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ABSTRACT The advent of modern remote sensors alongside the development of advanced parallel
computing has significantly transformed both the theoretical and real implementation aspects of remote
sensing. Several algorithms for detecting objects of interest in remote sensing images and subsequent
classification have been devised, and these include template matching based methods, machine learning and
knowledge-based methods. Knowledge-driven approaches have received much attention from the remote
sensing fraternity. They do, however, face challenges in terms of sensory gap, duality of expression,
vagueness and ambiguity, geographic concepts expressed in multiple modes, and semantic gap. This paper
aims to review and provide an up-to-date survey on machine learning and knowledge driven approaches
towards remote sensing forest image analysis. It is envisaged that this work will assist researchers in coming
up with efficient models that accurately detect and classify forest images. There is a mismatch between what
domain experts expect from remote sensing data andwhat remote sensing science produces. Such amismatch
or disparity can be reduced or alleviated by adopting an ontology paradigm methodology. Ontologies should
be used to support the future of remote sensing in forest object classification. The paper is presented in
five parts: (1) a review of methods used for forest image detection and classification; (2) challenges faced
by object detection methods; (3) analysis of segmentation techniques employed; (4) feature extraction and
classification; and (5) performance of the state-of-the-art methods employed in forest image detection and
classification.

INDEX TERMS Feature extraction, ontology, segmentation, remote sensing.

I. INTRODUCTION
Remote sensing science is rapidly growing. The evolution
of high spatial resolution remote sensors in conjunction with
advanced computing has significantly transformed the spec-
ification and practice of remote sensing [1]. Remote sensing
images are characterized by high spatial resolution and pro-
vide more explicit information on the earth’s surface as com-
pared to middle and coarser resolution images [2]. Machine
learning methods for analyzing and classifying forest images
are continuously evolving to provide more advanced auto-
matic land cover pattern recognition on aerial images.This
paper surveyed existing methods for forest ecosystem image
classification. In particular, machine learning classifiers and
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deep learning techniques for forest image classification are
reviewed.

There are several algorithms that are geared towards detect-
ing objects of interest in remote sensing images, for the
further regional analysis and classification. These algorithms
are categorized into three groups, namely template matching
based, knowledge based, and machine learning based meth-
ods [3]. The taxonomy of image classification methods is
depicted in Figure 1.

(a) Template matching based detection methods
The template matching method determines whether a pic-

ture or an image contains a previously defined object or
whether a predefined sub image (template) has an exact
match in an image. Although this method provided one of
the first approaches for object analysis [3], its dependence
on handcrafted matching criteria limited its applicability to
complex object recognition. Once a suitable template is deter-
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FIGURE 1. Methods for object detection in optical sensing images [3].

mined, ameasure ofmatching between the template and every
possible location in the image is calculated, and a classifi-
cation decision is made based on the measure of certainty.
The most popular metric based measures are the Euclidean
distance, squared difference, and cross correlation, defined in
Equations (1) to (3):

Euclidean distance

E (m, n) =
√∑

i

∑
j

[g (i, j)− t (i− m, j− n)]224 (1)

Squared Difference Measure

E2 (m, n)

=

∑
i

∑
j

[g(i, j)2−2g(i, j)t(i−m, j−n))+t(i−m, j−n)2]

(2)

Cross Correlation Measure

R (m, n) =
∑
i

∑
j

g (i, j)+ t (i, j) t (i− m, j− n) (3)

There are two types of templates, namely, global and
local templates. When a template is used to reference the
whole (global) object in an image, it is referred to as a
global template. However, when object features (local fea-
tures of an object) in an image are referenced with multiple
or several templates, these templates are referred to as local
templates [4]. Figure 2 shows stages to be followed to deter-
mine the best templates for object detection. The challenge

FIGURE 2. Template matching based criteria [3].

with this approach is that the method does not cater for
the scale and orientation of the template [5]. It fails due to
occlusions and distortions on the boundary [6]. The method
is very sensitive to shape and viewpoint change. The solution
suggested was to have a unique representation of a template
orientation and scale that varies, but the solution becomes
computationally expensive.

