IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 22, 2022, accepted April 21, 2022, date of publication April 26, 2022, date of current version May 4, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3170711

The Complexity of the Data Retrieval Process
Using the Proposed Index Extension

MICHAL KVET“1, (Member, IEEE), AND JOZEF PAPAN 2

lDepartment of Informatics, Faculty of Management Science and Informatics, University of Zilina, 01026 Zilina, Slovakia
2Depa.rtment of Information Networks, Faculty of Management Science and Informatics, University of Zilina, 010 26 Zilina, Slovakia

Corresponding author: Michal Kvet (michal.kvet@uniza.sk)

This work was supported in part by the Erasmus+ Projects through the Project Cloud Computing for Digital Education Innovation under
Grant 2020-1-HRO1-KA226-HE-094713, in part by the Project Better Employability for Everyone with Oracle Application Express
(APEX) under Grant 2021-1-SI01-KA220-HED-000032218, and in part by Increasing the Security of Communication Network

Infrastructure, Grant system UNIZA, 2021.

ABSTRACT Data retrieval, access, and tuple identification are inevitable in database processing, ensuring
performance. The entities and relationships form a relational database. Data themselves are not specifically
formatted, requiring sequential data block scanning if the particular index is unavailable. This paper
summarizes existing indexing principles focusing on the B+-tree, which forms the default structure for
data access based on the index key. Such design is reliable and prone to an increase in the amount of data.
However, it cannot manage undefined values properly, whereas they cannot be mathematically compared.
Secondly, migrated rows can be present due to the size demand extension after the update operation. Thirdly,
the index is always balanced, resulting in additional demands of the transaction. All these factors are
covered by the proposed paper, discussing the limitations, opportunities, and own solutions to improve
the performance. Several architectures are discussed, maintained, and computationally studied, focusing
on the size demands, processing time, and costs. By using proposed techniques, significant improvements
can be reached. A pointer list is introduced for migrated row management to reference the index set from
the data block and store reference path or using a data reflector. When dealing with transaction support,
index management and rebalancing are shifted to the separate autonomous transaction. Thanks to that, the
main transaction can be approved sooner with no reliability issues. Finally, the proposed paper introduces
the NULL value management structure in the instance memory for the index node reference.

INDEX TERMS Index, migrated row, performance, post-indexing, relational database, transaction support,

undefined values.

I. INTRODUCTION
The data world is continuously changing, significantly
impacting proper data management. Over the decades, han-
dling has been shifted from the data embedded systems
through the file management up to the database complexity.
Intelligent information systems point to the robust data to be
covered. It is not now suitable to deal only with current valid
data in a relational theory. Still, the definition should be open
to access, manage and evaluate temporal databases, objects,
JSON, XML, or texts stored in the large objects. All such data
can be source for processing and stored and accessed by the
database [1]-[3].

The relational database offers the stored data complexity,
robustness, and security. The core element differentiating the

The associate editor coordinating the review of this manuscript and

approving it for publication was Gianmaria Silvello

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

database and file system is transaction support. Its manage-
ment ensures the data to be reliable, passing all requirements
and constraints. Transaction theory defines four aspects for
dealing with databases — atomicity, consistency, isolation,
and durability [4]-[6]. Atomicity ensures that the data oper-
ated inside the transactions (adding or changing the existing
tuples) are either approved or refused totally. Thus, the trans-
action is treated as one inseparable element, which cannot
be managed and evaluated partially. Consistency deals with
integrity by emphasizing the constraints, which should be
passed not later than the end of the transaction. Therefore,
transaction shifts the database from one valid, consistent
image to another consistent. The third aspect is isolation.
Changes done inside the transaction are made visible after
its approval by spreading the operations to the whole envi-
ronment. Finally, durability covered by the logging ensures
that the approved transaction changes are visible and will be

46187

https://orcid.org/0000-0003-3937-7473
https://orcid.org/0000-0001-8118-7513
https://orcid.org/0000-0003-4970-4554

IEEE Access

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

present in the system even after the system crash. Transaction
definition automatically handles all these requirements by
applying transaction logs (UNDO tablespace and REDO log
files) and locks [7]. In many database systems, the empha-
sis is on shortening the transaction duration and number of
the associated objects to the minimum. Such requirement
is associated with the locking strategy, which limits paral-
lelism. Generally, read and write locks are applied to the data
to ensure consistency and access control. Database system
Oracle, which is used as an evaluation environment, uses an
improved technique where the read locks are not applied.
Read consistency is done by the transaction log support build-
ing consistent data image valid either at the beginning point
of the operation or the whole transaction. As a result, mas-
sive parallelism can be ensured, emphasizing log availability.
Proper index and transaction management form the crucial
elements to ensure the entire system’s performance.

Shifting the data storage to the cloud environment, han-
dling the data amount became almost unlimited. Data stor-
age and CPU can be dynamically provisioned, optionally
enclosed by the spread allocation [8], [9]. Transactions can
be highly parallelized supervised by the internal data infras-
tructure optimization and scalability management to ensure
performance. Then, the main optimization strategy of the
general data management (local on-premise, cloud) should
point to the data access perspective. Whereas the data amount
and overall complexity are significantly rising, storing current
valid data and the whole perspective of data evolution is
inevitable. As a result, each object is delimited by the version
evolving. Thus, identification of the object tuple is not made
just by the unique identifier, and the time validity perspective
should be covered, as well.

Data access performance is covered by the indexing strat-
egy, strongly limiting the data amount to be loaded and
evaluated. If the database index is unavailable or unsuitable
for the query, sequential data scanning, represented by the
block-by-block memory loading, is necessary. However, such
activity can have a significant impact on performance. Each
block must be loaded from the database (physical storage)
to the memory in the first phase, followed by the parsing,
tuple identification, and rows evaluation. The problem can
cause block fragmentation, by which the loading efficiency
is lowered [10], [11]. Block data amount can be significantly
higher than optimal storing inside the blocks [12].

Moreover, data blocks are not created and associated with
the table separately. Instead, the blocks are allocated at
once, forming the data extent. As a result, even completely
free blocks can be present and managed. Furthermore, even
though the block does not hold any data, it is memory-loaded,
whereas the system generally does not keep references to the
empty blocks. Applying dynamics of the system by purging
all data, the robustness of the update operations, and relia-
bility aspects, the physical data repository can be strongly
fragmented by increasing the size demands.

As evident, sequential data scanning is demanding and too
time-consuming, pointing to the efficiency and performance

46188

of the whole process [13]. It is not related just to the data
retrieval itself. Other operations like Update need to locate
existing data tuples to be updated. Similarly, when adding
new data tuples to the system (Insert statement), the system
needs to check constraints (at least the uniqueness of the
object identifier) by accessing the internal database struc-
tures. A database index as an optional structure associated
with the table was introduced to reflect the performance
issues. It is used for direct data row access. Generally, it can
be defined by various structures, consisting of the ROWID
value, used as a direct locator pointing to the database, file,
block, and position inside the block. Using the index, sequen-
tial data scanning is reduced to the index search and block
identification using ROWID [14], [15]. The finest granularity
of the processing is the block itself, which must be fully
loaded into the memory for the evaluation and consecutive
processing. Thus, a proper database index can significantly
influence the performance and reduce either processing time
or CPU, I/O, and other system resources [8], [16]. The suit-
ability of the index is crucial for the processing, whereas the
order of the attributes delimits the index structure. Based on
the [14], the order of the elements inside the index should
reflect the query conditions and optionally values listed in the
Select clause. If all required values (attributes and function
calls related to the table) are not present in the index, using
the ROWID values, the whole row can be easily located and
memory-loaded. Vice versa, if the index is not in a non-
suitable format, sequential scanning must be done, either
covered by the scanning of the whole table or the index can be
optionally used, as well, by reducing the amount of the data
to be evaluated. As a result, multiple index sets are defined in
the system to ensure performance.

On the other hand, index structures negatively impact the
data modification operations (Insert, Update and Delete).
In contrast, each change must be applied to the index to
ensure the reliability and even usability of the indexes them-
selves. Consequently, there are two opposite streams - indexes
improve the techniques of data retrieval, vice versa, data
loading, and change operations have a negative impact on
the performance due to incorporating necessity to the whole
index set [17].

This paper deals with the relational databases super-
vised by the transaction robustness. Data structures and
infrastructure are handled in section 2. Such a chapter is
important for pointing to the consecutively proposed opti-
mization techniques. Then, existing index structures and
access methods are listed (section 3), pointing to the auto-
indexing approach (section 4) available in the Oracle database
system. It can manage defined index sets dynamically by
evaluating benefits and costs over time, reflecting the work-
load. In principle, the existing index can be retained original,
reconstructed, or marked for dropping. Complexity is always
checked, whereas each index operation can influence the
whole system. The main contribution of this paper is covered
by section 5 by proposing own index architecture, by which
the negative impacts on data change operations are lowered

VOLUME 10, 2022

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

IEEE Access

or completely limited. Thanks to that, the range of the index
set can be increased, but without a significant negative impact
on the performance of data modifying operations.

To reach the complex architecture, section 5 is developed
in multiple streams. Firstly, emphasis is taken on the block
data architecture reflecting the data tuple storage. If the value
precision is increased after any data change operation, tuple
commonly requires additional space. This results in a lack
of space in the data block in most cases. Basically, the new
record will no longer fit in the original repository. Thus,
the migrated row is created. In the original block, only the
new address to the relevant block, where the data already
resist, is stored. It results in degradation of the structure and
an increase in processing costs. By default, we approach
individual records, emphasizing the time and space spec-
trum through the created indexes. However, these indexes
are not optimized for such change elements. Several solu-
tions are discussed with emphasis on reliability, performance,
and limitations. The best-obtained solution is to create an
autonomous layer to identify migrated rows and incorporate
changes into the structure without loading multiple blocks as
is currently necessary.

The second addressed area is optimization at the process-
ing changes in transactions. All changes are currently applied
to the data layer and the indexes, which are always balanced
in structure. The proposed solution creates a comprehensive
index management environment outside the main transac-
tions, emphasizing efficiency and immediate data accessibil-
ity. A monitoring system of the aircraft’s position is used for
the performance evaluation. Although the focus is on data
safety, reliability, and correctness, the primary relevance is
associated with continuous and immediate data availability,
emphasizing the total costs, especially the processing time.

Finally, we deal with data reliability and undefined value
identification and categorization, emphasizing the index
structure set support.

Il. DATABASE INFRASTRUCTURE

This section highlights the physical Oracle database infras-
tructure, whereas it looks different on various operating sys-
tems and differs from other database systems. The Oracle
database system consists of the instance, database, and opti-
mally, container and pluggable databases are covered and
supervised by the real application cluster (RAC) environ-
ment [18]. A database is a collection of physical data files
stored in the system. It is formed by the parameter files and
control files supervising the infrastructure pointing to the data
files repository. Data files hold the direct data in the block
structure. Finally, the database is formed by the transaction
and system logs and metadata stored physically. Vice versa,
the instance is delimited by the background processes man-
aging the instance and controlling the data access. Thus, the
database is located on the physical disks, while the instance
is delimited by the memory, which is shared across the indi-
vidual connection sessions. It consists of various structures
[19], [20]. The most relevant for this paper is Buffer cache

VOLUME 10, 2022

- work area for executing SQL. Data cannot be updated
directly in the database but must be memory-loaded in a block
granularity for evaluation and processing. Log Buffer is a
small staging area for maintaining transaction change vectors.
A shared pool is the most complex consisting of dozens of
subelements.

From the statement execution point of view, the most
important type is the Library cache. It is a memory area
for recently executed code in a parsed form. SQL statement
processing consists of the parsing (syntactical and semantic
check and Shared pool check to ensure that the SQL plan is
not already processed and present in the memory structure).
The optimization step is responsible for generating multiple
execution plans. The query execution plan is obtained by the
Row Source Generation. Finally, the statement is executed,
either by the proposed SQL plan (hard parse) or by getting
an already existing plan from the Shared pool (soft parse).
As aresult of the overall processing, the SQL plan is obtained
(producing the set of operations covering the data retrieval
process via index or direct data block loading [21], [22]),
followed by the execution process itself.

There are two basic Oracle architectures - single and mul-
titenant architecture [23].

Single-tenant was introduced in Oracle version 6 released
in 1988 and was used until 2012. It uses a non-container
database delimited by a one-to-one relationship between the
instance and database in terms of metadata, Oracle data, and
Oracle code.

The single-tenant RAC approach extends the definition by
the clustered environment. Many instances simultaneously
mount and open one database, which resides on a set of shared
physical disks. All the instances share one database. RAC
environment offers high availability, performance, scalability,
and security ensured by the error-prone solution. A client
connects to the Single Client Access Name (SCAN) RAC
listener, which routes the traffic to the specific instance,
ensuring the workload balancing across individual instances
registered. Each instance node has a separate listener, pro-
cesses, and memory.

In March 2017, the Oracle 12c version was created, offer-
ing new architecture [24]. A multitenant container database
(root container database) contains physical data files covering
the Oracle metadata. There are no user applications or code
present. A pluggable database (PDB) is a set of data files that
can be mounted dynamically during the process on demand.
Thus, the data are separated in the pluggable form, whereas
the Control, Parameter files, and Logs are in a core container.
PDB is routed and started by one container at a time by
indirect association with the instance. A client connects to
the server by the listener, which creates a server process
in the container instance. Then, the instance is connected
to the container database forming the interconnection with
the pluggable database. Thanks to that, databases can be
attached and detached dynamically during the run. More-
over, compared to single tenancy, environment characteristics
are stored just once for the whole container. Fig. 1 shows

46189

IEEE Access

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

Database server

| H PDB1
'_ @ connection CDB instance
= oy | =
Client Listener Server >
Application o (process j
rocesses SQL:

Background | Background(Background
process process process

!

Container Database

CDB (root container)

[Control Files | | Parameter File |

[Data Files | [Redo Files | [Undo Files |

PDBI PDB2
[Data Files | [Data Files |

FIGURE 1. Container database architecture.

the container database with two pluggable databases
attached.

The general solution is provided by Multitenant RAC
Database [18], where multiple node instances can be con-
nected to one container database operating multiple plug-
gable databases. Compared with architecture presented in
Fig. 1, there are numerous instances with separate memory
and process structures. For each instance, SCAN listeners are
connected to the individual listeners, evaluating the workload
to ensure proper performance. This solution generally pro-
vides performance complexity, robust scalability, and error-
prone management. Although the container does interconnect
between the physical database and instance, if any instance
fails, the workload manager automatically routes the sur-
vivors ensuring availability and reliability of the whole solu-
tion model.

From the performance perspective, the relevant model is
also sharded database introduced in 2017 [25], providing
linear scalability, fault tolerance, and geographic data dis-
tribution by using horizontal fragmentation across multiple
regions [23], [26], [27]. It is shown in Fig. 2. Each partitioned
database has own instance forming the sharded database,
which is connected to the connection pool for the client
connections supervised by the shard directors [25].

The architecture management and complexity have to be
treated to cover the performance. More robust architectures
have to be used to deal with the data distribution and availabil-
ity domains to ensure reliability and continuous availability.
Referencing the cloud environment, all databases are spread
across multiple availability domains, operated by the RAC
environment. Such architecture is also used in the perfor-
mance study part of this paper.

Ill. INDEXING

A database index is an optional structure associated with the
table by which the data can be easily located. Each index
stores the particular attributes or function results, along with
the pointers to the physical location of the row (ROWID) in

46190

Sharding key | Connection
> Pools
A A A

! i
u
Client

Application

Shard directors

Shard catalog

Database server 3

ORCL3
instance

Database server 3

ORCL2
instance

Database server 1

ORCL1
instance

Database Database Database
shard1 shard1 shard1
ORCL1 ORCL2 ORCL3
Shared Database

FIGURE 2. Sharded database.

the leaf layer [13], [15]. ROWID is a physical address of the
row by pointing to the data file, block, and position of the row
inside the block. Thanks to that, the data location operation
is straightforward, and the processing costs can be signifi-
cantly reduced for the data retrieval. Index management is
part of the transaction. Therefore, it is always ensured that
all data rows are accessible and identifiable by the index.
Otherwise, the optimizer cannot use such a method for data
management, whereas the reliability of the result set cannot
be ensured. Although storage demands have risen utilizing
the index, 1/0O operations, CPU, and memory resources can be
significantly lowered. And finally, the most beneficial aspect
is related to the time-consuming costs. Sequential data block
loading, scanning, and evaluation are removed, replaced by
the proper data block identifying where the relevant data
reside. Whereas the index size is significantly smaller than the
whole table [14], memory block loading necessity requires
fewer blocks. Thus, the correct indexing strategy is crucial
for achieving maximum database performance. From the user
and server perspective, Fig. 3 shows the data query processing
principles. The user is delimited by the user process of the
client site, mapped to the server process of the database
instance. For dedicated infrastructure, the mapping is one-to-
one. Multiple client sessions can be routed to the common
server process using a shared system infrastructure.

