) from wearable
sensor data identifies movements or activities in unconstrained
environments. HAR is a challenging problem as it presents great
variability across subjects. Obtaining large amounts of labelled
data is not straightforward, since wearable sensor signals are
not easy to label upon simple human inspection. In our work, we
propose the use of neural networks for the generation of realistic
signals and features using human activity monocular videos. We
show how these generated features and signals can be utilized,
instead of their real counterparts, to train HAR models that can
recognize activities using signals obtained with wearable sensors.
To prove the validity of our methods, we perform experiments
on an activity recognition dataset created for the improvement
of industrial work safety. We show that our model is able to
realistically generate virtual sensor signals and features usable
to train a HAR classifier with comparable performance as the
one trained using real sensor data. Our results enable the use of
available, labeled video data for training HAR models to classify
signals from wearable sensors.

Index Terms—multimodal representation, IMU, activity recog-
nition, signal transformation

I. INTRODUCTION

Human activity recognition (HAR) has been a popular
field of interest among the research community. Due to its
relatively accurate performance and high utility, HAR has
found its way into several consumer products for noncritical
use cases. These products, equipped with inertial motion unit
(IMU) sensors, include mobile devices and wearable devices,
such as smart watches and wristbands. These devices use
a combination of on-device processing and cloud services
to produce information about the physical activity of the
user, providing them with different context-adaptive services.
Developing robust classifiers for detecting multiple activities
is a challenging task that requires large amounts of labeled
training data. The typical setup for obtaining these data is
based on recording the IMU signals and labeling them in
(semi-)controlled sessions from multiple subjects, an approach
that can be extremely laborious and presents serious limita-
tions. On the other hand, video sharing platforms, such as
YouTube, contain huge amounts of videos from various kinds
of human physical activities, and they are usually easier to
label based on their metadata or by simple visual inspection.
Transforming this video information into a representation
that could be directly used as a training material for IMU-
based classifers would enable access to enormous amounts of

annotated training data, potentially improving the robustness
of IMU-based HAR. To directly use this video material for
IMU-based activity classifiers, it must be transformed into
IMU-like signals. In this paper, we show how extracting
human movement from activity videos using pose estimation
approaches produces signals that can be transformed into a
representation that is directly usable by IMU-based classifiers.
Our approach is based on a neural network model that uses
a simple architecture to transform a sequence of 2D pose
estimates from videos into realistic features equivalent to those
obtained solely with IMU-signals. In addition, we show how
the same neural network architecture could be used to extract
the raw IMU-like signals themselves, by changing only the last
layer. In this work, we concentrate solely on the acceleration
signal, since it is the one predominantly used in HAR, but the
method presented can be easily extended to other components
of the IMU such as the magnetometer and gyroscope signals.

II. RELATED WORK

Although it is becoming relatively usual in visual com-
puting [13] and computer vision tasks [12] (including pose
estimation [11]), using augmented, synthetic or generated data
in IMU-based HAR has not yet been fully explored. A few
small attempts have been made to obtain generated training
data. They include simulating different sensor positions and
orientations using signal rotations [16], augmenting spectral
data in the feature space [15], or generating additional data
by extrapolating time series [17]. All these approaches have
presented mixed success and applicability, since the original
labelled material used to derive the augmentations was still
very limited [10]. In our work we aim at generating virtual
sensor signals and features using only video sequences of
human activities, a type of data that is abundant and easy
to label. The closest work to ours is the one presented by Rey
et al. [18]. They experimented with the generation of sensor
readings from monocular videos. Their approach is based on
a regression model that predicts the total acceleration signal
by using a sequence of pose estimates as the input of a typical
residual convolutional network. The quality of their resulting
signals is evaluated in a relatively simple activity recognition
dataset using a classifier based on temporal convolutional
blocks (TCN). Our approach aims instead at creating full
training sets by generating sensor data directly from activity



Fig. 1. Example of the 6-activity setup from the VTT-ConIot dataset. From left to right: Cleaning, Climbing, Floor Work, Painting, Walking and Hands Up

videos. We propose a U-net topology [19] to predict both
individual feature values that could be directly used by an
activity classifier and raw acceleration signals of the 3-axis
that can be directly compared with the original ones.

III. EXPERIMENTAL SETUP

To evaluate our approach, we performed our experimental
analysis on the VTT-ConIoT dataset [3] [1]. This dataset
recorded video data for 13 persons performing 15 different
construction work-related activities for one minute. The sub-
jects were wearing three IMU-sensors, located on the heap and
the shoulder, and used a sampling rate of 100Hz. The dataset
provides synchronized IMU and video signals.