(b) Machine Learning based approaches

An input image is subjected to the initial first phase
where regions or objects are extracted. Then, for each
object, features of interest are computed using Convolutional
Neural Networks (CNN). Optimal features are obtained after
a subsequent series of feature fusion and dimension reduc-
tion processes. Finally, classifiers such as Support Vector
Machines (SVM), k-Nearest Neighbor (kNN), Sparse Repre-
sentation based Classification (SRC), AdaBoost, Conditional
Random Fields (CRF), and others are used to classify each
region/object. Figure 3 shows the main important phases
of machine learning object detection, i.e., feature extrac-
tion, feature fusion, and dimensionality reduction, as well as
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FIGURE 3. Machine learning methods [3].

the classification phase. Machine learning-based approaches
coupled with innovative algorithms and higher performance
computing seem to have gained popularity in remote sensing
science because they produce better results considering the
accuracy of the created maps [1]. As a result, they are used
in big land cover applications that rely on pixel based statis-
tical analysis of massive image data sets [7]–[9]. Pixel based
approaches pose challenges in the analysis of high spatial
resolution images [10] because they take into consideration
the aspects of spectral information as a backdrop for analyz-
ing and classifying high spatial resolution images, neglecting
spatial and temporal information, which are of paramount
importance. These methods are less efficient in dealing with
symbolic knowledge, that is, when concepts are characterized
by symbols, for instance, vegetation is made of grass [11].
They do not offer the function of creating a super class
whilst classes have been defined. Suppose one has defined the
following classes of interest; ‘‘trees’’, ‘‘grass’’, ‘‘road’’, and
‘‘building’’. It will then be impossible for the user to define
a vegetation class unless it has been beforehand defined as
a super class. The methods do not offer the facility to add
spatial rules [12], for instance, ‘‘grass’’ cannot be found
inside a building, but can be found in a field. Because of this
reasoning limitation, data-driven approaches are unsuitable
for use in applications areas such as ecology, that deal with
earth observation.

(c) Knowledge based detection methods

These methods have been applied to land slide, crops,
urban land change and forests [13]–[16]. Figure 4 shows the
processes whereby an input image goes through a hypothe-
sis generation phase, the hypothesis is validated and tested
using the established knowledge and rules. Post processing
of validation results will be subjected to machine learning for
final object detection. Knowledge and rules from geometric
information and context information will be used to test the
validity of the hypothesis generated from an input image,
if the hypothesis is valid it will be subjected to machine
learning for object detection [17]. Generally, there are two

FIGURE 4. Knowledge based object detection systems [3].

types of knowledge that have been used on target objects, and
these are geometric knowledge and context knowledge.

(a) Geometric Knowledge
This type of knowledge is the most important in a
knowledge-based approach and is widely used for object
detection. It encompasses generic shapemodels or parametric
specifics. For instance, it is proposed in [18] that buildings are
square or composed of rectangular segments and are utilized
as conventional models of shapes to distinguish buildings.

(b) Context knowledge
Context knowledge is very important for key objects, and
it is expressed by rules derived from relationships between
objects of interest and their respective backgrounds [14], [19],
[20]. For instance, shadow evidence has been used for build-
ing detection [21], the correlation between artificial structures
such as buildings and their respective shadows has been used
to project locations and shapes of buildings [22].

Recently, knowledge-driven approaches seem to be the
direction taken by the remote sensing science community [3]
since they incorporate domain expert knowledge. Geographic
Object Based Image Analysis (GEOBIA), which classifies
image objects based on apriori domain expert knowledge,
is proving to be a key trend in remote sensing image anal-
ysis. GEOBIA is a classification technique that divides a
remote sensing image into objects of interest and evaluates
the objects based on their spectral, temporal and spatial char-
acteristics. The generation of objects of interest is done using
different segmentation approaches such as random walker,
canny, histogram-based segmentation, etc. An algorithm is
deemed effective in segmentation if and only if a segmented
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image object completely matches the corresponding Actual
Image Region (AIR) of a scene object. [2], proposed a blend
of area coincidencemethods and boundary coincidencemeth-
ods for assessing segmentation quality. The area coincidence
methods select an image that has the dominant or largest
area of intersection with the AIR. The boundary coincidence
methods calculate the distance between a point of interest in
a segmented image and that of its corresponding point on
the AIR. The segmentation quality is high when the mea-
sured distance is much closer to zero. Segmentation eval-
uation methods can either be Unsupervised or Supervised.
Supervised techniques evaluate a segmented image based
on a ground truth image also referred to as the reference
image. The evaluation of unsupervised methods is solely
dependant on the segmented image as it has to assess the
extent to which the image matches the desirable features
of a good segmented image. [23] proposed four metrics
(Equations 4-7) for assessing supervised segmentation qual-
ity namely F-measure, SUM which should be less than 2,
ED that indicates distance to point (0,0) in the space and ED’
that indicates distance to point (1,1) in the space.

f =
1

α 1
precision + 1− α 1

recall

(4)

sum = precision+ recall (5)

ed =
√
precision2 + recall2 (6)

ed ′ =
√
(1− precision)2(1− recall)2 (7)

Two other metrics that take into account the over and under
segmentation errors, GOSE and GUSE, respectively, are pro-
posed [24]. Rand Error(RE) is another widely used metric
for evaluating supervised approaches. RE is a measure of is
defined in Equation 8 [25]. Let R1 and R2 be segmentation
regions of image S with t pixels and the following holds:

• n correspond to the number of pixels in image S that
appear in both R1 and R2

• m correspond to the number of pixels in image S that are
neither in R1 and R2

RE =
n+ m

(
n
2
)

(8)

A criterion for unsupervised technique that balances homo-
geneity and inter-segment heterogeneity is proposed by
Wang et al. [26] as in Equation 9.