Fig. 3 shows the data flow between client and server. The
user submits a query (step 1), which is routed to the Oracle
server process (step 2) by notifying the optimizer to analyze
the query (step 3) by selecting the optimized data access.
Interconnection between the user and server is shown only
schematically. In principle, various database architectures can
be used, discussed in section 2. Steps 4 and 5 are the most
crucial from the performance point of view. Such part is
responsible for locating and transferring the data between the
instance and the physical database. Finally, step 6 deals with

VOLUME 10, 2022

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

IEEE Access

Optimizer
Determines how
to retrieve data
(execution plan)

VP
3)

N datafile
[P Table block
O SQL>select {2 (4) data_val object_ref
N\ data_val 2/ NG 1 data_val object_ref
MH 1~ - = server — 2 text

\ / From data_stream | /“m "\ rocess | /2

~ 2 P 5
User where object_ref=1 [*\ < / 2

\
o]

o

3

5

S cusT
table

FIGURE 3. Query processing - client and server data flow.

the producing data result set related to the optimization tech-
niques. Generally, two methods can be applied to optimize
the data access [11]. The first approach is associated with
minimizing the time to produce at least some data portion
as a result set (SOME_ROWS hint). The second principle
optimizes the whole result set consisting of all relevant data
(ALL_ROWS hint) [7]. These parameter settings can impact
the data access and indexes, whereas significant data amounts
can be produced. Namely, the leaf pointer layer can have
several ROWIDs for each non-unique index key value.

Three index types are currently used from the physical
perspective — B-tree, hash index, and bitmap. In the following
section, we will briefly summarize the principles, benefits
and will point to the main limitations.

A. B+TREE

A B-tree index is a default balanced tree index suitable for the
high cardinality columns or expressions. It consists of the root
node, internal nodes covering the indexed values, and leaf
nodes containing the ROWID pointers to the database struc-
ture. From Oracle 8i, pseudo column ROWID is delimited
by 10 bytes. Prior releases reflected just 8 bytes. The main
advantage of the access by the traverse path is associated with
the balancing. The height from the root to any leaf node is
always the same. Although it is commonly marked as B-tree,
leaf layer nodes are interconnected, forming the bi-directional
linked list. Data on the leaf layer are sorted based on the
developed index format. Thus, the internal structure is B+tree
instead of B-tree. One way or another, the B-tree indexing
strategy follows robust improvement by accessing the data.
Table 1 shows the reflection of the indexed data amount
and depth of the index, calculated by the BLEVEL attribute
of the USER_INDEXES data dictionary [24]. It omits the
root element of the index. Therefore, the physical traverse
path length is one greater. It compares the data row number
(powers of the number 2) to the total depth:

Query
Select power(2,i), blevel + 1 as depth
from user_indexes
where index_name = ‘STREAM_INDEX’;

TABLE 1. Index depth correlation.

Number of records Index depth

1

2

256

512

1024
262144
524288
1048576
134217728
268 435 456

AW LW NN ==

From the above table, it is evident that the traversing using
the index provides a powerful solution. Even if you have
300 million rows, just four index nodes must be accessed
to reach the leaf layer consisting of the ROWID pointers.
Although the consecutive number of data to be physically
loaded is crucial, based on cost estimation, if the selectivity
is too low, the system can prefer sequential scanning by
assuming that a significant data amount will be obtained and
composed as part of the result set [28].

B-tree index structure is a robust solution. It does not
degrade over time, ensuring the whole table size efficiency.
There are, however, three significant drawbacks — null value
coverage, migrated row problem, and transaction support.

First of all, the B-tree index cannot cover undefined tuples.
This is because they cannot be mathematically sorted; thus,
locating such representation inside the index is impossible.
As a result, generally, if the result set can contain such data,
the index cannot be used, forcing the system to use sequential
data scanning. For example, let have a table consisting of the
temperature data obtained by the sensor. For simplicity, let
obtained values be correlated just with the validity:

Algorithm
Create table temperature_tab
(validity_date date primary key,
temperature_value number);

Regardless of the data amount, sequential data scanning
must always be used if you want to get values obtained by the
specific time range, whereas undefined values can be present.
Referencing the table structure, attribute temperature_value
can hold a NULL value, whereas there is no limiting column
constraint. Thus, although such a situation does not occur in

TABLE 2. Data amount perspective.

Unique values for
temperature measurement

Undefined values for

Data amount
temperature measurement

1000 000 0 300 000

VOLUME 10, 2022

46191

IEEE Access

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

practice, the system cannot ensure it by the statistics, resulting
in sequential data scanning.

Query
Select count(*) as “Data amount”,
count(temperature_value)
as ‘“ Defined values for temperature measurement”,
count(distinct temperature_value) as
“Unique values for temperature measurement’’
from temperature_tab;

Table 2 shows the above query result. The aim is to get
unique values for a particular day. Firstly, all data are loaded
to the instance memory block-by-block by extracting the
VALIDITY_DATE. Then, the row falls into the time interval,
covered by the consecutive step of hashing values to remove
duplicates. If not, it is refused. The total costs for 1 million
rows are 1 372. Fig. 4 shows the execution plan. Whereas gen-
erally, undefined values can be present, a table is sequentially
scanned using the TABLE ACCESS FULL method.

OPTIONS |CARDINALITY COST

OPERATION OBJECT_NAME
= SELECT STATEMENT 12226 1372
= HASH UNIQUE 12226 1372

= FILTER
=¥ Filter Predicates
SYSDATE@!-1>=SYSDATE@!-2
= @ TABLE ACTEMPERATURE_TAB2 FULL 12226 1371
=¥ Filter Predicates
=-/\ AND

VALIDITY_DATE >=SYSDATE@!-2
VALIDITY_DATE<=SYSDATE@!-1

FIGURE 4. Execution plan handling NULLs - Table Access Full.

A range scan can be used properly by removing NULL
handling from the result set (Fig. 5). It is ensured that all
particular row are index referenced.

OPERATION OBJECT_NAME OPTIONS CARDINALITY COST
= SELECT STATEMENT 10357 34
= HASH UNIQUE 10357 34

= FILTER
= O Filter Predicates
SYSDATE@!-1>=SYSDATE@!-2
= @ TABLE ACTEMPERATURE_TAB BY INDEX ROWID BATCHED 10357 33
= .)é' INDEIND_TEMP_TAB RANGE SCAN 10357 33
=1 GT‘ Access Predicates
= /\ AND
VALIDITY_DATE >=SYSDATE@!-2
VALIDITY_DATE<=SYSDATE@!-1

FIGURE 5. Execution plan - Removing NULL pointers from the query.

When sequential scanning is necessary, the total costs
are 1 372. By removing NULL values, access can be done
by the index method dropping the costs to the value 34,
which reflects a 97,52% improvement. The index is prone to
fragmentation and provides direct block access. Therefore,
the data block amount necessary to be loaded is strongly lim-
ited. Moreover, usually, the index is already at least partially
memory-loaded. Note that the size of the table is 39 936KB.
Particular index storage demands are 19 456 KB.

46192

However, systems must cover undefined values due to the
data failures, delays, and reliability aspects [29]. Therefore,
the segregation using the data layer is not feasible. Moreover,
from the reliability management point of view, it is inevitable
to detect anomalies, failures, and improper measurement.

Although it can be partially solved by the unde-
fined (NULL) value transformation [30], a particular ref-
erence is a function encapsulated [31]. So, such definition
must be used in the queries; otherwise, it would result in
sequential data block scanning anyway. Moreover, function
processing brings additional processing demands from the
definition [32].

The second limitation is related to the physical database.
As described in the previous section, files are fixed-size
block-shaped. Thus, fragmentation across the blocks can be
present. Therefore, the processing demands are extended by
sequential scanning if the fragmentation is present. It can
be partially solved by the blocking factor parameter of the
database, by which the block is not filled completely. Instead,
if the limit is reached, the new tuple record is stored in another
block even if it still fits the block size. Such a principle is cor-
rect and does not significantly impact the performance using
the index. Based on [18], [33], additional demands can be
applied only in specific situations when the original data row
could be located in a partially free block, which is currently
loaded into the memory during the evaluation. It generally
reflects less than 1% additional demands, reflected by the /O
block loading necessity [14]. The remaining free space in the
blocks is used for the update operations. Therefore, the data
row size can be extended during the change operation.

A typical example can be associated with the variable
character or placing valid data value instead of NULL. As a
result, the original data row is extended. If it fits the block
space after the update, then it can be placed in the original
position. If not, two approaches can be identified — it can be
either relocated to a different block, or an overflow block can
be applied [34], [35]. From the index access point of view,
both solutions require additional data blocks to be handled.
Namely, for overflow block, multiple blocks must be loaded
by data accessing, even though the record itself could be
stored in a single block. Therefore, if we want to access part
of the row tuple in the overflow segment, we must read at
least two blocks instead of one. However, by generalizing
the solution, we can identify the direction of degradation of
the system over time since the overflow block itself is only
a variant of the standard block approach, so the size error
can be present, resulting in a chain reaction. A more complex
solution is done by relocating the data row to another block
repository. As evident from Fig. 6 holding B+tree index
structure, individual data can be accessed using the pointers
from the leaf layer. However, the access direction is always
from the index to the data. Thus, if the data position in the
physical database infrastructure is changed, the migrated row
is created. ROWID of the index points to the original block.
So, data are not present, just the pointer to the correct block,
where the row can be found [16].

VOLUME 10, 2022

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

IEEE Access

LT [T Tew]

[1]

.

12 ROWID
44 ROWID
56 ROWID [*

» 93 ROWID »| 123 ROWID »| 253 ROWID »| 697 ROWID
96 ROWID 197 ROWID 254 ROWID 714 ROWID
121 ROWID 222 ROWID [255 ROWID ¢ 949 ROWID

RO ©

Extent 1 Extent2 Extentn
asmen |—>{WO000000] [ONOO0000] - (00000000

Physical change-move

Getting pointer

FIGURE 6. B-+tree index highlighting the migrated row problem.

In [36], migrating row problem is treated by storing the
used access path in a shared instance memory. If the migrating
row is to be created and applied, the stored access path is used
for applying the change, so the index locates the data in a new
block. By using this technique, a particular index involves the
change. Concluding, there is no complex solution, whereas
several indexes can point to a specific row. Only one index
covers the change. The rest indexes remain original. It can
even cause one specific performance issue [33].

Fig. 6 shows the migrated row problem, as well. The
physical data structure is defined by the data segment (table)
and a list of extents with data blocks. Data migration occurs
if the Update statement is to be done and the size of the row
after the operation does not fit the original space. The system
needs to find the suitable block to cover the tuple and apply
the change by the following steps:

1. Getting data-position inside the block.

2. Storing existing access path inside the temporary storage
(memory) — access path.

3. Changing the data block physically.

4. Getting pointer to the new block and interconnecting
them in a directional manner (original -> new).

5. Applying the change using the temporary structure —
access path.

6. Changing the original ROWID for the index.

As stated in [30], shared instance memory temporarily stores
the access path to the data object, which can be used for index
ROWID relocation to the new block, removing the impact of
the data migration. A maximum of one index is used for each
data access, over which the migrated row removal process can
be applied. However, it should be noted that this operation is
also an index-level change, so a transaction must encapsulate
it to maintain consistency and restore the database after a
crash [12]. A more important aspect is related to the fact
that the original block still contains information about the
object identifier that was in it in the past but was moved in
the migration process. In principle, such information may be
useless over time if all indexes have applied the migration
removal process. From the database point of view, it cannot

VOLUME 10, 2022

be identified, and therefore, the original block contains infor-
mation that will never be used during the treatment [30], [37].

The third limitation is not directly related to the B-tree
index but covers any developed index structure. Any rela-
tional database should always store reliable and accessible
data. Thus, any data manipulation (DML) operation (Insert,
Update and Delete) should handle not only the data them-
selves, but the index set should be taken into emphasis,
as well. Thus, each operation is divided into two phases
— applying change directly into the database (covered by
the transaction logs) and pointing change to the index set
associated with the table. Even after both operations are done
successfully, a transaction can be committed. Vice versa,
if any operation fails, the whole transaction must be refused.
As evident, transaction definition is extended to cover the
index set complexly. That can be, however, the bottleneck of
the whole system. Therefore, the number of indexes must be
balanced to optimize data access by the retrieval, but the other
operations that maintain the index must be covered, as well.
As a result, the number of indexes should be strictly limited
to ensure the performance of the statements modifying data.

When dealing with the B-tree indexes, the defined limita-
tion can be even more significant due to the index balancing
necessity anytime. Namely, the index height should be the
same for any leaf node after each operation. Consequently,
transaction management is mostly devoted to index manage-
ment, not the manipulated data themselves.

The following section provides a brief analysis of con-
ventional index management during the Insert operation. For
the evaluation, a flight data model will be used [36], [38],
[39] covering airspace definitions in a temporal manner, sur-
rounded by the planned and real route, supervised by the
flight points (positions of the airplane) - intended and real.
First, each airspace was delimited by the unique character
string name, numerical sequence number, validity time frame,
and airspace parameters, like minimal, maximal flight levels.
Next, each route was identified by the ECTRL ID, sortable by
the SEQUENCE NUMBER by entering and exiting particular
airspace by the positional data— LONGITUDE, LATITUDE,
and FLIGHT LEVEL. Finally, each flight was monitored by
trajectory, speed, height, and other parameters. Particular data
were range partitioned over the year quarters covering the
flights from 2015. A deeper data set description can be found
in [28], [39].

B. HASH INDEX

Hash index is formed by the array of buckets to which individ-
ual rows are associated. Each bucket stores a list of pointers to
the individual rows which belong to it. Hash indexes are based
on hash functions, which map the index key (K) to one bucket.
Each bucket (array element) stores only the pointer, not the
hashed values. Generally, key-value can be variable length.
A hash function is responsible for mapping these key values
to the fixed structure. Therefore, it must be deterministic and
distribute data as uniformly as possible [37]. Fig. 7 shows
the principle of using hash index during the data evaluation.

46193

IEEE Access

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

F(“Temp1”)=4
S S Pointer to Address “Temp300”
\7/ \\ | owaroC

i
\\,,,,ﬂ,,,/ ! Pointer to Address

/ Ox081FC4

F(“Temp300”)=2
“Templ”

FIGURE 7. Hash index.

Obtained data are shifted to the hash function as an input
resulting in assigning bucket. It is then used for storing a
pointer to the particular input row.

Similarly, such an approach is also used for any operation
and data retrieval. As visible, a crucial element influencing
the efficiency of the processing is just the hash mapping
function, which must be robust for any data, small data set,
and large data amount simultaneously. Moreover, data value
patterns can evolve, and such functions must be aware of it
to ensure uniform distribution anytime. Finally, an important
factor is related to array sizing. Whereas each bucket stores
the data pointers randomly, all of the referenced blocks must
be loaded into the memory for consecutive evaluation and
condition checking [40].

A gradual reduction of hash indexes during the last period
can be perceived. This circumstance is due to an increase
in the amount of data that must be evaluated by shifting the
complexity. Currently, systems do not cover just current valid
data but the whole spectrum over time [41], [42]. Therefore,
it degrades the definition of the hash function, which fails to
protect the ever-changing structure and index values. In the
past, the hash function was evaluated from time to time and
possibly replaced by a newer improved version, but it would
be almost a daily routine with the increase in the amount of
data [15].