In this work, we concentrate on the original dataset protocol
described as the simple baseline. This protocol defines six
classes representing typical tasks in the construction setup:
Cleaning, Climbing, Floor Work, Painting, Walking and work-
ing with Hands Up. Figure 1 depicts an example frame of each
of the tasks. In this setup, each 1-minute signal is segmented
into sliding 2-second windows that are used as ”activity
samples” in both training and test sets. The performance
is evaluated by constructing a model based on 7 different
features (average, median, variance, mean, max, min, upper
quartile, and lower quartile) that are roughly based on prior
knowledge of their usability in human activity recognition. The
features are calculated over 4 different signals obtained from
the IMU placed on the hip (3-axis accelerometer, x,y,z and
total acceleration tot), for a total of 28 features per sample.
The cross-validation setup is Leave-one-subject-out (LOSO).

IV. ACCELERATION EXTRACTION FROM MONOCULAR
VIDEOS

Processing videos to obtain a sequence of poses could
provide some of the required positional information to estimate
the acceleration of a human articulation or joint. Available
open source pose estimation models include OpenPose [6],
DeepPose [8], and Detectron2 [9]. Human pose information
from monocular videos is essentially two-dimensional and
expressed in absolute terms depending on the camera position,
acquired at rates from 15 to 60 fps. On the other hand,
IMU-based acceleration signals are three-dimensional (x,y,z)
and related to the position of the sensor itself, and they are
recorded at much higher rates (50-150 Hz.). This calls for a
preprocessing stage that allows us to match both signals.

Video preprocessing starts by extracting human poses from
each individual frame using a state-of-the-art human pose

detector (Detectron2 [9]), which provides us with poses com-
posed of 17 keypoints that represent articulations in the human
body, in a usual format [21].

We estimate the body center by interpolating between two
keypoints located on both sides of the hip, the closest point
to the IMU sensor location (lower back center). This body
position was selected as a reference point to be used in the
experiments. To obtain a third spatial dimension of the point,
we estimate the Z-coordinate using the size of the projected
pose, since poses closer to the camera will look larger and
poses far from the camera will look smaller. This distance was
estimated by using the maximum and minimum size values of
the dataset for each individual while standing (respectively,
closer and farther distances to the camera), which allowed us
to estimate the height of the subject and normalize the size
according to it.

These coordinates represent the spatial displacements of
the subjects while performing activities. We computed 3-axis
accelerations of the reference point by calculating the second
derivative of the coordinates across frames. This resulted in
acceleration signals in the video coordinate space. This signal
was then further processed with a low-pass filtering with a cut-
off frequency of 12 Hz, to eliminate the high-frequency noise
introduced by pose estimation jittering and human detection
errors.

Similarly, to match the characteristics of the acceleration
signal obtained from the videos, the acceleration signals ob-
tained from the real IMU-sensors were downsampled to 25
Hz (to match the video frame rate) and then low-pass filtered
at 12Hz. This bandwidth reduction has shown to not affect
the HAR classification process, since human activities do not
present frequencies over 20 Hz, while most discriminative
components are well below 6Hz [4] [5].

V. TRANSFORMATION MODEL

The model used in the transformation between the pose
estimation and IMU-like signals and features is based on the
U-net topology [19] and consists of an encoder, decoder and
skip-connections between layers that have feature maps of
similar size. U-net has been previously used successfully in
e.g., image segmentation tasks. The structure of the model
used in the experiments is presented in Figure 2. First, three
convolutional blocks of the model (encoder) perform down-
sampling on the data (on the left hand side of figure) while
the next three blocks perform up-sampling (decoder). The
down- and up-sampling blocks are connected with lateral skip
connections that provide additional information for the con-
volutional/upsampling blocks. All our transformation models



Fig. 2. Structure of the model used in the transformation. Output layers:
1-D convolutional filter for raw signals, fully connected layer for individual
features.

use the same architecture, with the exception of the output
layer. This layer of the model is set as a 1-dimensional con-
volution layer for the generation of raw signals and as a fully
connected layer for the generation of individual features. The
selected optimizer is based on Adadelta’s default parameters
in keras.io, using the mean absolute error as the loss function.
Each model was trained for 250 epochs with an early stopping
configuration.