Z = T + λD (9)

where, T and D represents intra-segment homogeneity and
inter-segment heterogeneity, respectively. Another metric for
unsupervised techniques proposed by Gao et al. [27] is the
Global Score (GS). GS incorporates weighted variance (WV)
and Moron’s I and is defined in Equation 10.

GS = Vnorm + Inorm (10)

FIGURE 5. GEOBIA WORKFLOW [28].

The final step of GEOBIA is image classification. The com-
mon image classifiers for GEOBIA are Random Forest (RF),
Simple Vector Machines (SVM), k-Nearest Neighbor (kNN)
and Naive Bayes (NB) [28].

Figure 5 shows GEOBIA workflow [28] that imple-
mented three different algorithms, namely, Large Scale Mean
Shift (LSMS) in OTB, the Shephered segmentation algorithm
in RSGISLib and the Multi-resolution segmentation (MRS)
algorithm in eCognition. However, GEOBIA solutions do not
give answers to every segmentation problem. Even though
GEOBIA is more efficient than pixel-based approaches, seg-
menting a multi-spectral image made up of thousands of
mega pixels remains a challenging task [29]. Another draw-
back of GEOBIA is that it approximates, to some extent,
computer-aided photo interpretation, which has been criti-
cized as being highly subjective [5]. However, in the last
decade, knowledge-driven techniques, like GEOBIA, have
gained traction as a means of bridging the gap between
implicit data representation and end-user needs. Knowledge-
driven approaches consist of translating symbolic knowl-
edge into a format understandable by humans into numerical
knowledge.

Vegetation indices obtained from satellite images pro-
vide valuable information which is essential for the map-
ping of vegetation. The Normalised Difference Vegetation
Index (NDVI) has proven to be a valuable tool, particularly
in tropical dry forests, where it serves as a foundation for
estimating overall green biomass, tree density, and species
diversity [30]–[32]. NDVI is an indicator that determines
the greenish component from the analyzed satellite images.
NDVI provides a balance between the energy received and
the energy emitted by objects on the earth’s surface [32].
In the context of plant communities, it is an indicator that
determines how greenish an area is, and that is influenced
by the quantity of vegetation in that particular area and
its state of health. The NDVI values range from −1 to
+1. The values that are less than 0.1 correspond to water
bodies and bare grounds, while higher values indicate the
presence of agricultural activities, temperate forests, and rain
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FIGURE 6. Symbolic to numerical knowledge conversion.

forests [32]. The NDVI values can be used to group the
vegetation ecosystems into 4major categories as follows [33]:
forests made up of semi-deciduous and evergreen have
NDVI ≥ 0.7, woodlands are defined by the range
(0.6 ≤ NDVI < 0.71), a mixed class that is composed of
a) shrub land, b) woodland/shrub land/exposed lands, and
c) cactus forest have the range (0.49 ≤ NDVI < 0.61) and
the dwarf woodland and shrub land assume the range of
(NDVI < 0.49) [33]. For instance, a forest concept made
up of semi-deciduous and evergreen is described by high
NDVI values and when translated into numerical knowledge,
it is implemented by the classification rule set: Forest =
(NDVI ≥ 0.71). Figure 6 shows the symbolic to numerical
knowledge conversion.

II. OVERVIEW OF THE CHALLENGES FACED WITH
KNOWLEDGE BASED APPROACHES
A. DIFFERENT MODES OF DEFINING GEOGRAPHIC
CONCEPTS
A geographical concept can be defined from different
perspectives; the definition might be based on physical, his-
torical, functional, or conventional mode [34]. Various meth-
ods of defining the same geographic concept bring about
elective perspectives on the definition of the same concepts;
for example, an idea can be characterized by elective defi-
nitions that are not basically the same, despite the fact that
they are normally correlated [35]. From a functional view-
point, the role of the forest primarily acts as a repository
for storing carbon. This is correlated by the Net Primary
Productivity (NPP) values. Forests can also be defined based
on physical attributes such as vegetation cover, phenology,
vegetation, age, etc. A tremendous effort is still in place to
standardize land cover classes in land cover classification sys-
tems (LCCS) [36]. The term ‘‘forest’’ is defined differently by
different organizations and countries; for instance, in Brazil
an area that is regarded as a forest, has an area that exceeds
one hectare, is characterised by a 30% canopy, and is com-
posed of trees with a minimum height of 5m [37]. A forest
in China is defined as an area larger than 0.67 hectares in
size, with at least 20% crown cover and trees standing at least

2 meters tall. The Food and Agriculture Organization (FAO)
standardised the definition of forest to refer to a land area
spanning over 0.5 hectares enveloped by trees at 5m and
above, with a canopy cover of 10%. This definition excludes
land under agricultural or urban land use [38].