The second problem is the dimensioning of the field
structure itself in size. Data should be uniformly distributed
across the buckets, covering the amount changes. Moving
to autonomous cloud structures makes it possible to provide
transaction management and data archives, where outdated
data from the online structure are gradually transferred [5].
Thus, the amount and properties of the data rise can signif-
icantly change the characteristics over time. In the worst-
case scenario, processing may degrade to the need to process
all data if a bucket overflows. In this case, in contrast to
sequential processing, it would be necessary to calculate a
hash and build an index, which would be used to process most
of the original data anyway.

C. BITMAP INDEX

A bitmap index is a specific database index, mostly used in
data warehouses to reduce response time for large queries.
Its main benefit can be reached for low-cardinality index
columns with a high number of table tuples. Thus, it is used

46194

mostly for columns with a significant amount of duplicate
values. In comparison with other indexes, dynamic storage
requirement reduction can be identified. Due to binary oper-
ation processing with a small number of CPUs, dramatic
performance gains are present. The bitmap index structure is
very effective for the analytical query processing by applying
binary operations, which are very fast. Vice versa, bitmaps do
not focus on any data change. Therefore, its reconstruction
during the change operations is strongly demanding.

In contrast, the whole structure must be rebuilt if a new
value to be indexed (which is not already present in the
index) is added [40]. Fig. 8 shows the architecture of the
bitmap index by using just binary values for the internal
representation. Each bit of the bitmap corresponds to one
ROWID; thus, if the bit is set, it means that the referenced
data tuple contains the key value. The massive compression
of the data inside the index can be applied. Individual rows
are processed by the binary operation merging for the data
retrieval.

Dept bitmaps
Row ID list

Dept. 10 []
Dept. 20 | @ ®| |
Dept. 30
Dept. 40 [} [}

Row ID list Row ID merge Result Set

Salesman | @ [
Manager (1]
Janitor

Clerk [] (]

FIGURE 8. Architecture of Bitmap index.

Such index type is not suitable for online transaction
data processing, whereas it is characteristic of data change
operations online. Therefore, the bitmap index will not be
evaluated later for the performance evaluation. Performance
studies applied to autonomous data warehouses can be found
in [43]-[45].

D. PARALLEL & NOLOGGING CLAUSE

Creating an index offers you various clauses and options
that can significantly influence the management and inner
performance. In this section, two extensions are highlighted
— parallelism and transaction logging.

The parallel option allows the system to allocate multiple
index and table scanning processes. It is associated with
the index definition and is mostly used during index cre-
ation. The creation process is preceded by the whole table
scanning, identifying the rows, and extracting their positions
— ROWIDs. Thus, the table is full-scanned, up to the last
associated block (delimited by the High Water Mark [37]).
Using the parallel option, the table block set is divided into
several sub-parts, each assigned to one process run in a paral-
lel mode. Therefore, an index can be created rapidly sooner,
depending on the number of CPUs, physical data definition,
disc storage allocation, configuration, distribution, and par-
titioning [26], [46], [47]. The following code highlights the
description of parallelism. Based on [48], the parallel option

VOLUME 10, 2022

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

IEEE Access

should be set to the value (n-1), where (n) represents the
total amount of allocated CPUs for the database instance.
One core is then responsible for the supervision and workload
division.

Algorithm
Create index index_name
on table_name (list_of_attributes)
parallel n-1;

Although such a clause is mostly related to the creation
process, its significance can be identified during the data
retrieval and row search. Whereas the index key is not com-
monly used, multiple ROWIDs can be located by accessing
the index leaf layer, which can be present in multiple data
files. The data block loading process can be done paral-
lelly [49]. No matter how the data are processed, any change
at the index level must be covered by the transaction [24].
The transaction aims to transfer a consistent database state
to the new one by applying all the integrity definitions and
constraints. Before transaction approval, any change on the
data must also be applied to the relevant index set. As stated,
index operations are covered by the transaction. Any modifi-
cation is logged in the UNDO or online REDO logs to ensure
recovery possibility [7]. In case of any data error, the restore
and recovery process comes to the scene. Logs ensure the
consistency and durability of the approved transaction, even
after the failure. Then, the backup is taken, followed by logs
extractions and changes re-execution. Transaction logging is
unnecessary when dealing with the index, whereas the index
itself does not hold any additional information. It just creates
specific access optimized layer. It cannot happen that the
index refers to data that is not yet in the database or applies
changes that have not yet been made.

The introduced NOLOGGING clause allows you to skip
to the transaction logging process related to the index [37].
In the past, it was represented by the RECOVERABLE and
UNRECOVERABLE clauses. However, by introducing par-
titioned tables and LOB storage, particular characteristics are
useless. Therefore, the NOLOGGING clause of the index
instructs the transaction manager process to omit the REDO
log stream. However, UNDO must still be used, whereas the
transaction can be refused, so the index must be returned
to the original form. Vice versa, REDO logs are used only
in case of data or server failure, like disc errors, hardware,
or unplanned electricity outage, which end with the instance
disconnection and server shutdown. During the starting pro-
cess, the system recreates the structures to the point immedi-
ately before the failure. Backups and online and archive logs
are needed [50]. Whereas for the index, not all instructions
are present. The particular index must be marked as UNUS-
ABLE. In that case, it must be completely reconstructed by
the REBUILD operation [50].

On the other hand, it can provide significant performance
benefits during the index creation process and any changed

VOLUME 10, 2022

operation. The NOLOGGING clause assumes that the hard-
ware and individual network and electricity sources are reli-
able and that failure probability is significantly low.

E. CARDINALITY & SELECTIVITY

Indexes play a key role in high cardinality tables with multiple
data blocks. If the table consists of just a few blocks, an index
does not significantly impact and benefit. In such a case,
index treatment and its block loading necessity are not bal-
anced by reducing table block evaluation perspective. Rising
the data heterogeneity, changing frequency, and re-loading
data to the separate analytical or warehouse repository, the
importance of the index definition, impact, and necessity is
strongly increasing.

F. SEQUENTIAL SCANNING

Access to data through the index brings a significant increase
in performance. Index traversing is straightforward and bal-
anced and accepts all core data structure rules. At the bot-
tom layer, the address of the record can be gotten, which
is the direct and fastest way to access a particular record.
An opposite way for data access is sequential block scanning.
Fig. 9 shows the principle. Each associated data block (up to
the last block marked by the High Water Mark symbol) is
taken to the memory by the I/O operation. Afterward, it is
parsed to extract the row. Then, it is evaluated whether it
passes all query conditions (represented by the Where clause
of the Select statement). Finally, it is shaped based on the
Select clause focusing on the attribute or function results and
interconnected with the existing partial result set. The data
block loading process is demanding due to several reasons.
Firstly, it is loaded into the memory buffer cache, where
the free space must be identified (clean blocks). If there
is no space, a particular area must be freed by transferring
dirty block elements to the database, represented by the I/O
operation of the block and transaction log. Thus, an additional
database loading operation is added. Secondly, particular
block content is crucial. Each data block is related to just
one table. However, generally, it does not need to be full.
Fragmentation of the blocks is a relevant issue influencing
the performance of the sequential scanning — Table Access
Full. Finally, blocks associated with the table are not allocated
separately but are encapsulated by the extent — set of blocks.
As aresult, in the initial processing phases, some of them can
even be totally empty, but covered by the upper limit — High
Water Mark.

NESTED LOOPS PLAN HASH JOIN PLAN

(NESTED LOOPS j

i

s Y
| TABLE ACCESST1 | (TABLE ACCESS I_T2j
~ J

Y
| HASHJOIN |
N~ J

—

s Y Y
| TABLE ACCESST1 | [TABLE ACCESST2 |
A J J

FIGURE 9. Dynamic access plan routing - architecture.

46195

IEEE Access

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

G. INDEX ACCESS PATH TAXONOMY

Access path selection is one of the most important elements of
the optimizer decision. It significantly influences the process
and principles of data retrieval. Generally, two basic types of
access paths can be identified — Full Table Scan (Table Access
Full), which is used, if there is a necessity to scan and retrieve
a large portion (or even the whole structure) of the table
data. Another situation covering such a technique involves
accessing a small table with just a few blocks. The above
perspectives are optimized and do not bring performance
issues, whereas pointing to the index would bring additional
demands, which are not balanced by the benefits [28]. In addi-
tion, index data loading and traversing require I/O operations.
In the final stage, original data blocks must be memory
transferred and evaluated.

A different strategy is associated with the index access
methods. The index obtains relevant block identification, pro-
viding a ROWID set (or direct data, if all required are already
part of the index). For decision making, selectivity, statistics,
and estimated cardinality are important. Selectivity (S) of
the index (I) is the number of distinct values (d) contained
in the data set, divided by the total number of records (n).
(A) represents the treated data elements [51]:

Algorithm
S =d/n
d => select count(distinct A) from T;
n => select count(*) from T;

Current statistics ensure optimal input set for the optimizer
decision making as a framework view of the data, focusing on
the cardinality, column selectivity, ranges, undefined values
coverage, etc. Statistics are generated either automatically
during the maintenance windows or on-demand by the fol-
lowing method calls of the DBMS_STATS package:

Algorithm
DBMS_STATS.GATHER_INDEX_STATS
- - Index statistics
DBMS_STATS.GATHER_TABLE_STATS
- - Table, column, and index statistics
DBMS_STATS.GATHER_SCHEMA_STATS
- - Statistics for all objects in a schema
DBMS_STATS.GATHER_DATABASE_STATS
- - Statistics for all objects in a database
DBMS_STATS.GATHER_SYSTEM_STATS
-- CPU and I/O statistics for the system

H. INDEX ACCESS PATHS

Index scan performs optimization sorts by the index strategy
getting the key and ROWID pairs. Such ROWIDs are then
used for the block location [17]. A special case is covered
if only indexed values are accessed. In that case, where
no additional blocks are necessary to be loaded, processing

46196

ends and ROWIDs are not used. Vice versa, if additional
column values are required, Table Access by Index ROWID
method is used [52]. The following techniques can be classi-
fied [37], [52]:

o Index Unique Scan method is based on unique condi-
tions placed in the Where clause ensuring that no more
than one row is obtained.

o The Index Range Scan method is based either on the
range condition or generally based on any condition
covered by the index. Therefore, there is no guarantee
a single record will be provided as a result.

o Full Scans — Index full scan methods cover the set of
operations, which read the whole index entries. Thus,
it is an analogy to the Full Table Scan method, but it
benefits because the result set has already applied a
sort operation (Index Full Scan). If all required data are
part of the index, but the index shape is unsuitable, the
Index Fast Full Scan method can be used. It is based on
the index size being always smaller than the referenced
table. Moreover, an index is more precisely optimized
from the storage perspective.

o Index Skip Scan has been introduced on the Oracle
9i version [24], [40]. It skips the leading column of
the composite index by using the prerequisite of low
selectivity of the first index column and high selectivity
of the rest ones.

I. PLAN TRACING

The above section focused on access methods for just one
table. Naturally, the query is commonly complex, joining
multiple tables. In that case, access method selection depends
on the foreign key definition, indexing strategy (if any), cardi-
nality, etc. [14]. Generally, three core methods can be located.
A Nested Loop is a simple method that presorts the child table
(with a foreign key) in the first phase. It, therefore, uses the
fact that foreign key is not indexed. It is the most demanding
Join operation. Merge Join is more straightforward, whereas
both sets are indexed, thus can be treated as sorted sets.
One pointer is used for each set by using merge operation.
Nested Loop method limitation is associated with the sorting
necessity in the first phase, which can be time-consuming for
large tables. The Hash Match method does not sort the data
but uses a hash function to divide data into small buckets
then treat it in parallel. Each bucket then stores a relatively
small amount of data, so the joining operation is easier,
either by sorting such bucket data or scanning it fully [37].
Nested Loop and Hash Match methods strictly depend on
the quality and accuracy of the statistics. The optimizer must
select the appropriate form based on the table and result set
cardinality estimation. If they are not relevant, performance
can degrade, reflecting the wrong decision. To limit such a
problem, an additional optimization method was introduced
in 2013 by DBS Oracle. In 2017, it was implemented in
SQL Server, as well. Adaptive join can dynamically shift the
processing method based on the threshold at run time [37].

VOLUME 10, 2022

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

IEEE Access

In principle, two data plans are created (Fig. 9). Two server
parameters secure definition and management. The original
form of the Optimizer_Adaptive_Features has been marked
obsolete in Oracle 12.2 [37]:

Algorithm
Alter {session | system}
set Optimizer_Adaptive_Features = {true | false}
[scope = both];

Fig. 10 shows the dynamic execution plan. Rows marked
by ,,-* are inactive. Thus, Nested Loop is used, whereas it
requires lower processing demands. The total costs are 3.
By using Hash Match, total demands are 5, whereas the Hash
structure has to be created by calculating data positions in
hash buckets.

aaaaa

S BY INDEX ROWID BATCHED

INDEX ROWID

FIGURE 10. Dynamic execution plan of the query - table joining.

IV. AUTO-INDEXING

Automatic indexing was proposed in February 2019. It is
now available just for the DBS Oracle, removing the database
administrator intervention necessity for index management
and structure optimization. Using artificial intelligence,
machine learning techniques, and complex analytics, the
database manager automatically evaluates the need and
impact of the index set to ensure complex performance.
It does not only create new indexes, but the existing
ones are emphasized and optimized to guarantee topical-
ity, like transforming the single-column index to the con-
catenated version, etc. [18]. The SYS_AI name denotation
marks Auto-created indexes as a prefix [53]. The auto-
matic indexing feature makes the index invisible to ensure
performance and no existing query degradation. Gener-
ally, automatic indexing can be set using two modes —
REPORT_ONLY or implemented characterizing the out-
put of the evaluation analysis, which can contain either a
new index set implementation (IMPLEMENT option) or
just a set of hints is provided (REPORT_ONLY). Then,
the administrator is then responsible for the implementation
itself.

VOLUME 10, 2022

Algorithm
dbms_auto_index.configure C AUTO_INDEX_MODE’,
{’IMPLEMENT’ | ‘/REPORT_ONLY’ });

303

Decide

FIGURE 11. Auto-indexing management staged process.

Fig. 11 shows the staged process of the automatic index-
ing. Firstly, it analyzes the current workload by extracting
processed queries across all data manipulation layers (Insert,
Update, Delete and Select). Although the data retrieval is
emphasized, other operations should not provide significant
degradation, and the overall performance should benefit,
respectively (CAPTURE phase). Then, operations for the
optimization are extracted (IDENTIFY phase) followed by
creating new indexes, respectively optimizing existing. All
newly created indexes are marked as invisible to evaluate
costs. If the benefits are positive and significant, during
the DECIDE phase, the system implements indexes and
makes them usable by transforming the changes to the visible
form. Finally, existing indexes are monitored, whereas the
workload, data access methods, principles, and patterns can
evolve.

Query
Select index_name, visibility
from user_indexes
where index_name like ‘SYS_AI%’;

Fig. 11 shows the automatic indexing management pro-
cess. First, the index is created as invisible, followed by
checking all SQL statement execution plans. If all state-
ments degrade, a particular index will remain invisible and
is marked for dropping. Vice versa, if all statements benefit,
the specific index is made visible and accessible during the
optimization. However, the most likely scenario is reflected
by the state that some statements show benefits, the rest per-
form degradation. In that case, the index is made visible, but
the optimizer creates a SQL plan baseline to prevent existing
queries from being degraded [36], [54]. Thanks to that, there
is no performance regression done by the automatic tasks —
analyzers and advisors. Fig. 12 shows the list of advisors
supervising the auto-indexing process.

46197

IEEE Access

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

Query
Select *
from dba_advisor_tasks
where owner = ‘SYS’
order by task_id;

TASK_ID TASK_NAME
2 SYS_AUTO_SPM_EVOLVE_TASK
3 SYS_AL_SPM_EVOLVE_TASK
4 SYS_AI_VERIFY_TASK
5 SYS_AUTO_INDEX_TASK SQL Access Advisor
6 AUTO_STATS_ADVISOR_TASK Statistics Advisor
7 INDIVIDUAL_STATS_ADVISOR_TASK Statistics Advisor

ADVISOR NAME

SPM Evolve Advisor

SPM Evolve Advisor

SQL Performance Analyzer

FIGURE 12. Auto-indexing advisor list.