VI. GENERATION OF VIRTUAL SENSOR SIGNALS

As a first step to use the generated data into HAR classifiers,
we experiment with the generation of raw signals from the
components obtained from video data. In this context, we
generate a set of 2-second segments with 1-second overlap
of the raw signals corresponding to (x,y,z) axes and the
total acceleration in an independent manner, constructing one
transformation model per signal that follows the description
detailed in the previous section.

To evaluate the correctness of these generated signals, we
simply compare each segment belonging to the real and the
generated ones, by computing the errors measured sample by
sample along the segment. The errors are then expressed in
terms of Mean Squared Error (MSE). The errors of the signal
generation in comparison with the real IMU-based ones are
shown in Table I.

TABLE I
AVERAGE MSE FOR EACH WINDOW AND ACTIVITY

Signal Cleaning Climbing FloorWork Painting Walking HandsUp Mean
x(t) 0.16 0.28 0.20 0.09 0.27 0.09 0.18
y(t) 0.16 0.16 0.20 0.11 0.19 0.08 0.15
z(t) 0.57 0.44 0.95 0.49 0.48 0.47 0.56
tot(t) 0.13 0.26 0.07 0.07 0.29 0.07 0.15

The results show that we are able to generate reasonably
accurate signals for each axis and for the total acceleration
without clear differences among different activities. However,
we can note that z-axis present a significantly larger error than
the other signals. We hypothesize that this is due to changes
in the gravity direction, which for the typical sensor setup
and a standing person corresponds exactly to that axis. This
can be defended by, for example observing that the activity
FloorWork shows the larger error, and it is the activity where
the gravity direction has more distinct and constant change,
since the subjects are crouched in an inclined position and do
not stand up during the whole activity.

VII. GENERATION OF VIRTUAL SENSOR FEATURES

The next step was to create models that are able to predict
specific statistical features calculated from the IMU signal by
using information obtained only from video data. These statis-
tical features can then be directly used for HAR classification,
without the need of creating accurate signals.

In this context, analogously to signal generation, we create
a set of models whose output is a single value that corresponds
to each IMU-feature as it is used by the classifiers. We output
this value by changing in our architecture the last 1x1 convo-
lutional layer to a fully connected layer that provides a single
value per sample. The set of features is selected to correspond
to the simple baseline of the VTT-ConIot dataset classification
task [1]. The set of models estimates seven statistical features:
average (avg), median (med), variance (var), 25th percentile
(lq), 75th percentile (uq), minimum (min), and maximum
(max). Each feature is computed in four different axes (x, y,
z and total acceleration (tot) computed as the L2 norm of
the axes). Each feature is estimated using 2-second segments,
and the features were generated using leave-one-subject-out
(LOSO) validation.

This process produced a vector with 28 feature values
for each 2-second time widow. The mean-squared-errors of
each generated feature in comparison to the real IMU feature
values are shown in Table II.

The results again show that we can generate individual
features with reasonable accuracy across different activities,
without clear differences. Again, it can be observed that
the generation of features in the z-axis is more challenging,
especially for features that measure average or median values,
while the variance error is similar to the one obtained for
the other axes. We argue that our model is able to infer the
energy and variations of the individual signals while obtaining



TABLE II
AVERAGE MSE FOR EACH FEATURE AND ACTIVITY

Feat Cleaning Climbing FloorWork Painting Walking HandsUp Mean
xavg 0.023 0.007 0.155 0.008 0.016 0.021 0.038
xmed 0.026 0.008 0.144 0.008 0.016 0.024 0.038
xvar 0.049 0.092 0.051 0.024 0.043 0.033 0.049
xlq 0.059 0.041 0.141 0.018 0.041 0.042 0.057
xuq 0.025 0.025 0.157 0.010 0.047 0.029 0.049
xmin 0.226 0.607 0.261 0.105 0.197 0.137 0.256
xmax 0.285 0.670 0.289 0.129 0.437 0.196 0.334
yavg 0.037 0.029 0.185 0.038 0.044 0.048 0.064
ymed 0.043 0.027 0.183 0.041 0.037 0.047 0.063
yvar 0.006 0.007 0.002 0.002 0.007 0.002 0.004
ylq 0.056 0.036 0.220 0.045 0.043 0.058 0.076
yuq 0.044 0.039 0.143 0.044 0.045 0.042 0.060
ymin 0.200 0.378 0.345 0.090 0.331 0.145 0.248
ymax 0.192 0.427 0.123 0.091 0.204 0.082 0.187
zavg 0.313 0.178 0.850 0.269 0.173 0.301 0.347
zmed 0.307 0.168 0.829 0.298 0.127 0.286 0.336
zvar 0.009 0.010 0.004 0.002 0.013 0.004 0.007
zlq 0.332 0.188 0.979 0.275 0.236 0.293 0.384
zuq 0.287 0.162 0.801 0.258 0.125 0.311 0.324
zmin 0.428 0.586 1.229 0.313 0.614 0.361 0.589
zmax 0.376 0.458 0.839 0.278 0.361 0.464 0.463
totavg 0.008 0.008 0.004 0.003 0.027 0.007 0.010
totmed 0.006 0.007 0.004 0.003 0.022 0.008 0.008
totvar 0.028 0.074 0.014 0.011 0.045 0.018 0.032
totlq 0.019 0.029 0.007 0.008 0.043 0.015 0.020
totuq 0.025 0.030 0.010 0.012 0.075 0.015 0.028
totmin 0.104 0.276 0.055 0.041 0.152 0.062 0.115
totmax 0.386 0.910 0.168 0.137 0.547 0.190 0.390
Mean 0.139 0.196 0.293 0.091 0.145 0.116 0.163