B. DUALITY OF GEOGRAPHIC CONCEPTS
Two important major terms arise from the concept of dual-
ity, that is, scene and image. A scene is real and exists on
the ground, whereas an image is an assortment of spatially
orchestrated estimations drawn from the scene [1]. Compo-
nents obtained from images are regarded as abstractions of
real objects in the ground scene [39]. Forest concepts can be
viewed either from a real world perspective (a forest concept
is characterized by highNPP values) or from image properties
(a forest concept is defined by high NDVI values). In the case
of forests, the assertion that NDVI is correlated to NPP is
not always valid because NPP lacks information on attributes
such as vegetation height, vegetation cover, and so forth.
This anomaly is also referred to as the sensory gap. With
this notion, sensory gaps cause improbability in describing
geographic objects [40].

C. VAGUENESS AND AMBIGUITY OF GEOGRAPHIC
CONCEPTS
The process of connecting attribute (e.g. NDVI) range of
values (for instance, high) to geographic concepts (e.g. for-
est concept) is not easy [1]. The reason behind this is that
the associated value ‘‘high’’ is qualitative in nature, so the
obtained classification rule becomes vague and ambiguous.
Some pixels (image objects) inside the image in Figure 7 are
not classified as forest, though in nature they are consti-
tuted as forest areas. When qualitative terms like ‘‘high’’
are employed to identify objects with sharp, crisp bound-
aries, threshold ambiguity occurs. Qualitative description of
geographic objects raises partiality issues. For instance, the
symbolic classification rule ‘‘high NDVI’’ partially describes
the forest because:

(a) It is very difficult to fish out only forests in areas
that have other crops with the same NDVI values as
in Figure 9.

(b) It is also impossible to classify all the varying types
of forests because, in some cases, there are some
forests that have ‘‘low NDVI’’ values, such as the
degraded forests in Figure 8.

Ambiguity arises in all caseswhere a natural language expres-
sion can have various meanings [41]. The usual one is lexical
ambiguity, which emerges because of the homonym of reg-
ular language articulation, that is, an expression with more
than one meaning, such that each meaning points only to one
ontological concept unambiguously [41]. More than 800 dif-
ferent definitions of forest concepts are provided in [42].
Deep ambiguity, also referred to as open texture, exists where
there is no clear boundary between concepts or terms or
cases where the meaning of a concept changes over time, for

45294 VOLUME 10, 2022



C. Kwenda et al.: Machine Learning Methods for Forest Image Analysis and Classification

FIGURE 7. Concepts of vagueness.

FIGURE 8. Forests having low NDVI values.

instance, when a new technology appears or the physical or
social context of the term evolves.

D. SEMANTIC GAP
It arises from the vagueness and ambiguity of geographic
concepts. It is defined as a mismatch between data extracted
on the basis of visual information and the interpretation
drawn from the same data in a given situation [40]. This is
so because converting visual data (from human perception)
to computational representation is a very difficult task. The
translation first requires expressing perception of visual data
into a symbolic knowledge representation format (e.g. forests
have high NDVI values). Such a conversion is a very dif-
ficult task since some concepts have vague meanings when
expressed in natural language [43]. For instance, color may
be considered a significantly important biophysical prop-
erty [44], but its perception varies amongst humans and it is
difficult to express.

III. INTRODUCTION ON ONTOLOGIES
Sharing knowledge among people is feasible only if people
speak a common language [42]. The traditional definition of
‘‘knowledge is a subset of true beliefs’’ [45]. It is the intersec-
tion between truth and beliefs, as represented in Figure 10.
Ontologies enable formal (machine-understandable) repre-
sentation of knowledge. In computer science, ontology is
defined as an explicit, formal specification of a shared con-
ceptualization [46]. An ontology is a systematic description
of existence, and this term is drawn from philosophy. What

FIGURE 9. Other crops having high NDVI as forests.

FIGURE 10. Definition of knowledge [45].

‘‘exists’’ for Artificial Intelligence (AI) systems is that which
can be represented. The following properties, with corre-
sponding definitions, should be observed: (1) conceptualiza-
tion, means that an ontology is an abstract model of a real
world phenomenon; (2) explicit, implies that all ontology
concepts must be clearly defined; (3) formal, implies that an
ontology is machine understandable; and (4) shared, means
that there should be consensus amongst a community of
people about the knowledge represented by the ontology.