For the automatic index configuration, a separate index
tablespace can be created. Based on the [33], data and index
extraction can significantly impact performance, whereas
access to the index and data can be done in parallel. Moreover,
indexes have different demands, so the index block size can
be smaller to focus on the relevant traverse path [55].

Algorithm
dbms_auto_index.configure
(‘AUTO_INDEX_DEFAULT_TABLESPACE’,
‘TBSPC_AT);
dbms_auto_index.configure
(‘AUTO_INDEX_EXCLUDE_SCHEMA’,
‘FLIGHT_DESC);

Indexing strategy can be monitored and parametrized using
DBMS_AUTO_INDEX package methods.

Another optimization strategy was introduced in Oracle
12¢c by focusing on the In-memory column store. In that
case, the traditional row format is replaced by the column
definition in the instance memory (located in a System Global
Area). It applies to the large tables, which would originally
perform fast full scans. The principles are associated with the
requirement to locate just a small column subset [37].

The columnar memory format option is supervised by
the Inmemory_size system parameter, which is static, and
therefore, instance restart is needed to be applied. Size cannot
be less than 100 MB [11], [56].

Algorithm
Alter system set
inmemory_size = 500m
scope = spfile;

A. SUMMARY - BENEFITS AND COSTS, RESEARCH
PERSPECTIVES

Indexing is a relevant, robust, and complex issue concerning
database access optimization. Several index approaches have
been discussed in the previous section, mostly focusing on

46198

the common, widespread techniques based on the B+-trees.
Such data structure is not only the leading solution in a puzzle
of performance guarantee but produces a robust solution in
terms of data evaluation — either in the size perspective but
also in structure change management. It is also error-prone
and ensures access fragmentation reduction. Reflecting the
architecture, the issue of migrated rows can be identified,
present in case of change operations, where the new data tuple
does not fit the original block dimension. Moreover, indexes
highlight the pointers to the data. Thus, if the physical storage
is changed on the data file or tablespace manner, the whole
index is marked as unusable and must be completely rebuilt
to make it usable.

The second aspect highlighting the architecture of the
B+tree index is the physical representation. The B-tree
structure is always balanced, so the height from the root to
any leaf node is always the same. It must be done in case of
any change at the index. It can be done at the record level
(default solution) or the entire operation (APPEND hint).
When multiple operations are done in parallel, the balancing
process can be demanding and long-lasting.

The third optimization strategy focuses on the transactions.
It is ensured that the index is correct by corresponding to
the current data state. The transaction cannot be approved
without applying all changes to the whole index set. More-
over, to ensure the recovery, any change done on the index
level is stored in the transaction logs, stored physically in the
database storage of online Redo log files. Such an option has
two perspectives. Firstly, the index can be reconstructed to a
consistent state after the instance failure and remain usable.
Even after the storage failure, in the event of disc corruption at
the index block level, the particular structure can be restored
and recovered from the backup, followed by applying logs.
Thus, the structure is robust and error-prone.

On the other hand, the second perspective is based on the
additional demands. To ensure the recovery process, all logs
between the timepoint of the backup and the current time
must be present. Otherwise, although the recovery process
starts, it raises the incompleteness of data — discontinuity of
the system change number. The whole recovery is corrupted,
resulting in marking relevant indexes as unusable. Thus,
index transaction management, while ensuring correctness,
if the ability to archive all logs is not enabled, the ability to
recover completely is lost. Moreover, parsing many transac-
tion logs can be very time and resource-consuming.

Finally, multiple access methods were introduced and dis-
cussed over the decades. Data identification and location
can be made by sequential scanning or by using indexes.
Decision-making is done by the database optimizer, point-
ing to the current statistics. However, they are not updated
automatically, but their refreshing operations are planned to
the maintenance windows [40]. When the robust data stream
is present and data evolve rapidly, even currently completed
refresh is no longer relevant. It may result in improper
decision-making, whereas the input data are incorrect. Opti-
mizer management is based on heuristics, influencing the

VOLUME 10, 2022

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

IEEE Access

selection of access methods. Therefore, it is necessary to
focus on multiple aspects concerning the execution plan.
In this paper, we propose new techniques to ensure up-to-date
statistics. Several execution plans are checked if the data pat-
tern or amount is changed significantly. Generally, an already
calculated plan is used, if available directly. However, in our
proposed solution, the definition is extended by summarizing
the data structure, data amount, and reflection perspective.
Thanks to that, the database system can autonomously eval-
uate the existing SQL plan, emphasizing the current data
image.

Although indexes form robust solutions to ensure perfor-
mance, various improvement streams can be identified. In this
paper, we focus on the following segments by proposing our
techniques:

« migrated rows identification and reflection,

« index automatic balancing,

« index structure efficiency evaluation and consideration,
« index management outside the main transaction,

« control of undefined values (NULL),

« relevant data block identification,

« dynamic execution plan optimization.

V. OWN SOLUTION

Section 4 summarizes existing database approaches to deal
with the indexes by pointing to various research spheres.
In the last paragraph, there is a definition of the techniques
covered by our research. The solution is based on the B+tree
index as a core element, extended by various other data
structures and proposed background processes to handle it.
The whole section is divided into multiple parts to focus on
different optimization strategies. In the conclusion section, a
discussion about the limitations and future research perspec-
tives is present. By reaching the complexity of the proposed
architecture, significant performance improvements can be
identified.

A. MIGRATED ROWS IDENTIFICATION AND REFLECTION

The database is defined as a set of data files formed in the
block granularity. The interconnection between the memory
and database is a tablespace, which delimits the block size.
Migrated rows are created if the original data record no longer
fits into the original block after the change. The system phys-
ically searches for the new repository by locating the block to
handle a particular row. If there is no space available, a new
extent (set of blocks) is allocated. Thus, in principle, there is
no problem finding the new location. However, it can have
an impact on the indexes. There is no specific pointer of the
opposite direction - definition from the block to the relevant
indexes. It would be necessary to scan all indexes to apply
migrated row, which is represented by adding a new pointer
from the original one to the new repository. As a result,
multiple data blocks need to be loaded to locate the row using
the index. In general, it does not have to be just two blocks -
the original and the new block storage, but the structure may

VOLUME 10, 2022

be larger, depending on the overall operability of the table.
Thus, the migration of one row can be spread across multiple
blocks, all of them in the chain must be loaded sequentially,
and just the last one is finally required. Thus, if the update
and delete operation frequency is high, performance can
significantly degrade over time. Currently, it can be solved
just by rebuilding the index completely. Reflecting the input
stream (operated by various data manipulation operations)
and data evolution, such an approach is unsuitable, and it is
necessary to apply and limit migrations online dynamically.
We propose and discuss different solutions to analyze the
impact and evaluate benefits. As evident, the core element is
to identify migrated rows and remove additional pointers to
ensure that the existing index set always reflects the current
blocks. From the architectural perspective, three solutions are
proposed.

B. MIGRATED ROWS - SOLUTION 1

The first solution limiting the impact of migrations is based
on the data block structure extension. A list of pointers to the
index set is present for each data row. Thanks to that, it is easy
to locate any index. It points to the particular leaf block, which
holds the ROWID reference. Thus, the original ROWID value
is replaced by the new address, where the data reside. From
the physical point of view, a new dynamic array is allocated
inside the main block (Fig. 13). As evident, if a new index is
created, a new array element must be used to reference the
index.

4’{ Index 1 ‘ ‘ Index 2 ‘ ‘ Index n ‘
A T
Extent 1 Extent n

Data segment|—» OOCMO000)] - [OD00OOCOOM]

‘ Migrated row

Block

Listof

pointers

FIGURE 13. Architecture of solution 1 - list of pointer structure.

Therefore, each operation is applied at the index level and
at the extended structure (List of pointers - address field)
to eliminate migrated rows. As a result, it is necessary to
load and update the block itself during any change operation.
In addition, if the original index were set as NOLOGGING
after the instance failure, it would be necessary to reconstruct
the entire index and all blocks, which can be significantly
expensive. Mean Time To Recovery parameter limitation can-
not be reached — indexes will be unusable, and address fields
will become invalid. If the automatic indexing is enabled, the
dynamic structure would have to emphasize the efficiency of
address field expansion. Concluding, adding an index could
create another migrated row necessity, not at the level of the

46199

IEEE Access

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

data themselves, but at the address field granularity. Block
itself does not hold only data themselves, resulting in the data
block amount extension. Sequential scanning would bring
additional demands when dealing with the indexes. Origi-
nally, several rows could be present inside one block. For
now, data representation and available size are lowered. Thus,
using an index can increase processing costs and the number
of I/O operations.

Moreover, suppose the number of indexes was too large.
In that case, the structure could not fit in the block
itself. An overflow block would have to be defined, which
would cause additional costs for record processing, as the
entire overflow must be loaded whenever the data changes
(migration).

C. MIGRATED ROWS - SOLUTION 2

Solution 1 is based on the main block structure extension. The
original segment for data holding is divided into two modules
holding the data, and the address field module is used inline.
The second solution principles are the same, but the address
field is extracted into a separate data structure, also block-
oriented. These address fields are tree-structured, so more
efficiently can be searched. Each element has an object iden-
tifier, extended by the physical data position (ROWID) and
reference list to the indexes. Such reference list can be stored
either inline inside the index (SOLUTION 2a) or out-of-line
in a separate block array (SOLUTION 2b). The advantage
of SOLUTION 2a is based on the assumption that any node
and particular reference list is in the same block. However,
the implementation is not robust from the perspective of
adding or removing existing indexes (done, e.g., by automatic
indexing). Vice versa, index set extension or reflection of
existing index approaches benefit if the reference list is stored
separately. In that case, a particular reference array can be
extended at any time. However, the number of blocks to be
loaded is increased by one for any data row. Conversely, refer-
ence list extension can be located in the overflow block struc-
ture associated with each node reference list in case of block
fulfillment. Fig. 14 shows the SOLUTION 2a architecture.

Reference list — max.
size (delimited by 16
blocks)

A A 4 Y Y A

ID ROWID [|

ID ROWID [|

ID ROWID ||

ID ROWID []

Data Block Data Block

FIGURE 14. Architecture of solution 2a - inline reference list.

The architecture of SOLUTION 2b is shown in Fig. 15.
Note that the overflow structure is optional and added dynam-
ically if one block cannot cover the reference list completely.

46200

~
o
N
a
S

[613] | |

A, A, A 4

ID ROWID

Data Block

Data Block

K X
Overflow Overflow Overflow Overflow
block 1 block 2 block 1 block 2

Overflow Overflow
blodk n Overflow module block n

Overflow module

FIGURE 15. Architecture of solution 2b.

The introduced Index_referencer background process is
responsible for the whole structure management. Its workers
(Index_referencer_worker(n)) are responsible for overflow
segment optimization by calculating the block usage — blocks
are split and merged autonomously to ensure performance.
Index_referencer_worker background process is delimited by
the worker identification, followed by the ID represented
as ,,n‘‘ in a numeric format.

D. SOLUTION 3 - MIGRATION-POST-APPLICATION

As stated, the problem of row migration can be spread across
various blocks. A specific structure can be created to limit
the impact to reference just two blocks to hold migrated
rows. A particular original and final block repository is stored
in the Migration_mapper structure if the migration is to be
made. It can be associated with any table and ensures that the
migration is relevant just for two blocks and cannot be spread
wider.

The solution is based on identifying the data migration
on the database block. Instead of using the direct pointer
to the next block, the database access optimizer looks to
the Migration_mapper and detects the final stage reposi-
tory. Although the additional block needs to be loaded, the
Migration_mapper module is commonly small and can be
placed directly in the existing Buffer cache of the database
instance. The I/O operation extension represents the dis-
advantage of the solution. Migration_mapper size demands
cannot be reduced until the whole index set rebuild operation
execution is done. Once again, all indexes for the particular
table must be reconstructed to truncate the Migration_mapper
functionality. Otherwise, it must exist original to serve the
rest index access. The solution of the migration mapper is
shown in Fig. 16. Note that there can be several levels of
migration for the particular row. Each index can reference

VOLUME 10, 2022

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

IEEE Access

ROWID (ABCD) —— & KLMN
“} Represents the same
ROWID (DEFG) —— P KLMN object
Original New
ABCD e m— l)I<FGT
DEFG <—J —_— HIJK T
CCccC <—J —_— > DDDDT
HIJK <—J —_—T> KLMN

FIGURE 16. Architecture of solution 5 - Data pointer reflector.

a different root node of the Migration_mapper. Thus, the
reference model cannot be directly cascaded.

E. SOLUTION 4 - STORING PATH

Another concept is covered by solution 4. Although the con-
nection between the index and data is just one-directional,
during the access using the defined index, traverse path can
be temporarily stored, thus if the data migration is detected,
by such definition, index pointer (ROWID) can be updated
to cover the real data block, where the data are located.
To implement it, a Data path reflector memory data structure
is proposed. Thus, it is associated with the session. It is
not shared among the instance — it would not bring any
benefit, whereas the change operations on a specific row are
always done in an exclusive mode — only one transaction
can change a particular row at any time. Data path reflector
is, therefore, associated with the transaction. After reaching
the statement to terminate it (commit/abort), such a structure
can be flushed. Internally, it is implemented by the pointer
layer for each data update operation. If the migrated row is
detected, the Session Reflector background process operator
of the Data path reflector structure is notified to apply the
change.

This proposed solution can, however, limit the migrated
rows only partially. Provided Data reflector is interconnected
only with the already used access path and does not reflect
the rest indexes on the particular data table. Conversely,
it applies the change only on one index element. As a result,
the migrated row is fragmented. The original block must
always store another block pointer to ensure data reliability
and index row-level security.

F. SOLUTION 5 - DATA POINTER REFLECTOR

The last proposed solution in this category replaces the path
with the direct pointers. Principles are similar to solution 4,
extended by the Index Submapper background process man-
aging the pointer infrastructure. From the architectural point
of view, indexes do not hold physical database addresses
(ROWIDs). Instead, logical addresses to the Data pointer
reflector are used (ROWIlog). Data pointer reflector is the
index submapper structure transforming logical row address

VOLUME 10, 2022

to the physical pointer to the database. The advantage of such
an approach is based on the unicity. The migrated row cre-
ation is not reflected the individual indexes, whereas logical
pointers do not evolve — they just define the source to the
Data pointer reflector. So, the physical data address pointer
is always stored in the database just once, irrespective of the
number of defined indexes. Data pointer reflector is treated as
the inline B+-tree index structure based on the logical address
mapping each value to one physical ROWID. Thus, if the
migrated row is created, it must be applied only once in the
reflector structure. Searching for the particular value can be
done either by the internal B+4-tree index structure shaped by
the reflector (solution 5a) or the traverse path (defined in
solution 4) can be used, forming solution 5b. The traverse
path is stored in the session-specific area and valid during the
particular transaction.

Solution 5b provides significantly better performance,
whereas the traverse path definition is the easier and fastest
approach to reference the index. In this case, the traverse path
last node extracts logical row addresses to update the physical
ROWID in the reflector. As a result, migrated row is just the
subelement of the processing inside the transaction. Hence,
there can be no migrated rows for the managed data after
committing.

Migrated row constraint removal is done no later than at the
end of the transaction. Thus, it can be projected immediately
after the data change itself or shifted to the end of the transac-
tion, where multiple migrations can be applied in a common
block.

The logical model of the Data pointer reflector is shown in
Fig. 17. The Index Submapper background process manages
the introduced memory structure. Physical ROWIDs are not
used in a direct index manner. Instead, logical ROWlog point-
ers are used to reference the Data pointer reflector. Physical
data addresses are then located just in the introduced memory
structure. Migration can then be easily detected, whereas just

S . /stn\ l\\mw\
12 ROWlog »| 93 ROWlog »| 123 ROWlog » 253 ROWlog »| 697 ROWlog
44 ROWlog 96 ROWlog 197 ROWlog 254 ROWlog 714 ROWlog
56 ROWlog 121 ROWlog (¢ 222 ROWlog 255 ROWlog [€— 949 ROWlog
@ Apllying change — in ONE structure

Extent 1 Extentn
- —{00mO0000| -[Do0000m0

@ Migration

FIGURE 17. Architecture of solution 5 — Data pointer reflector.

46201

IEEE Access

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

one reference needs to be updated, the whole index set can
remain original. Each index is routed to the same Data pointer
reflector associated with the particular table.