its average values (that depend on the sensor orientation)
is more difficult. These are to be expected since the input
values obtained from the videos and poses do not provide any
information on the gravity components or directions.

VIII. CLASSIFICATION OF HUMAN ACTIVITIES

Finally, we evaluate the usability of the models and their
generated features by using classifiers. For a fair comparison,
we train three different classifiers using three different types
of input data. The first classifier (IMU input) is trained using
only real IMU data obtained from real sensors. According
to the protocol described before, 28 features were calculated
and standardized (by subtracting the mean and dividing with
standard deviation) from the real IMU signals. These features
are used to train a random forest classifier to classify six
activities. A second classifier (Generated input) is trained by
using the features generated from our previously described
generation model that produced already standardized features.
This classifier is trained in videos that do not include the
subject in the testing. Finally, for comparative purposes, a third
naive classifier (Video input) is trained by using the same type
of standardized features that are directly computed from the
accelerations corresponding to the poses in the videos, without
an intermediate generation model.

We run inference on all three classifiers in the same way. For
testing, we used only real IMU data from unseen subjects, and

we strictly followed a leave-one-subject-out protocol where
none of the trained models (both for generation and classifi-
cation) had access to the test subject.The classifiers, trained
with different data types (real, generated, and naive-video) are
evaluated in terms of mean classification accuracy. The results
for all three classifiers are shown in Table III.

TABLE III
LOSO VALIDATION RESULTS OF DIFFERENT IMU CLASSIFIERS.

Accuracy Accuracy Accuracy
Subject IMU input Generated input Video input

S1 0.495 0.489 0.290
S2 0.461 0.395 0.207
S3 0.415 0.375 0.254
S4 0.466 0.379 0.328
S5 0.493 0.518 0.217
S6 0.518 0.453 0.341
S7 0.623 0.622 0.209
S8 0.567 0.525 0.262
S9 0.392 0.304 0.206

S10 0.589 0.547 0.231
S11 0.560 0.547 0.244
S12 0.582 0.554 0.302
S13 0.621 0.547 0.303

Mean 0.521 0.481 0.261

The results clearly show the usefulness of the intermediate
generation model. The classifier trained on only real IMU
data, following the simple baseline of the dataset, obtains
an accuracy of approximately 52%, while the naive classifier
trained directly from the video pose coordinates and tested
on real IMU data achieves about half (26%). However, the
model trained with the intermediate feature generation model
achieves a 48% accuracy, a performance comparable to that
of the classifier trained on real IMU data. We believe that
these results show that our Video2IMU generation models are
able to add IMU-like characteristics to the acceleration signal
extracted from pose estimation coordinates, in a way that can
generalize to unseen individuals.

IX. CONCLUSION

We have shown that a relatively simple transformation
model is able to generate IMU-like signals and features from
activity videos. These signals and features can be directly
utilized to train HAR classifiers that can perform inference
on real sensor data with reasonable accuracy. This provides
for a usable setup that allows the easy collection of HAR
data in situations where using multiple wearable sensors is not
straightforward. On the other hand, our selected setup uses a
simple baseline where the short window size, reduced number
of features, and a single sensor location (placed in the hip)
show classification accuracies that are relatively low, even for
the IMU-based classifier that uses real sensor data. We believe
that this is not an optimal setup, especially when recognizing
certain activities where movement mostly occurs on the hands.
Future work will focus on studying alternative sensor locations
and the limits of the generalization of our generation method
to unseen activities.
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