A. FORMAL ONTOLOGIES
Remote sensing science experts are conversant with work-
ing on numerical knowledge that has been derived from
an image viewpoint [47]. Numerical knowledge represen-
tation by nature suffers from the problem of partiality and
implicit knowledge representation, hence it becomes diffi-
cult to share the knowledge with other scientists, such as
ecologist, agronomist, etc., who are used to working with
symbolic knowledge in describing a geographic concept, for
instance, a forest concept is defined by ‘‘High NDVI’’ values.
Formal ontologies provide a road map that caters for the
representation of both symbolic and numerical knowledge.
Formal ontologies can be utilized to unequivocally portray
a perception or observation from different perspectives, for
instance, the extensible observation ontology (OBOE) is
utilized to portray the semantics of scientific observations.
An observation of an entity encompasses the characteristics
(e.g. biomass) of the entity based on a measurement standard
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FIGURE 11. Dual representation of concepts.

(grams). Ontologies for remote sensing science applications
based on description logic offer the following advantages;
• Symbolic language - it binds/associates concepts with
relevant sensing data and also promotes binding of
related concepts.

• Knowledge sharing - it advocates for common concep-
tualization and adoption of standard ontology language
such as web ontology language.

• Reasoning - description logic in ontology allows the
inferring of new knowledge from explicit descriptions.

B. ONTOLOGY KNOWLEDGE BASED AS A SOLUTION
This section outlines how the adoption of ontologies in
knowledge base approaches helps in alleviating the problems
addressed in Section 2.0.

1) DUALITY OF GEOGRAPHIC CONCEPTS
Ontologies incorporate the concept of perspectivalism. That
is, they allow the separate description of a field point of
view of a forest concept. For instance, a forest concept can
be specified in terms of attributes such as ‘‘high’’ NPP, leaf
type, and so on. The other angle of description is from the
point of view of an image of geographic objects. That is,
a forest can be defined in terms of attributes such as ‘‘high’’
NDVI, texture, and wavelength. In general, it allows for the
separate description of geographic entities and geographic
objects alongside their characteristics. Figure 11 shows the
dual representation of a geographic feature, that is, it can be
described either from the perspective of a geographic entity
or from the perspective of a geographic object.

2) VAGUENESS AND AMBIGUITY OF GEOGRAPHIC
CONCEPTS
Fuzzy logic is the most popular way of handling the vague-
ness of geographic concepts [48]. Processing of data is done
using partial set membership rather than strict set member-
ship. For example, a forest concept is not considered to be
strictly ‘‘green’’, but rather is considered to belong partially
to some degree to the set of things that are green. [49] defined

FIGURE 12. Solving sensory gap challenge.

two thresholds i.e. ambiguity reject threshold and the distance
reject threshold. Ambiguity reject threshold is defined by the
rule αamp ∈ | 0.5, 1 | and define the degree of confidence
required to recognise an object. Distance reject threshold is
defined by the rule αdist ∈ | 0.1 |, this means an object x
is unlikely to belong to both classes Ck and ¬ Ck and
might belong to a concept not yet learnt. Vagueness can also
be addressed by adopting probability ontologies. They use
probability sets to define concepts of interest. Attributes in
the set properties have probabilities attached to them, and the
statistical measure of the probability value of the geographic
concept [50] is used to determine whether a geographic
concept is a member of a class. Ambiguity in ontologies
can be reduced by limiting the information that describes a
concept [41].

3) SENSORY GAP
The discrepancy between real objects and their depiction in
images is known as the sensory gap. As referenced by [40]
sensory gap can be reduced by explicitly defining the domain
and world knowledge in the system. Knowledge about phys-
ical laws, laws governing the behavior of objects, and how
people perceive them will all be incorporated into the system
in the hope of enhancing recognisers and thereby assist-
ing machines in bridging the sensory gap [51]. However,
in ontologies, real world description of forest entities is corre-
lated with matching image point description of forest objects,
i.e., NDVI is correlated with NPP [2]. Figure 12 shows how
a real world description of a forest concept can be mapped to
an object description in an image. An object description of an
image is easily formalised on a computer.

4) SEMANTIC GAP
The semantic gap is the discrepancy between the high level
descriptions of images by humans and the low-level detection
used by machines to detect images [52]. On the other hand,
adding captions and annotations to images solves the prob-
lem [50]. Themethod is time-consuming and costly because it
requires a lot of effort, machine algorithm tweaking, and close
attention to vocabulary and content to ensure that photos are
appropriately labeled [50]. In ontologies, however, an image
feature (e.g. NDVI) and its associated value (‘‘HIGHNDVI’’)
are used to define a pixel (image object) of a forest con-
cept. The ‘‘HIGHNDVI’’ concept is formalized as a result
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FIGURE 13. Object features hierarchy in ontology [55].