G. PRIORITY MANAGEMENT

The main property of the B+tree index as a default approach
is the balancing, which on the one hand, ensures performance,
whereas the path from the root to any leaf is always the same.
On the other hand, the individual data change operations must
ensure balancing by adding additional demands. B+trees do
not degrade over time and ensure efficiency with the data
growth by splitting and merging blocks. Naturally, with the
increase of the data amount, the index becomes more and
more complex. In principle, data do not need to be accessed
in an even distribution. When dealing with the time elements,
current valid data forming the conventional image are most
often obtained. Over time, historical data lose their mean-
ing and are queried less and less. Index approaches do not
reflect such environment characteristics and ensure the same
processing priority. The research emphasis of this paper also
deals with the aspect of data priority inside the index. In that
case, there is no strict key balancing. Instead, the priority
strategy is used to ensure that the most often used data can
be obtained even significantly better.

For each data row of the registered table, the index is
extended by evaluating priority, calculated by the frequency
of access. It is handled in the index granularity, whereas the
tuple itself is composed of attributes with various frequency,
precision, and durability of the update and Select statement.
Notice that each index node is extended by the Access Ticker
attribute covering the amount of access. To secure the solu-
tion, each value is associated not only with the data node but
encapsulates the used index access method, as well. Finally,
these data modules are temporal oriented, reflecting the usage
over time. Thanks to that, index balancing can be done
dynamically, e.g., at the end of the month, complex analytics
and reporting can be done based on monthly data granularity,
so the index can be rebalanced to serve the process and focus
on those covered data. Furthermore, the whole process can be
done dynamically using the estimated activity list.

Evaluating the impact of the priority just on the index
definition does not bring significant benefit. Reflecting on the
following strategy managing the various amounts of index-
covered data, it is evident that it is rather broad than deep.
In section 3, there is Table 1 showing the index depth for
the defined amount of data. It is calculated by the BLEVEL
parameter of the {user | all | dba}_indexes data dictionary.
It does not cover the root node of the index; therefore, the
actual traverse path length is one greater than the dictionary
obtained value.

On the other hand, the relevant block-level data can be pre-
processed and preloaded into the memory based on priority.
The ROWID can reference the block already present in the
memory. Therefore, the I/O operation can be shifted to the
less demanding processing unit period. Access Ticker con-
sists of the total number of accesses in a compressed mode

46202

user_index_access_ticker
g= table_name Varchar2(30) NN (PK)
d= index_name Varchar2(30) NN (PK)
d= object_id Raw(10) NN (PK)
d= access_time Date NN (PK)
index_type Char(1) NN
access_method Varchar2(30) NN
leaf_node Number NN
precision_factor Number NN

FIGURE 18. Access Ticker data dictionary structure.

as a direct part of the index. A more detailed approach can be
accessed by introducing a data dictionary view secured by the
index monitoring process and used by the optimizer as part of
the statistics. It consists of the following structure (Fig. 18):

« table_name — referenced table,

« index_name — the name of the used index,

o object_id — identifier (primary key) of the accessed
object for the particular table,

« index_type —atype of the index — B+-tree, Bitmap, Hash,

o access_method — used access method (index unique
scan, range scan, etc. + methods for table joining),

o leaf node — a reference to the accessed leaf node of the
index consisting of the data address,

« access_time — date pointer of the statement execution,

« precision_factor — specifies the rebalancing precision
factor of the index (used for the index optimization
complexity calculation).

A usable index is always balanced and performance-
optimized by applying the changes directly to the index inside
the transaction. It is ensured that the transaction itself can
be approved just after the data and index management. Thus,
index access is trusted. Any data portion reflecting the valid
data row is part of the index. As a result, if the optimizer
uses the index access path, data amount mostly related to the
block number is strongly limited. Therefore, the data retrieval
process can significantly benefit from using the index.

On the other hand, other operations manipulating data must
apply all changes to the whole index set. If the index set is
strong, modifying all relevant indexes can rapidly extend the
inner transaction’s processing time. Three operations can be
identified for each index when evaluating index management
processing during the change. Firstly, it is necessary to extract
data to be indexed. Then, in the second phase, detailed data
are routed to the index forcing it to allocate a new index
element. Such activity is placed to the traverse path, and a
new node is assigned to the leaf layer. Finally, assuming that
the B-+tree index is used, an index balancing operation must
be done.

In principle, each data row can require balancing, which
can be done separately for each row (default approach),
or balancing operation can be done one time on the

VOLUME 10, 2022

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

IEEE Access

transaction granularity level (append hint). One way or
another, index balancing restructuralizes the index by using
locks to ensure that the process can be done securely and
totally. Other transactions and retrieval operations must hang
to ensure correctness. If the data stream is high, a significant
part of the transaction management is directly related to the
index balancing. One of our research projects emphasizes
lowering the demands, shortening the transaction itself, and
extracting the index management from the main transaction.
On the other side, it is still inevitable to ensure the index’s
suitability, correctness, and reliability; otherwise, the index
would not serve the data location. Fig. 19 shows the current
data flow.

Transaction start
point

Data operation
identification

v v

Table extraction

v

Storing data

Index extraction

Ready to commit

\ 4
. Index data
applying

v

Index balancing

.

commit

Rowid extraction

FIGURE 19. Existing data flow using the index balancing.

Our proposed solution introduces the post-transaction
layer associated with the index. Data are not indexed directly
inside the main transaction. Such activity is divided into two
parts. A list of changes is extracted from the transaction
logs during the data processing by notifying the introduced
background process - Index Applier. In general, data are
not directly covered by the index. Just the specific flat data
structure is used for each index — Data Operator Module.
If the data change vector information is placed there, the
transaction can be approved and successfully ended. Thanks
to that, the transaction processing time is lowered, no index
balancing is present there. If there is any data inside the Data
Operator Module, the Index Balancer background process

VOLUME 10, 2022

becomes active. It is a master process responsible for applying
changes to the relevant index, followed by balancing. It is,
however, done separately from the main transaction. If the
change is implemented and index balanced, the definition
is removed from the associated module. As stated, an Index
balancer is a master responsible process created on demand
for each index. It is present during the whole period of index
validity as a supervisor. The instance also has various worker
processes — Index Balancer Worker(n), where “‘n” represents
its serial number. However, these workers are not associated
with the specific master process, they are just shared across
the instance, and each master can put the activity for them.
Fig. 20 shows the architecture and data flow of the proposed
solution.

Main transaction
start point

Data segment

v

Table extractor

v

Storing data

r~ \- Transaction logs
g

Data O Create Autonomous
at?i lpell;?t(t)r autonomous transaction start
module (Flat) transaction point
Commit <
i Index
Index extraction < Pipes
pplier

data

v

Purging Data
Operator module

¢])rocess
Applying index ¢

FIGURE 20. Proposed data flow using the index balancing out of the
main transaction.

The proposed architecture of the post-indexing can have
various benefits. As described, the main transaction can be
ended sooner, whereas no index balancing is present. Balanc-
ing is done separately, operated by added processes. In con-
trast to existing solutions, where balancing is done on a
row or statement layer, the defined solution uses transaction
granularity. The balancing can be evenly distributed and cover
multiple transactions in one operation. Thanks to that, the
balancing strategy can be optimized and globally shortened.

46203

IEEE Access

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

More operations are applied together in one process, so the
amount of balancing operations is also lowered. When deal-
ing with data retrieval, index access can generally be used, but
it must be extended by scanning the Data operator module,
which is done in parallel.

H. ARCHITECTURE ENHANCEMENTS

Currently, the most often used type is B-+tree based on index
key balancing. Mathematical operations are applied during
the index traversing to ensure the correct access path. Unde-
fined values modeled by the NULL representation cannot
be mathematically positioned and compared. As a result,
undefined values are not part of the index. In [20], we have
proposed several enhancements to ensure NULL value cov-
erage. The first categorical solution is based on storing unde-
fined values in a flat structure associated either by the left
or rightmost part, or undefined tuple addresses are located
in a separate structure directly interconnected to the root
index element. The second approach [28] uses categories
focusing on the origin of undefinition that is supervised by
the transaction reliability. In that case, individual pointers
are split into type buckets based on the registered modifiers.
Thus, the structure is part of the index segment physically
stored in the database.

In this paper, we use another perspective reflecting the
memory. Instead of using the index as a physical database
segment, the proposed solution locates the column store in
the memory (Fig. 21). It treats individual attributes sepa-
rately, even for composite indexes. Attribute column store
structure is located in the memory in the B+tree shape, with
the extension module for NULL value management stored
separately. The background processes and memory structures
represent the database instance. The memory Buffer cache
is the main repository for the data blocks and indexes to be
used during the data retrieval process. Introduced Memory
indexer is a column repository that buckets undefined data to
the categories in the NULLs management buckets. The whole
structure is operated by the Memory registration process
responsible for creating and maintaining the Memory indexer
memory module.

VI. PERFORMANCE EVALUATION STUDY

For the performance evaluation study, the Oracle Cloud
environment located in the Frankfurt data region has been
used, covered by the Oracle Database 21c Enterprise Edi-
tion Release 21.0.0.0.0 — Production version 21.2.0.0.0. The
whole database storage capacity was 20 GB. The database
holds the spatio-temporal data dealing with the flight data
by identifying the airplane objects by their flight parameters
— affiliation to the airspace (entry and exit time), departure
and estimated arrival time points, positional data, speed, etc.
related to the defined time points. For the study, the rela-
tional model consists of 100 attributes using the following
categorization:

46204

Instance

Buffer cache Memory indexer

M |:| |:| |:| T Memory
registration
IMI2

A

Null management buckets

0 00
0|0

V.V V. VvV VY

Database pointer list

Conventional

Indexes

Database

| Table 1 | | Table 2 | | Table n |—

FIGURE 21. Data - Airspace assignment.

o 20 static attributes, which do not change over time (air-
plane and airport characteristics),

e 20 temporal attributes, which were updated syn-
chronously by the defined frequency rate,

o 30 attributes, which were updated anytime randomly
with the defined precision (if the change was not
changed significantly — approximately 10% of updates,
original data values remain valid),

« 30 attributes, for which the synchronization was detected
and evaluated by the ML and Al techniques dynamically
on the fly to minimize size demands. The group-level
data management and monitoring analysis can be found
in [33].

Fig. 22 shows the data example of the flight area - airspace
(FIR) assignment. There is an object identifier (ECTRL ID) —
airplane license plate, sequence number related to the specific
flight ordering the data. AUA value identifies the flight space
assignment, which can evolve over time, as well. The assign-
ment is time-limited by the ENTRY TIME and EXIT TIME.
For the processing, also the weather conditions are taken into
emphasis. Planned and real routes are dynamically evaluated,
highlighting flight efficiency.

The evaluated data were partitioned across the quarters for
four years in total. The total data amount was 18 777 216,
forming 9.5 GB of data. The rest part (10 GB) was used
for tracking flight points (Fig. 23), namely flight identifier
(ECTRL ID), SEQUENCE NUMBER for ordering, time
point (TIME OVER), GPS position (LATITUDE, LONGI-
TUDE), and FLIGHT LEVEL. Finally, 0.5 GB of storage was
used for indexes and structural extensions.

VOLUME 10, 2022

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

IEEE Access

ECTRLID Sequence Number AUA ID Entry Time Exit Time

184408024 1 EGGXOCA 1.3.20155:54 1.3.2015 6:51
184408024 2 EISNCTA 1.3.20156:51 1.3.2015 7:17
184408024 3 EGTTCTA 1.3.20157:17 1.3.2015 8:00
184408024 4 ATC_UNK 1.3.2015 8:00 1.3.2015 8:00
184408024 5 EHAACTA 1.3.2015 8:00 1.3.2015 8:08
184408024 6 EHAMTMA 1.3.2015 8:08 1.3.2015 8:13
184408024 7 EHAMCTR 1.3.20158:13 1.3.2015 8:19

FIGURE 22. Data - Airspace assignment.

ECTRLID Sequence Time Over Flight Level Latitude Longitude
184408024 0 1.3.2015 1:00 041.98 -87.905
184408024 1 1.3.20151:25 041.98 -87.905
184408024 2 1.3.2015 1:47 330 42.06361 -84.32945
184408024 3 1.3.2015 2:05 330 42.03611 -80.75361
184408024 4 1.3.2015 2:23 330 41.89722 -77.17806
184408024 5 1.3.2015 2:41 330 41.64639 -73.60222
184408024 6 1.3.2015 3:00 330 41.28167 -70.02667
184408024 7 1.3.2015 3:15 330 41.11667 -67
184408024 8 1.3.2015 3:31 330 41.61445 -63.5

FIGURE 23. Data - Flight points.

External data files and backups were located separately in
the Object storage. After the processing, if the data need to
be removed from the main system, backup is created, and
provided files are stored in the Cloud Object storage.

The first evaluation criterion was migrated row manage-
ment. Whereas the storage capacity is limited, flight points
were located in the database in a time-limited manner using
the following principle:

« Current quarter assignments (flight points) are always in
the system.

o Direct predecessor quarter was always present in the
system.

o Older data were removed from the system dynamically
using the month granularity (the strength of air traffic is
most pronounced in the summer months).

Whereas the data were time delimited and supervised by the
sequential object assignment, significant data migration can
be present. Based on the evaluation of the flight data, 27.14%
of data migration was detected on the object granularity
22.57% for the individual row granularity, reflected by the
positional update of the flight point tracking.

Developed indexes were based on the following principles
to ensure reliability and performance to detect the anomalies:

« flight monitoring over time,

« whole airspace monitoring over the time,

« flight corridor monitoring over the peaks,

« flight level management for the airspace, flight corridor,

o airport surroundings monitoring,

« incorrect data detection showing unrealistic changes
during the time frame,

« accidents detection and risk evaluation.

VOLUME 10, 2022

Thus, seven indexes were developed, pointing to the spatio-
temporal sphere — one for each above task. All of them were
B-+tree oriented.

In section 5, multiple solutions were presented and dis-
cussed to limit the migrated row impact. For evaluation, three
aspects were processed in terms of performance:

« change database storage requirements (size demands),
« performance of the data retrieval:

e getting relevant data of the airspace assignment
(Slovakia region) during one day (24 hours) for the
workday and weekend separately,

e monitoring airplane during the whole flight (flight
time in the range of one to two hours),

e monitoring airport during one day.

« data loading and change process.

A. EVALUATION PERSPECTIVE 1 - MIGRATED

ROW LIMITATION

The amount and structure of data change significantly over
time. Historical images are removed or moved to archive
repositories, respectively. The states evolve, which causes
either the execution of the Insert command to add a new
tuple state or the Update command to change the existing row
dynamically, based on the representation and internal asso-
ciation. A typical element of data processing from various
systems is the requirement to increase the processed data’s
accuracy and update existing states by an additional preci-
sion range. That requirement forces the system to allocate
more space for individual attribute values and whole states,
resulting in the necessity to allocate new blocks.

In contrast, the original space cannot fit the updated row.
Thus, migrated row is to be created by decreasing the perfor-
mance of the index access, whereas particular data address
pointers (ROWIDs) are not precise. In this paper, several
enhancements have been discussed to limit migrated rows and
thus do not degrade the system’s performance with a change
in data - an increase in the size of the original record. The
performance evaluation references the no-migration manage-
ment model in a fully indexed environment. During the anal-
ysis, seven models were created and performance compared.

Namely, SOL_MIG_1 uses the data block structure exten-
sion covering the list of pointers to the index, located in
the block perspective. SOL_MIG_2 uses separate address
fields located in the index layer. There are two enhance-
ments of a particular approach, SOL_MIG_2a uses inline
pointer location, whereas SOL_MIG_2b uses dynamic allo-
cation using overflow blocks. These three solutions reference
pointer list on various locations and perspectives. From the
size point of view, the reference model requires 4 096 MB,
SOL_MIG_1 requires an additional 256 MB. The pointers
extend each block to the indexes, which reference it. When
moving the processing to the index layer, several references
can be duplicated by increasing the demands using 384 MB
for SOL_MIG_2a and 448 MB for SOL_MIG_2b. In total,
additional size demands are 6.250% for SOL_MIG_1 and

46205

IEEE Access

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

approximately 10% for SOL_MIG_2 variants. The worst
solution provides SOL_MIG_3, which requires a 12.500%
increase in storage demands.