TABLE 1. Ontological framework for RSI concepts.

of the established relationship between symbolic informa-
tion (e.g. ‘‘HIGHNDVI’’) and numerical knowledge (e.g.,
NDVI>0.7), hence the semantic gap is reduced.

IV. ONTOLOGICAL FRAMEWORK FOR RSI (REMOTE
SENSING IMAGE)
[53] proposed a novel framework for RSI. The framework
is made up of important terms or concepts. These include
satellite, sensor, image, spatial resolution, and spectral res-
olution. The elements are shown in the table 1. Slot is mainly
concerned with the spatial and spectral resolutions, which
relate to the scope, although there are no related elements in
the range component. Spectral resolution is one of the most
important concepts for the framework. It follows a top down
approach method, where the concept is parceled into two sub-
components, i.e. the visible part and the infrared part. The
visible is made up of three color segments, i.e. the RGB (red,
blue, and green). The infrared part is also made up of three
segments, i.e. thermal infrared, near infrared, and far infrared.
The parameters suited for the slot are explicitly defined
and include has_spatial_resolution, has_spectral_resolution,
etc. [47] developed a simple ontological approach for remote
sensing image classification. The prototype was built upon
the expert remote sensing knowledge expressed in [54].

A. ONTOLOGICAL FRAMEWORK FOR OBJECT FEATURE
EXTRACTION
After an image goes through a segmentation process, each
region is characterised by a set of features. The feature extrac-
tion process from eCognition software follows the general

upper ontology defined using the top down method [55]. The
features are divided into six categories, namely LayerProp-
erty, GeometryProperty, PositionProperty, TextureProperty,
ClassProperty, and ThematicProperty. The selection of fea-
tures of interest is performed by an expert to allow object
detection. Figure 13 shows a hierarchical breakdown of object
features from the six categories. GeometryProperty, Texture-
Property, and ThematicProperty are important features in
detecting forest objects [56].

B. ONTOLOGY MODEL OF THE LAND COVER CLASS
HIERARCHY
The upper-level ontology is developed using concepts from
land cover classification systems (LCCS) [36]. Figure 13
shows a hierarchically simplified way of representing
classes of interest emanating from the main land cover
class [53]. [55] designed an upper level ontology for the
Chinese Geographic Condition Census Project [57].
Figure 14 depicts the design of an eight land cover ontology.
The procedure was as follows:

1) The first step was to establish a set of important terms,
in this case; Fields, Woodland, Grassland, Orchards,
Bare land, Roads, Building and Water.

2) Classes and class hierarchies were then defined, A land
cover class was defined through a top down approach.

1) ONTOLOGY MODEL OF THE DECISION TREE CLASSIFIER
Ontologies typically express two algorithms, namely decision
trees and semantic rules [55]. [58], [59] used decision trees in
the field of ontologies to cluster and classify image objects.
Findings proved that decision trees enhance ontologies to
granulate information, thereby increasing image classifica-
tion accuracy. [59] uses decision trees to solve the problem
of inconsistency between overlapping ontologies. [47] use
decision trees for ontology matching; the matching process
is purely based on derived decision tree rules for an ontology
that are compared with rules for external ontologies. [55]
designed an ontology model for decision tree classifier that
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FIGURE 14. Land cover class hierarchy in ontology [55].

FIGURE 15. Ontology model of the decision tree classifier [55].

consists of three parts; (1) a set of decision trees is composed
of all essential terms and concepts, for instance, a node and a
leaf; (2) a slot is defined by the following inequality symbols
>≥,<,≤(3). The final step is to create the nodes. Figure 15
shows the elements of the decision tree classifier.

2) ONTOLOGY MODEL OF THE SEMANTIC RULES
[55] followed a two phased approach to designing an ontol-
ogy model for semantic rules; the first is the establishment of
mark rules, followed by decision rules. Mark’s rules convert
low level features to semantic concepts. On the other hand,
decision rules are inferred frommark rules and apriori knowl-
edge.
• Ontology model for mark rules

The morphology of semantic notions is classified into strip
and planar; the shape is regular and irregular; the texture is
smooth and rough; the brightness is light and dark; the height
is high, medium, and low; and the position relationship is
adjacent, disjunct, and contained. The ontology model of the
mark rules is shown in Figure 16
• Ontology model of the decision rules

Ontologies explicitly represent concepts in the same way
humans describe concepts in their domain of interest. How-
ever, ontologies that are developed disregarding decision
rules have proved to be computationally expensive [60].
This is due to their inability to capture the kinds of
decision-making knowledge that arises in practice, such as
those involvingmultiple ontologies. Decision rules on ontolo-
gies help in three ways, namely: [61], [62]; (a) they take into
cognisance primitives from multiple ontologies as well as
primitives that are not part of the rule framework; (b) they
are time dependant (c) they incorporate default assumptions.
Eight types of land cover obtained from the Chinese Geo-
graphic Census Project [57] were defined in terms of a rule
as outlined in Figure 17.

C. SEMANTIC NETWORK MODEL
Semantic networks graphically represent knowledge in the
form of nodes and links, whereby links provide hierarchical
relationships between objects [63]. The semantic network
model explicitly express knowledge through concepts and
their corresponding semantic relations [55]. This is shown in
Figure 18. The network bridges the gap between low-level
characteristics and high-level semantics, reducing the seman-
tic gap.

D. ONTOLOGIES FOR KNOWLEDGE MANAGEMENT
Framework ontologies and domain ontologies are the two
most important types of ontologies. Frameworks, or foun-
dation ontologies, consist of concepts explicitly expressed
in high-level knowledge (for human understandability), and
they are also not designed for a specific domain. A domain
ontology has knowledge tailor-made for a specific domain,
e.g., remote sensing. Domain ontology eave drops from
framework ontology. Domain ontologies have a hierarchical
structure of two levels; the first level is called the ABox,
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FIGURE 16. The mark rules in ontology [55].

FIGURE 17. Decision rules based from ontology [55].

and the second level is called the TBox. ABox contains
assertions (or rules) that comprise the theory that the ontology
describes in its domain of application [64]. TBox is where
experts conceptualise their knowledge in a specific scientific
domain [47]. There are vast paradigms for modelling ontolo-
gies, but chief amongst them are Description Logics(DL) [65]
and rule formalism. The DL formalism serves as a foundation
for building ontologies using the web ontology language
(OWL) [66]. Ontologies can be inferred from new knowledge
using DL, which makes ontologies machine understandable.

E. MODULAR ONTOLOGICAL APPROACH
The modular approach is the best way of building complex
ontologies from simpler (modular) ontologies in a constant
and well-defined way [67]. Such an approach allows collabo-
rative development by many different domain experts to build
a single ontology through the integration of independently
developed ontologies. The ontological approach is carried out
in such a way that TBoxTs are not changed when elements
of T’ are reused in another TBoxT. Formalisation of such a
property follows the conservative theorem [68].
Definition 1 (Conservative Extension): Let T and T’ be

TBoxes, Sig(α) be a signature of axiom α and Sig(T’) be

FIGURE 18. The semantic network model [55].

signature of TBoxes of T’. Then T ∪ T ′ is a conservative
extension of T’ if for every axiom α with Sig(α) ⊆ Sig(T’)
we have T ∪ T ′ ⇒ α iff T’ ⇒ α [67]. In addition, if two
independent parts T1 and T2 of an ontology T, are constructed
in a modular way, then T remains modular as well. These are
formalised as follows [67]:
Definition 2 (Modularity): Let Loc(T) be a local signature

T and Ext(T) be external signature. A set M of TBoxes T with
Sig(T)= Loc(T) ] Ext(T) is a modular class if the following
condition holds:
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FIGURE 19. Structure of knowledge base [47].

M1. if T ∈ M, then T ∪ T’ is a conservative extension of
every T’ such that Sig(T’) ∩ Loc(T) = θ
M2. If T1,T2 ∈ M, then T = T1 ∪ T2 ∈ M with Loc(T) =

Loc(T1) ∪ Loc(T2)
Falomir at al [66] proposed three levels of knowledge that

are imperative for designing a modular ontological approach:
the reference conceptualisation (which provides a description
of images and image objects), the contextual knowledge (a set
of rules defined by a domain expert) and the image facts
(these are semantic descriptions of image content). Figure 19
illustrates how the reasoner assigns image objects to their
corresponding concepts based on facts drawn from reference
conceptualisation and contextual knowledge also drawn from
reference conceptualisation.

(a) The reference conceptualisation
It is a general model for describing image objects in remote
sensing. It consists of two packages, namely, (1) the image
structure package and (2) the image processing package [47].
The image structure package is superimposed with the Ima-
geObjects concepts, which describe objects according to their
characteristics, and the ImageObjectFeature concept, which

links related concepts with associations such as ‘‘hasfeature’’.
The image processing package is composed of the Pseu-
doSpectrallndex and SpectralBand concepts. The concepts
help remote sensing experts describe contextual knowledge.
Concepts such as spectral bands and texture are used by
remote sensing experts to interpret remote sensing images.