It is caused by the composition of the migration path using
a hierarchical query. Although the data migration optimiza-
tion in such a structure can be done, it requires additional sys-
tem sources, but in dynamic systems, where the huge stream
of updates is present, particular balancing is not relevant.
Mainly, it requires too much time, and consecutively, after the
processing, the structure is not balanced due to many updates
in the meantime. Data path reflector is a memory structure
associated with the session by flushing the data regarding the
transaction. It requires an extra 384 MB. The best solutions in
size demands are represented by SOL_MIG_5 variants using
logical ROWlogs instead of physical representation using
ROWIDs. In that case, migrated row is visible only in the
Data pointer reflector and is stated only once, irrespective
of the number of impacted indexes. For B+-tree structure
managing logical pointers, additional demands are 224 MB
(SOL_MIG_5a). If the traverse path is used (SOL_MIG_5b),
extra storage demands are 240 MB.

The second evaluation stream dealing with the data row
migration is associated with the data retrieval. Three cate-
gories are covered — airspace assignment data, monitoring
airplanes during the whole flight, and monitoring the airport.
The most significant difference corresponds with the data
amount to be returned and associated time-consuming.

The reference model with no migration detection requires
loading multiple blocks in the chain if the original data are
moved to another block. In principle, it can be done multiple
times, lowering the performance, where many blocks must
be loaded to obtain relevant data row. In our case, if no
data migration is present, total processing time demands are
4.194 seconds for airspace assignment, 0.741 seconds for air-
plane monitoring, and 1.805 seconds for airport monitoring.
In the evaluation study, 20% of rows were migrated phys-
ically. The index itself cannot identify it. Thus, additional
demands range from 22.415% to 23.142% if no migration
management is present. As evident, there is no significant
difference between individual queries (less than 1%). The
list of pointers reduces the processing costs from 15.803%
to 16.774%. There is no overflow. Reduction is on the block
level. Thus, it is still necessary to locate the original block,
although the reference can be limited just to two blocks.
Migration detection and management of the SOL_MIG_2
variants benefit from the index level management. The data
migration is identified directly during the index processing,
and no additional segments are located.

Namely, additional processing time costs range from
12.220% to 12.632% for the inline index management.
Migration mapper covered by the SOL_MIG_3 does not
bring significant improvement compared to already stated
solutions. Therefore, the emphasis is done on the stor-
ing path in SOL_MIG_4. The traverse path for one index
is temporarily stored in memory to apply the migration
immediately. Total additional costs range from 8.874% to

46206

9.602%. The limitation is associated just with one index to be
covered.

On the other hand, size demands are lowered, as well.
Finally, SOL_MIG_5 variants cover data pointer reflector
either in the B+tree structure (SOL_MIG_5a) or traverse path
can be used (SOL_MIG_5b). In both cases, processing time
demands are rapidly decreased by raising only 8.140% for
B+tree and 7.222% for traverse paths.

Concluding the performance analysis of the data migration,
it can be stated that Data pointer reflector solutions provide
the best solution and representation in both evaluated cate-
gories — size and data retrieval process.

The final evaluation stream is related to the data update
operations themselves. Whereas additional structures are to
be added, it is necessary to evaluate the impact on the
processing. Whereas migrated rows need to be limited,
it is then necessary to reconstruct the access path, mostly
applied for the whole index set. All proposed solutions
bring additional processing time demands. Namely, structural
extensions for the block require 3.512%, which is related to
the block reconstruction necessity (SOL_MIG_1). However,
the whole demands are really low compared to the total
percentage of the data migration (20%), which needs to be
maintained. Index extension demands are increased to the
value 4.173% (SOL_MIG_2a) or 4.997% (SOL_MIG_2b)
caused by the index balancing necessity. Migration mapper
(SOL_MIG_3) is the worst solution in the perspective of the
update operation, whereas the whole access path must be
composed dynamically at any time. Pointing to the solution
SOL_MIG_4, the system requires only 2.102% of additional
processing time, whereas only one index is treated to limit
migrations inside. However, such a solution is not so robust
in terms of data retrieval (an additional 10%). The best
performance of the Update operations is provided by the
SOL_MIG_5a (B+tree internal structure) and SOL_MIG_5b
(internally operated by the traverse path). It reaches approxi-
mately 3% of additional processing time.

The complete results are mapped in the Table 3. Size, data
retrieval process, and update operations are evaluated. Values
are expressed in megabytes (MB) for the size, and second
precision is referenced for the processing time. All values
are also covered in the percentages to focus on the additional
demands.

Concluding this study criterion, based on the overall per-
formance evaluation, the best solution provides a Data reflec-
tor solution, by which the migration can be completely
removed. Although it has 7% of additional processing time
demands for the data retrieval operation, compared to the
reference model, it is lowered up to 15% in case of using
20% of the rows, which are initially migrated. If the number
of migrations rises, the ratio between the reference model
and proposed SOL_MIG_5 is more significant. Namely,
Table 4 shows the results comparing MIG_SOL_5b related
to the reference model. It points to the migration percentage
frame and related additional demands for both models. It is
evident that the proposed solution is reliable and can also

VOLUME 10, 2022

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

IEEE Access

TABLE 3. Results - extension requirement for data migration management.

Extension requirements

Performance results - Absolute Reference
additional costs values for model SOL_MIG SOL MIG SOL MIG SOL MIG SOL_MIG SOL_MIG SOL_MIG
of the migration referential No mieration
management model & 2a 2b 3 4 Sa Sb
management
Size MB 4096 0 256 384 448 384 512 224 240
% 0 6,250 9,375 10,938 12,500 9,375 5,469 5,859
getting relevant seconds 4,194 0,971 0,704 0,530 0,567 0,403 0,508 0,353 0,311
data of the
airspace % 12,632 13,521 12,123 9,602 8,410 7,418
assignment 23,142 16,774
Select n}01‘11it0ri1(11g - seconds 0,741 0,166 0,117 0,091 0,096 0,086 0,066 0,060 0,054
airplane during
the whole flight % 22415 15,803 12,220 12,914 11,647 8,874 8,140 7,222
monitoring seconds 1,085 0,247 0,180 0,133 0,143 0,129 0,101 0,089 0,081
airport during
one day % 22762 16,551 12,300 13,177 11,903 9,323 8,209 7,427
Tl Wiaikic seconds 14,452 0,000 0,508 0,603 0,722 0,795 0,304 0,451 0,445
% 0,000 3,512 4,173 4,997 5,504 2,102 3,119 3,078
TABLE 4. Results - Impact of data migration percentage.
Data retrieval - Extension requirements (%)
Data retrieval - Extension requirements 160.000
Reference
model SOL_MIG 140.000
No migration management 5b Difference
% % % 120.000
20 22,773 7,356 15,417 100.000
30 34,759 8,647 26,112
o 40 48,756 9,129 39,627 80.000
"§ 50 60,683 11,237 49,446 60.000
z 60 76,783 12,975 63,808
_S 70 87,112 14,012 73,100 40.000
2 80 99,742 15,800 83,942 20.000
<
5 90 112,401 17,468 94,933
‘g 100 137,820 20,771 117,049 0.000
0 20 40 60 80 100 120

ensure the performance in the degraded physical architecture.
For declarative purposes, values are expressed in percentage.
Fig. 24 shows the results in a graphical form.

B. EVALUATION PERSPECTIVE 2 - PRIORITY
MANAGEMENT
In the real-time control and safety systems, it is inevitable
to minimize the time consumption to obtain relevant data.
Section 5 deals with the own solution by covering priority in
the B-+tree structure extension. This evaluation discusses the
impact and benefits of such a model by the following aspects:
« change database storage requirements (size demands),
« performance of the data retrieval:

e getting relevant data of the airspace assignment
(Slovakia region) during one day (24 hours) for the
workday and weekend separately,

e monitoring airplane during the whole flight (flight
time in the range of one to two hours),

e monitoring airport during one day),

« rebalancing time demands and total costs.

The focus is on the data retrieval process during the perfor-
mance analysis and evaluation, which can lower the demands

VOLUME 10, 2022

——@— Data retrieval - Extension requirements Reference
model No migration management %

Data retrieval - Extension requirements SOL_MIG 5b %

Difference %

FIGURE 24. Results - Impact of SOL_MIG_5b on the performance.

if the relevant data are directly accessible via index without
individual node loading necessity. In this case, we use three
indexes covering the above-listed data retrieval processes.
As evident, managing priority brings additional size demands
in two sources:

« Index node extension dealing with the total number of
touches (SOL_PRIORITY_1). This solution provides
only a basic overview of the index node usage. There
is no definition of the access method nor the index
and table structure optimization level (block structure
fragmentation). However, the whole data are covered
directly inside the node allowing the system to load all
data together, forming the main benefit. Although the
size demands are not extended significantly, a relatively

46207

IEEE Access

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

robust and efficient solution can be achieved in terms of
priority detection.

o Data dictionary extension dealing with the more com-
prehensive statistics, like used access method, the total
amount of data covered by the query, executed operation
(Insert, Update, Delete or Select statement), estimated
and real costs, etc. (SOL_PRIORITY_2). Individual
access methods can have various significance levels,
namely, unique and range scans focus on retrieving data
using the optimal index. Indirect data access is per-
formed by the full index or fast full index scan methods,
by which the whole index is searched. In that case, the
touch element is not associated with the individual data
nodes, but the entire index is referenced. This solution
requires a bigger storage extension by referencing table,
index, individual index nodes, and methods. All the data
are temporal, losing relevance over time to ensure that
the most up-to-date data are preferred.

Table 5 shows the size demands in MB. The first solu-
tion does not deal with priority management, holding
the original index tree structure (SOL_PRIORITY_REF).
SOL_PRIORITY_1 uses data block extension for each leaf
element and requires 6 144 MB, reflecting the difference
of 2 048 MB in total. Dealing with the extent granularity
consisting of eight blocks of 8kB, additional 32 extents are
necessary to be used. The total depth of the index was 3.
When dealing with the SOL_PRIORITY_2, additional size
demands are identified for the data dictionary holding the
touches and references, emphasizing the used access method.
Compared to the original solution with no priority manage-
ment, the required increase in disk space is 3 072 MB. These
data are provided automatically during the statistics refresh or
by individual operation accessing the data. Comparing both
developed solutions, SOL_PRIORITY_2 uses 1 024 MB of
additional space. However, it reflects the access method and
the weight, significance, and time reference. As stated, the
system should focus on the most up-to-date references and
data locations.

TABLE 5. Priority management - size demands.

Name SOL SOL SOL
PRIORITY REF PRIORITY 1 PRIORITY 2
Type No priority Internal priority Extended data

management management dictionary statistics
(leaf index nodes)
Size 4096 6144 7168
demands
(MB)

Table 5 shows the total size demands for the indexes.
It is, however, necessary to evaluate the positive impact on
the data retrieval operation performance. Namely, we cover
airspace assignment flight and airport monitoring. The total
processing demands are expressed in Table 6 using the second
precision. As can be seen from the results, there is just a
slight performance benefit for the whole airspace monitoring.

46208

TABLE 6. Priority management - time processing.

Name SOL SOL SOL
PRIORITY REF PRIORITY1 PRIORITY2
Type No priority Internal Extended data
management priority dictionary
management statistics
(leaf index
nodes)
getting 4.194 4.142 4.073

relevant data

of the airspace

assignment

(seconds)

monitoring 0.743 0.741 0.739
airplane

during the

whole flight

(seconds)

monitoring 1.823 1.805 1.784
airport during

one day

(seconds)

Without any priority management, the total time demands are
4.194 seconds. By using proposed optimization, demands are
lowered using 1,26% for SOL_PRIORITY_1 and 2,67% for
SOL_PRIORITY_2. As visible, although there are benefits
in terms of processing time, the additional demands in size
do not make them up. Using flight monitoring, even less
significant difference expressed in percentage is present — no
more than 0.6% at the microsecond level.

Similarly, monitoring the airport during one day does not
benefit from using priority. There is just a little difference,
up to 2.19%, for comprehensive data dictionary statistics
management (SOL_PRIORITY?2). The main reason is the
index depth. If the table holds no more than 1 billion rows,
the index depth is 3 or 4, respectively. As a result, massive
rebalancing does not bring additional power. When dealing
with more data amounts, only an insignificant change is
present. Note that if GB or TB od data are stored in one
table, commonly, data are partitioned using a local index set
for each sub-structure, shifting the solution to the already
described model.

Table 7 shows the demands on the rebalancing in time
representation (second precision).

TABLE 7. Priority management - rebuilding.

Name SOL SOL SOL
PRIORITY_REF PRIORITY 1 PRIORITY 2
Type No priority Internal priority Extended data
management management dictionary
(leaf index nodes) statistics
Rebuilding 109.254 131.925 128.854
time demands
(seconds)

Balancing based on the priority brings additional demands.
If the touches of individual leaf index nodes directly inside
are stored internally in the index, before rebuilding, such data

VOLUME 10, 2022

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

IEEE Access

must be extracted and temporarily stored in the database.
Moreover, index size is extended by storing access fre-
quency for each row. As a result, an additional 22.671 sec-
onds are required for the specified environment. The main
advantage of the extended storage used by the solution
SOL_PRIORITY_2 is based on the fact that the index struc-
ture remains the same in terms of structure. Therefore, there
are no additional blocks required.

On the other hand, it is necessary to calculate the ratio and
priority for each node to be applied. It brings 19.6 seconds for
such activity. Fig. 25 shows the results in the graphical form.

REBUILDING OPERATION (S)
140
120

100

SOL_PRIORITY_REF SOL_PRIORITY_1 SOL_PRIORITY_2

FIGURE 25. Rebuilding operation demands - priority management results
(seconds).

The second criterion in this part is related to the balancing
operation based on priority. Three environments are to be
used — with no priority management, internal and external
data source. Table 8 shows the results for 100 000 balancing
operations based on the same environment.

TABLE 8. Rebalancing time - priority management.

Name SOL SOL SOL
PRIORITY_REF PRIORITY 1 PRIORITY 2

Type No priority Internal priority Extended data
management management dictionary
(leaf index statistics
nodes)
Rebalancing 17.489 21.176 20.813
time demands for
100 000
operations
(seconds)

In this experiment, we have dealt with priority manage-
ment covering the whole data management spectrum. Firstly,
we covered the storage demands for the processing. Sec-
ondly, the performance of the data retrieval has been mon-
itored using proposed schemes. Based on the study, it can
be concluded that the priority management, even for the
critical data, is not relevant and does not provide sufficient
benefits. It is clear that the processing time duration was
lowered just slightly, but on the other hand, significant storage
capacity demand extensions were applied. Finally, rebuild
and balancing operations were evaluated to handle priorities.

VOLUME 10, 2022

Index rebalancing reflecting the priority requires additional
3.687 seconds for internal management and 3.324 seconds.
Comparing internal and external management, there is some
small increase. Based on the further analysis, it is caused by
the necessity to store the index leaf touches, which forces the
structure to extend block size and the need to store more data
consecutively.

C. EVALUATION PERSPECTIVE 3 - INDEXING OUTSIDE
THE MAIN TRANSACTION

Sensor systems provide big data flow to be evaluated, pro-
cessed, and consecutively stored. Ensuring proper data man-
agement in industry, control systems, medicine, or traffic
management systems is inevitable. Any delay can be dis-
astrous and catastrophic. Consequently, transactions should
be approved immediately after checking integrity rules to
ensure the reliability of the data for the security layer and
the whole control systems and decision-making. However,
the second aspect is associated with indexing, guaranteeing a
balanced structure inside the main transaction. This balancing
operation is commonly part of the transaction. This evaluation
perspective analyzes the impact of indexing directly in the
core transaction compared to autonomous management sepa-
rately. The external balancing process is primarily intended
for systems, covering multiple indexes. Individual change
operations are heavily present in the system to optimize them
to minimize processing time and costs. Thus, the goal is to
effectively cover changes over data over time on the one hand,
but the process of obtaining and accessing the data tuples
must be efficient as well. It is primarily ensured by the indexes
so that any change above them is applied autonomously
through the proposed Balancer background processes.

For the evaluation, three approaches are used. The first
model (SOL_NO_IND_REF) is a reference model that does
not manage indexes. Thus, there are no additional demands
regarding indexing during the Insert, Update or Delete
statement. The second model (SOL_IND_COMMON) uses
the common principle of transaction coverage inside the
main transaction. Like the discussed environment, three
indexes cover airspace assignments during one day, air-
plane route monitoring and airport space monitoring. The
last solution deals with the proposed indexing strategy
(SOL_IND_EXTERNAL). Performance study is done for the
data retrieval and inserting a new state to the database.

Table 9 shows the results. Without using an index, sequen-
tial scanning is inevitable to be executed. Such a model
is used as a 100% reference (SOL_NO_IND). Index set
management inside the direct transaction requires an addi-
tional 3.11 seconds, which expresses the coverage by the
index and the balancing operation. For this model, it is done
for each Insert operation separately. Using APPEND hint
(index is balanced after the change operation just once for
all data), the total processing time elapses 16.872, reaching
just 2.42 seconds for the index management. Compared to the
SOL_IND_COMMON, the defined hint lowers the demand
using 0.69 seconds, reflecting the 28.51% improvement.

46209

IEEE Access

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

TABLE 9. Data retrieval process.

TABLE 10. Undefined value management - results.

SOL SOL SOL
NO_IND IND IND
REF COMMON EXTERNAL
Insert Insert — 100 000 14.452 17.562 14.789
rows
Select getting relevant 17.787 4.194 4.623
data of the
airspace
assignment
(seconds)
monitoring 6.741 0.743 0.883
airplane during
the whole flight
(seconds)
monitoring 9.102 1.823 2.073
airport during
one day
(seconds)

The difference between no index (SOL_NO_IND_REF)
and external index management (SOL_IND_EXTERNAL) is
made by the notification necessity to ensure consecutive bal-
ancing in an autonomous transaction. Such property causes
a little overhead — 0.337 seconds (2.28%). Thus massive
indexing can be done with minimal impact on the data input
processing.

Reflecting the data retrieval performance using the
defined criteria, additional processing time demands range
from 12 to 15% for the sequential processing. By shifting
the solution to the parallel environment — one process deals
with the index itself, and the second worker process operates
the unprocessed nodes of the index in a flat layer, additional
processing demands can be lowered to 5-6%.

D. EVALUATION PERSPECTIVE 4 - DATA
COMPLEXITY AND RELIABILITY

The last evaluation strategy points to the data relevance.
Whereas the communication channel cannot be done by
100% trusted interconnection via cable without any error,
detecting either the delays or improper data reflecting the
failure is important. Data in these terms can be even broken
(out of range, non-relevant, or not complying with the shapes
and patterns) or proposed in a non-suitable time reflection
caused by the delays at various levels. Furthermore, whereas
the interconnection is usually done via the wireless network
with the possibility of a loss of connectivity or signal quality,
it is also necessary to identify such situations to ensure relia-
bility. Thus, three cases covering the data consistency can be
identified:

« Data were not obtained at all. In that case, if the syn-
chronous process provides the value, then the NULL
value is commonly used for the representation.

« Provided data are not relevant, meaning that the reliabil-
ity issue is identified on the transaction consistency and
integrity. The state is then stored either by NULL values
or by storing original data with the reliability mark.

46210

Model SOL SOL SOL SOL
NO NULL NULL NULL NULL

COVERAGE FUNCTION DYNAMIC INDEX

Storage 100 106.245 100 101.471

demands

(%)

Data 100 34.660 87.652 14.742

retrieval

(%)

o Data are delayed. Similarly, the processing depends on
the status and data frequency. Using synchronization, the
NULL value is used. Otherwise, the temporal model is
extended by the data request time and the actual image
acquisition time.

As described, NULL values form an inseparable part of the
data coverage and reliability. In common B+-tree indexing,
such values are not part, and their identification requires
sequential data block-by-block scanning resulting in various
limitations:

« data blocks are typically fragmented,

« empty blocks can be present in the system (as a result of
migrating data to a historical repository),

« significant data amount needs to be memory loaded and
evaluated, and there is no direct pointer to the data tuple
inside the block,

« specific geographic (airspace), time positions, or
regional data cannot be processed directly, resulting in
the whole table scanning necessity — data conditions
cannot be applied by using sequential scanning,

« there is no evidence of whether the NULL value exists
in the system.

NULL value management is a significant element to cover
the reliability and security of the system by dealing with
non-trusted or delayed data. To evaluate the proposed solu-
tion, four models have been used:

o no explicit NULL management (SOL_NO_NULL_
COVERAGE) resulting in sequential scanning neces-
sity,

o NULL value function transformation in the input stream
(SOL_NULL_FUNCTION),

o dynamic transformation (SOL_NULL_DYNAMIC),

o proposed solution by index coverage (SOL_NULL_
INDEX).

The obtained results are shown in Table 10. Values;; are
correlated in percentage to declare the impact. The particular
table consists of 10% of undefined or untrusted data tuples.
By the data retrieval process, such undefined values are to be
located. SOL_NO_NULL_COVERAGE is areference model
holding 100%.

Undefined value management by transforming the input
stream using the function call brings additionally 6.245% of
the storage demands. The transformed values are processed
at the input, and thus the replaced values are physically

VOLUME 10, 2022

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

IEEE Access

stored in the database and consecutively indexed. The physi-
cal representation on the logical layer uses specific database
address denotation. Dynamic NULL identification during
the retrieval does not require extra storage. Original NULL
values are stored. Finally, SOL_NULL_INDEX covers the
undefined values directly inside the index. Various techniques
from the interval representation can be used; however, the
physical storage demands are the same, pointing to 1.471%.

To conclude such part, functional transformation reaches
the database, as well as the index by new data blocks.
Direct NULL value modeling inside the index is delimited by
1.5% increased storage costs. There is no database extension
necessity. The difference between SOL_NULL_INDEX and
SOL_NULL_FUNCTION expresses the 4.8% increase using
the database block layer.

Although an increase in the level of the data storage is
identified in the processing, a considerable improvement can
be obtained in the processing of the data in terms of access to
them. The reference model (SOL_NO_NULL_COVERAGE)
does not deal with the undefined values, reaching 100%.
It requires sequential data block scanning irrespective of its
usage or fragmentation. By transforming undefined values
using a function call, the total requirements represented by the
processing time are 34.7%. In this case, the index can obtain
data block addresses to be loaded. Dynamic transformation
is not so powerful, although some performance gain can be
located, up to 12.3%. However, there is no storage capacity
extension. Finally, the best solution was obtained by the pro-
posed SOL_NULL_INDEX, reducing the demands to 14.7%.
Specifically, 1.3% is used for the direct index management
supervision (administrative instance tasks). Undefined stor-
age management inside the index requires 13.447%. In the
data retrieval process, all undefined values are obtained dur-
ing the query (10% in total), the categorization tool processed
2.625% of the total costs.

In conclusion, we can unambiguously declare that the
required reduction of time costs is provided by the proposed
solution, which expands the capacity of the index to cover
undefined states, either in the standard form or by expand-
ing the solution by categorizing the causes of undefined
value. As we can see, such categorization is not resource-
demanding, but it can be significantly beneficial in error iden-
tification, which can be crucial in many systems. Performance
study has been done on the flight data model management
based on the sensor data processing but can be generalized to
any industrial or data management sphere.

VII. CONCLUSION

Over the decades, data management structures changed.
However, the area that persists to this day is relational
database technology. The main advantage is the strict model
definition supervised by the integrity rules and data consis-
tency. These parts are secured by the transactions ensuring
the transformation from one consistent data image to another,
which will also be consistent. Any approved data are durable
and accessible by the database. It is important to commit the

VOLUME 10, 2022

transaction concerning the business environment and inner
requirements to ensure data complexity. However, it is nec-
essary to emphasize the internal database rules to make the
transaction commit as soon as possible, minimize the time
demands costs, and make the changes visible by the other
systems and sessions.

However, such a requirement is limited by the developed
index set for the particular table. Thus, one strong condition is
to ensure fast data accessibility by the indexes. However, the
other perspective is related to the process of data obtaining,
evaluating, and storing new tuples in the database.

This paper deals with index management by extending the
structure. The common index type is B+4-tree, which is always
balanced, forcing the transaction manager to ensure such a
process directly inside the transaction. Our proposed solution
excludes such operations to separate transactions by using
Data indexers. Thanks to that, the original transaction can be
approved sooner, the balancing benefits from grouping mul-
tiple states to be applied at once. Furthermore, as discussed in
the evaluation study, it significantly improves data manipula-
tion. Parallel processing of the data retrieval ensures that the
index and introduced memory structures are scanned simul-
taneously with minimal impact on the processing demands
(time and costs). Thanks to the proposed architecture, data
can be processed and evaluated sooner, but the index set is
reliable, covering all the data with the extensional modules.

Another problem discussed in this paper is associated with
reliability. Undefined values are often present in the system
formed by various origins. These data are marked as non-
reliable, physically represented by the NULL values. Such
values cannot be part of the index, whereas NULL values
cannot be mathematically compared and used for traverse
paths. It results in the whole table scanning necessity, block-
by-block. Our proposed solution is based on index extension
to cover undefinition either at a pure level or by using the
origin categorization. Therefore, undefined values can be part
of the index extension modeled by the bucket arrays or sorted
tree. Sequential block scanning is then replaced by index
search, which provides significant performance improvement
in reducing the data amount to be loaded.

Moreover, it is independent of the physical structure, and
data fragmentation does not play any role. In the computa-
tional study, it is declared that such a module brings a strong
decrease in processing costs, mostly caused by the efficiency
of the processing and I/O operations. Note that the indexes are
commonly at least partially stored in the memory. One way
or another, the index set is optimized for size when changing.

Fragmentation is just one element of the physical archi-
tecture in terms of blocks. The second problem is associated
with the free blocks due to moving data to archive repos-
itories. Delayed or improperly obtained and evaluated data
can be consecutively changed to declare the precision. These
circumstances form the basis for creating migrated rows,
where the original record after the change can no longer be
processed and stored in the original block due to its size. The
migrated row is represented by storing the address of the next

46211

IEEE Access

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

block in which the record is located. As the block itself does
not store index references, additional costs are incurred for
data access. The index leaf node obtains the address of the
block (ROWID), which is read into the instance’s memory
to extract the record. In reality, however, the record is not
there, and it is necessary to locate another block. In general,
it may be required to process multiple blocks to obtain the
needed record itself. This paper proposes new structures and
background processes responsible for identifying migrated
rows and applying changes. Several solutions were proposed,
covered by the performance and limitations. The dynamic
mapping structure does the most powerful solution. Physical
ROWIDs are replaced by the logical addresses (ROWlogs) to
the mapping structure storing physical addresses. Thus, the
additional layer is introduced, by which the migration can be
easily detected.

Moreover, any change is always at the level of only one
record, regardless of the number and structure of the indexes.
Thus, such a mapping structure can bring significant perfor-
mance benefits, whereas there is just one place to place and
locate migration. Although additional data structure is used,
total costs and processing time benefit.

In the future development, our emphasis will focus on
the parallelism and distributed environment, by which the
execution plan can be different based on the cost estimation.
We will analyze the impact of parallel thread amount on the
index access method and synchronization process. Various
spatio-temporal architectures will be treated with emphasis
on data grouping. Another research stream will be related to
dynamic block size management. It is based on the assump-
tion that with the rise of the data amount, data granular-
ity evolves as well. It is, therefore, necessary to define the
corresponding base block size and structuralize the internal
layer dynamically to respond to pattern changes at the block
size level. As a result, each segment can be delimited by the
different block size, even applied for each extent separately.
However, it would also require changes at the memory level
and the process of loading data into memory. We also want
to focus on creating such a dynamic architecture to optimize
the data storage.

REFERENCES

[11 W. S. Lima, H. L. S. Braganca, and E. J. P. Souto, “NOHAR—NOvelty
discrete data stream for human activity recognition based on smartphones
with inertial sensors,” Expert Syst. Appl., vol. 166, Art. no. 114093,
Mar. 2021, doi: 10.1016/j.eswa.2020.114093.

[2] P. Stone, “Machine learning for robot locomotion: Grounded simula-
tion learning and adaptive planner parameter learning,” in Proc. IEEE
Int. Conf. Big Data (Big Data), Dec. 2022, p. 6, doi: 10.1109/BIG-
DATAS52589.2021.9671792.

[3] L Mlynkova and J. Pokorny, ““Similarity of XML schema fragments based
on XML data statistics,” in Proc. Innov. Inf. Technol. (IIT), Nov. 2007,
pp. 243-247, doi: 10.1109/11T.2007.4430402.

[4] D. Jin, G. Chen, W. Hao, and L. Bin, “Whole database retrieval method
of general relational database based on lucene,” in Proc. IEEE Int. Conf.
Artif. Intell. Comput. Appl. (ICAICA), Jun. 2020, pp. 1277-1279, doi:
10.1109/ICAICA50127.2020.9182496.

[5S] R. Wang, B. Salzberg, and D. Lomet, “Transaction support for log-based
middleware server recovery,” in Proc. IEEE 25th Int. Conf. Data Eng.,
Mar. 2009, pp. 353-356, doi: 10.1109/ICDE.2009.45.

46212

[6]

[71

[8]

[9]

[10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

Y. Tang, L. Chen, J. Liu, and D. Li, “Speeding up virtualized transaction
logging with vTrans,” in Proc. IEEE 22nd Int. Conf. Parallel Distrib. Syst.
(ICPADS), Dec. 2016, pp. 916-923, doi: 10.1109/ICPADS.2016.0123.

J. Hoon Jang, S. M. Lee, S. D. Kim, O. Seong Gwon, E. Ko, S. M. Lee,
J. Woo Shin, and S. E. Lee, “Accelerating forex trading system through
transaction log compression,” in Proc. Int. SoC Design Conf. (ISOCC),
Nov. 2014, pp. 74-75, doi: 10.1109/ISOCC.2014.7087602.

Y.-L. Lo and C.-Y. Tan, “A study on multi-attribute database indexing on
cloud system,” in Proc. Int. MultiConf. Eng. Comput. Scientists (IMECS)
(Lecture Notes in Engineering and Computer Science), vol. 2195. Cham,
Switzerland: Springer, Mar. 2012, pp. 299-304.

Q. He, F. Zhang, G. Bian, W. Zhang, D. Duan, Z. Li, and
C. Chen, “Research on data routing strategy of deduplication in
cloud environment,” IEEE Access, vol. 10, pp. 9529-9542, 2022, doi:
10.1109/ACCESS.2021.3139757.

O. Rolik, K. Ulianytska, M. Khmeliuk, V. Khmeliuk, and U. Kolomiiets,
“Increase efficiency of relational databases using instruments of second
normal form,” in Proc. IEEE 3rd Int. Conf. Adv. Trends Inf. Theory (ATIT),
Dec. 2021, pp. 221-225, doi: 10.1109/ATIT54053.2021.9678605.

G. Graefe, W. Guy, and C. Sauer, “Instant recovery with write-ahead
logging: Page repair, system restart, media restore, and system failover,
second edition,” Synth. Lectures Data Manage., vol. 8, no. 2, pp. 1-113,
Apr. 2016, doi: 10.2200/S00710ED2V01Y201603DTM044.

V. Ottaviani, A. Lentini, A. Grillo, S. Di Cesare, and G. F. Italiano, ““Shared
backup & restore: Save, recover and share personal information into closed
groups of smartphones,” in Proc. 4th IFIP Int. Conf. New Technol., Mobil-
ity Secur., Feb. 2011, pp. 1-5, doi: 10.1109/NTMS.2011.5720655.

M. A. Radaideh, “A distributed and parallel model for high-performance
indexing of database content,” Int. J. Comput. Appl., vol. 26, no. 4,
pp. 257-262, 2004, doi: 10.2316/journal.202.2004.4.202-1404.

G. Arora, S. Kalra, A. Bhatia, and K. Tiwari, ‘“PalmHashNet:
Palmprint hashing network for indexing large databases to boost
identification,” IEEE Access, vol. 9, pp. 145912-145928, 2021, doi:
10.1109/ACCESS.2021.3123291.

H. Chen and J. Li, “The research of embedded database hybrid indexing
mechanism based on dynamic hashing,” in Proc. Int. Conf. Inf. Technol.
Softw. Eng. (Lecture Notes in Electrical Engineering), vol. 211. Berlin,
Germany: Springer, 2013, pp. 691-697, doi: 10.1007/978-3-642-34522-
7_74.

M. S. Lew, D. P. Huijsmans, and D. Denteneer, “Optimal keys for image
database indexing,” in Image Analysis and Processing, vol. 1311. Berlin,
Germany: Springer, 1997, pp. 148-155, doi: 10.1007/3-540-63508-4_117.
M. Lorenzini, W. Kim, and A. Ajoudani, “An online multi-index approach
to human ergonomics assessment in the workplace,” IEEE Trans. Human-
Mach. Syst., early access, Jan. 7,2022, doi: 10.1109/THMS.2021.3133807.
H. Khatri, J. Fan, Y. Chen, and S. Kambhampati, “QPIAD: Query process-
ing over incomplete autonomous databases,” in Proc. IEEE 23rd Int. Conf.
Data Eng., Apr. 2007, pp. 1430-1432, doi: 10.1109/ICDE.2007.369028.
M. Varga, M. Kvassay, and M. Kvet, “Teaching course on algorithms and
data structures during the coronavirus pandemic,” in Proc. 18th Int. Conf.
Emerg. eLearning Technol. Appl. (ICETA), Nov. 2020, pp. 730-738, doi:
10.1109/ICETA51985.2020.9379156.

M. Kvet and M. Kvet, “Relational pre-indexing layer supervised
by the DB_index_consolidator Background Process,” in Proc. 28th
Conf. Open Innov. Assoc. (FRUCT), Jan. 2021, pp.222-229, doi:
10.23919/FRUCT50888.2021.9347573.

D.-H.-T. That, M. Gharehdaghi, A. Rasin, and T. Malik, “LDI:
Learned distribution index for column stores,” in Proc. IEEE Int.
Conf. Big Data (Big Data), Dec. 2021, pp. 376-387, doi: 10.1109/BIG-
DATA52589.2021.9671318.

H. Huang and H. Luan, “Rethinking insertions to B -trees on coupled
CPU-GPU architectures,” in Proc. IEEE Int. Conf. Parallel Distrib.
Process. Appl., Big Data Cloud Comput., Sustain. Comput. Commun.,
Social ~ Comput. Netw. (ISPA/BDCloud/SocialCom/SustainCom),
Sep./Oct. 2021, pp.993-1001, doi: 10.1109/ISPA-BDCLOUD-
SOCIALCOM-SUSTAINCOMS52081.2021.00139.

S. V. Oprea, A. Bara, V. Diaconita, C. Ceaparu, and A. A. Ducman,
“Big data processing for commercial buildings and assessing flexibility
in the context of citizen energy communities,” IEEE Access, vol. 9,
pp. 168715-168730, 2021, doi: 10.1109/ACCESS.2021.3137352.

D. Kuhn and T. Kyte, Oracle Database Transactions and Locking
Revealed. Berkeley, CA, USA: Apress, 2021, doi: 10.1007/978-1-4842-
6425-6.

B. M. Abdelhafiz, “Distributed database using sharding database architec-
ture,” in Proc. IEEE Asia—Pacific Conf. Comput. Sci. Data Eng. (CSDE),
Dec. 2020, pp. 1-17, doi: 10.1109/CSDE50874.2020.9411547.

VOLUME 10, 2022

http://dx.doi.org/10.1016/j.eswa.2020.114093
http://dx.doi.org/10.1109/BIGDATA52589.2021.9671792
http://dx.doi.org/10.1109/BIGDATA52589.2021.9671792
http://dx.doi.org/10.1109/IIT.2007.4430402
http://dx.doi.org/10.1109/ICAICA50127.2020.9182496
http://dx.doi.org/10.1109/ICDE.2009.45
http://dx.doi.org/10.1109/ICPADS.2016.0123
http://dx.doi.org/10.1109/ISOCC.2014.7087602
http://dx.doi.org/10.1109/ACCESS.2021.3139757
http://dx.doi.org/10.1109/ATIT54053.2021.9678605
http://dx.doi.org/10.2200/S00710ED2V01Y201603DTM044
http://dx.doi.org/10.1109/NTMS.2011.5720655
http://dx.doi.org/10.2316/journal.202.2004.4.202-1404
http://dx.doi.org/10.1109/ACCESS.2021.3123291
http://dx.doi.org/10.1007/978-3-642-34522-7_74
http://dx.doi.org/10.1007/978-3-642-34522-7_74
http://dx.doi.org/10.1007/3-540-63508-4_117
http://dx.doi.org/10.1109/THMS.2021.3133807
http://dx.doi.org/10.1109/ICDE.2007.369028
http://dx.doi.org/10.1109/ICETA51985.2020.9379156
http://dx.doi.org/10.23919/FRUCT50888.2021.9347573
http://dx.doi.org/10.1109/BIGDATA52589.2021.9671318
http://dx.doi.org/10.1109/BIGDATA52589.2021.9671318
http://dx.doi.org/10.1109/ISPA-BDCLOUD-SOCIALCOM-SUSTAINCOM52081.2021.00139
http://dx.doi.org/10.1109/ISPA-BDCLOUD-SOCIALCOM-SUSTAINCOM52081.2021.00139
http://dx.doi.org/10.1109/ACCESS.2021.3137352
http://dx.doi.org/10.1007/978-1-4842-6425-6
http://dx.doi.org/10.1007/978-1-4842-6425-6
http://dx.doi.org/10.1109/CSDE50874.2020.9411547

M. Kvet, J. Papan: Complexity of Data Retrieval Process Using Proposed Index Extension

IEEE Access

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

M. Tareq, E. A. Sundararajan, A. Harwood, and A. A. Bakar, ““A systematic
review of density grid-based clustering for data streams,” IEEE Access,
vol. 10, pp. 579-596, 2021, doi: 10.1109/ACCESS.2021.3134704.

A. E. A. Raouf, A. Abo-Alian, and N. L. Badr, “A predictive
multi-tenant database migration and replication in the cloud
environment,” [EEE Access, vol. 9, pp. 152015-152031, 2021, doi:
10.1109/ACCESS.2021.3126582.

M. Kvet, “Database index balancing strategy,” in Proc. 29th
Conf. Open Innov. Assoc. (FRUCT), May 2021, pp.214-221, doi:
10.23919/FRUCT52173.2021.9435452.

M. Kratky, V. Snasel, J. Pokorny, and P. Zezula, “Efficient processing
of narrow range queries in multi-dimensional data structures,” in Proc.
10th Int. Database Eng. Appl. Symp. (IDEAS), Dec. 2006, pp. 69-79, doi:
10.1109/IDEAS.2006.21.

C.-H. Cheng, L.-Y. Wei, and T.-C. Lin, “Improving relational database
quality based on adaptive learning method for estimating null value,” in
Proc. 2nd Int. Conf. Innov. Comput., Inf. Control (ICICIC), Sep. 2007,
p. 81, doi: 10.1109/ICICIC.2007.350.

M. N. Islam, P. C. Shill, M. F. Mridha, D. M. S. Islam, and
M. M. A. Hashem, “Generating weighted fuzzy rules for estimating null
values using an evolutionary algorithm,” in Proc. Int. Conf. Elect. Comput.
Eng., Dec. 2006, pp. 324-327, doi: 10.1109/ICECE.2006.355637.

M. Kao, N. Cercone, and W.-S. Luk, “Providing quality responses with
natural language interfaces: The null value problem,” IEEE Trans. Softw.
Eng., vol. 14, no. 7, pp. 959-984, Jul. 1988, doi: 10.1109/32.42738.

M. Kvet and K. Matiasko, “Efficiency of the relational database tuple
access,” in Proc. IEEE 15th Int. Scientific Conf. Informat., Nov. 2019,
pp. 231-236, doi: 10.1109/INFORMATICS47936.2019.9119325.

C. Jensen, C. Christian, S. Jensen, R. Snodgrass, M. Béhlen, R. Busatto,
H. Gregersen, K. Torp, A. Datta, and S. Ram, “Temporal data manage-
ment,” I[EEE Trans. Knowl. Data Eng., vol. 11, no. 1, Jan./Feb. 1999.

I. B. E. Dunaieva, V. Vecherkov, V. Popovych, V. Pashtetsky,
V. Terleev, A. Nikonorov, and L. Akimov, “Spatial and temporal
databases for decision making and forecasting,” in Energy Management
of Municipal Transportation Facilities and Transport (Advances in
Intelligent Systems and Computing), vol. 1259. Cham, Switzerland:
Springer, 2019, pp. 198-205, doi: 10.1007/978-3-030-57453-6_17.

M. Kvet, R. Ceresnak, and V. Salgova, “Use of machine learn-
ing for the unknown values in database transformation processes,”
in Proc. Commun. Inf. Technol. (KIT), Oct. 2021, pp.1-7, doi:
10.1109/K1T52904.2021.9583753.

D. Kuhn, S.R. Alapati, and B. Padfield, Expert Oracle Indexing and Access
Paths. Berkeley, CA, USA: Apress, 2016, doi: 10.1007/978-1-4842-1984-
3.

H. Liu, Q. Chen, N. Pan, Y. Sun, Y. An, and D. Pan, “UAV stocktaking
task-planning for industrial warehouses based on the improved hybrid
differential evolution algorithm,” IEEE Trans. Ind. Informat., vol. 18,
no. 1, pp. 582-591, Jan. 2022, doi: 10.1109/T11.2021.3054172.

M. Kvet, “Study of duplicate tuple management,” in Proc. IEEE
Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2021, pp. 3081-3088, doi:
10.1109/SM(C52423.2021.9658726.

D. Kuhn and T. Kyte, Expert Oracle Database Architecture. Berkeley, CA,
USA: Apress, 2022, doi: 10.1007/978-1-4842-7499-6.

K. Unnikrishnan and K. V. Pramod, “On implementing temporal coa-
lescing in temporal databases implemented on top of relational database
systems,” in Proc. Int. Conf. Adv. Comput., Commun. Control, New York,
NY, USA, 2009, pp. 153-156.

VOLUME 10, 2022

(42]

[43]

[44]

(45]

[46]

(47]

(48]

(49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

Z. Deng, Z. Deng, Y. Wang, T. Liu, S. Dustdar, R. Ranjan, A. Zomaya,
Y. Liu, and L. Wang, ““Spatial-keyword skyline publish/subscribe query
processing over distributed sliding window streaming data,” IEEE
Trans. Comput., early access, Jan. 6, 2022, doi: 10.1109/TC.2022.
3140884.

F. Farahnakian, L. Koivunen, T. Makila, and J. Heikkonen,
“Towards autonomous industrial warehouse inspection,” in Proc.
26th Int. Conf. Autom. Comput. (ICAC), Sep. 2021, pp.1-6, doi:
10.23919/ICAC50006.2021.9594180.

G. S. Nair, P. V. Devika, K. Jyothisree, N. Giriraj, and
S. N. B. Sai, “Architecture, concept and algorithm for data analytics
based zero touch waste management in smart cities,” in Proc. 2nd Int.
Conf. Electron. Sustain. Commun. Syst. (ICESC), Aug. 2021, pp. 851-856,
doi: 10.1109/ICESC51422.2021.9532723.

S. Al-Azani, S. M. Sait, and K. A. Al-Utaibi, “A comprehen-
sive literature review on children’s databases for machine learning
applications,” IEEE Access, vol. 10, pp. 12262-12285, 2022, doi:
10.1109/ACCESS.2022.3146008.

J. Tims, R. Gupta, and M. L. Soffa, “Data flow analysis driven
dynamic data partitioning,” in 4th Int. Workshop Lang., Compil., Run-
Time Syst. Scalable Comput. Berlin, Germany: Springer-Verlag, 1998,
pp. 75-90.

J. Wang, Z. Duan, X. Han, and D. Yang, “Efficient top/bottom-K
fraction estimation in spatial databases using bounded main memory,”
Tsinghua Sci. Technol., vol. 27, no. 2, pp. 223-234, Apr. 2022, doi:
10.26599/TST.2021.9010020.

A. H. Al-Sanhani, A. Hamdan, A. B. Al-Thaher, and A. Al-Dahoud,
“A comparative analysis of data fragmentation in distributed database,”
in Proc. 8th Int. Conf. Inf. Technol. (ICIT), May 2017, 724-729, doi:
10.1109/ICITECH.2017.8079934.

C. 1. Ezeife and J. Zheng, “Measuring the performance of database
object horizontal fragmentation schemes,” in Proc. Int. Database Eng.
Appl. Symp. (IDEAS), Aug. 1999, 408-414, doi: 10.1109/IDEAS.1999.
787292.

M. Kvet and K. Matiasko, “Data loading and migration methods in the
cloud environment,” in Proc. Commun. Inf. Technol. (KIT), Oct. 2021,
pp. 1-6.

R. Cornejo, Dynamic Oracle Performance Analytics. 2018, doi:
10.1007/978-1-4842-4137-0.

M. Kvet, “Relational data index consolidation,” in Proc. 28th IEEE
Conf. Open Innov. Assoc. (FRUCT), Jan. 2021, pp.215-221, doi:
10.23919/FRUCT50888.2021.9347614.

A. Dudds, P. Vostindr, J. Skrinarova, and J. Sila¢i, “Improved process
of running tasks in the high performance computing system,” in Proc.
16th Int. Conf. Emerg. eLearning Technol. Appl. (ICETA), Nov. 2018,
pp. 133-140, doi: 10.1109/ICETA.2018.8572230.

M. Kvet, “Autonomous temporal time zone management,” in Proc. 47th
Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Oct. 2021, pp. 1-6, doi:
10.1109/IECON48115.2021.9589547.

M. Kvet, “Autonomous temporal transaction database,” in Proc. 30th
Conf. Open Innov. Assoc. (FRUCT), Oct. 2021, pp.121-128, doi:
10.23919/FRUCT53335.2021.9599977.

Z. Qian, J. Wei, Y. Xiang, and C. Xiao, “A performance evalua-
tion of DRAM access for in-memory databases,” IEEE Access, vol. 9,
pp. 146454-146470, 2021, doi: 10.1109/ACCESS.2021.3123379.

46213

http://dx.doi.org/10.1109/ACCESS.2021.3134704
http://dx.doi.org/10.1109/ACCESS.2021.3126582
http://dx.doi.org/10.23919/FRUCT52173.2021.9435452
http://dx.doi.org/10.1109/IDEAS.2006.21
http://dx.doi.org/10.1109/ICICIC.2007.350
http://dx.doi.org/10.1109/ICECE.2006.355637
http://dx.doi.org/10.1109/32.42738
http://dx.doi.org/10.1109/INFORMATICS47936.2019.9119325
http://dx.doi.org/10.1007/978-3-030-57453-6_17
http://dx.doi.org/10.1109/KIT52904.2021.9583753
http://dx.doi.org/10.1007/978-1-4842-1984-3
http://dx.doi.org/10.1007/978-1-4842-1984-3
http://dx.doi.org/10.1109/TII.2021.3054172
http://dx.doi.org/10.1109/SMC52423.2021.9658726
http://dx.doi.org/10.1007/978-1-4842-7499-6
http://dx.doi.org/10.1109/TC.2022.3140884
http://dx.doi.org/10.1109/TC.2022.3140884
http://dx.doi.org/10.23919/ICAC50006.2021.9594180
http://dx.doi.org/10.1109/ICESC51422.2021.9532723
http://dx.doi.org/10.1109/ACCESS.2022.3146008
http://dx.doi.org/10.26599/TST.2021.9010020
http://dx.doi.org/10.1109/ICITECH.2017.8079934
http://dx.doi.org/10.1109/IDEAS.1999.787292
http://dx.doi.org/10.1109/IDEAS.1999.787292
http://dx.doi.org/10.1007/978-1-4842-4137-0
http://dx.doi.org/10.23919/FRUCT50888.2021.9347614
http://dx.doi.org/10.1109/ICETA.2018.8572230
http://dx.doi.org/10.1109/IECON48115.2021.9589547
http://dx.doi.org/10.23919/FRUCT53335.2021.9599977
http://dx.doi.org/10.1109/ACCESS.2021.3123379