(b) The Contextual Knowledge

Contextual knowledge’s purpose is to represent remote sens-
ing expert knowledge using DL, hence the name ‘‘contextual
knowledge.’’ The basis of this knowledge comes from the
Remote Sensing Science expert. As a result, it is a ‘‘subjec-
tive’’ description of image rules rather than an ‘‘objective’’
depiction of image structure. Figure 20 shows the concepts,
relations, and instances in conceptual knowledge.

(c) The Image Facts

These are facts extracted from image analysis, and they are
stored in the ABox [47]. The TBox contains the reference
conceptualisation and the contextual knowledge [47]. Facts
in ABox provide semantic descriptions of image objects, and
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FIGURE 20. Conceptual knowledge showing concepts, relations and instances in an ontology [47].

the description is done with the help of reference conceptual-
isation and conceptual knowledge.

V. VEGETATION DETECTION
Unsupervised and supervised classification algorithms are
very crucial in identifying vegetation areas.

A. UNSUPERVISED CLASSIFICATION INDICES
Spectral indices are used in thesemethods to detect vegetation
areas. The Normalized Difference Vegetation Index (NDVI),
which is calculated for each pixel in an image, is one of
the indices utilized. The NDVI image is represented in a
gray scale image. As shown in Figure 21: image (a) is a
representation of an image using the RGB channel; image
(b) is the representation of the same image in an NDVI format
using the gray scale.

NDVI =
ψIR− ψR
ψIR+ ψR

(11)

Equation 4 illustrates the calculation of NDVI, where ψIR
and ψR are pixel values in the infrared and the red band
respectively. The formula defines vegetation as areas that
have a higher reflective index in the infrared than the red band

FIGURE 21. (a)RGB input image (b) NDVI image [69].

index. The formula was then refined to take into account the
spectral index [70].

SI =
ψR− ψB
ψR+ ψB

(12)

Equation 5 illustrates the calculation of SI, where ψ B is the
pixel value in the blue band and ψ R is the pixel value in
the red band. An NDVI value and a SI value are binarized to
create a vegetation mask. This is shown in Figure 22.
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FIGURE 22. Image (a) SI image (b) vegetation mask obtained with the
NDVI and SI indexes [69].

B. SUPERVISED CLASSIFICATION INDICES
Detection of vegetation by spectral indices is highly depen-
dent on spectral characteristics. In other cases, supervised
classification methods are primarily based on Support Vector
Machines (SVMs). The feature vector that defines all pixels
in the training data set contains four characteristics, namely:
the reflectance value of each pixel in the infrared, red, green,
and blue. Supervised methods do well in distinguishing
between non-vegetation and vegetation areas through spec-
tral indices. It necessitates the use of a SVM capable of
determining the best linear separator. Random Forest (RF),
k-Nearest Neighbour (kNN), SVMand sparse representations
are among pixel wise classifiers that have been used for the
last decade [71]. These traditional methods only consider
spectral information as the basis of the classification process,
disregarding spatial contextual informationwhich contributes
significantly to the classification performance [71]. Several
researchers have proposed a hybrid of spectral-spatial classi-
fication that takes into account both the spatial context and
spectral information, based on the assumption that pixels
from a local region have similar spectral information. [71]
proposed a hybrid model of kNN combined with guided filter
for hyper-spectral image (HSI) classification of forest trees.
Joint hybrid model of kNN and guided filter (PGF-kNN) was
used to optimise hyper-spectral images produced by kNN.
Optimised hyper-spectral imageswere taken in as input by the
Joint kNN, and processed to produce the classification maps.
Each class map was converted into a probability value and the
class map with the highest probability value was chosen as
the classification result. [72] conducted a study to determine
the reliability of RF and SVM algorithms in the classification
of very high resolution images (VHR), obtained from oak
woodlands of a Mediterranean ecosystem. The first stage was
data acquisition, where images were subjected to a Structure-
Form-Motion (SFM) technique to identify common features
in overlapping images. Each image was then orthorectified
through the interpolated digital surface mode (DSM). Finally,
all the images were combined into an orthomosaic. The
workflow of the study followed 4 main steps, namely, pre-
processing, segmentation, classification and accuracy assess-
ment. Figure 23 shows the workflow of the proposed model.
In the preprocessing stage each input layer was subjected

FIGURE 23. Workflow that presents the stages of preprocessing,
segmentation, classification and accuracy assessment [72].

to a linear band covering a range of 8 bits, that is, from
a minimum of 0 to a maximum of 255. The process was
done to normalise each band, to suppress the effect of pos-
sible outliers on the segmentation. A layer stretching process
was performed on images containing R-G-NIR (Red, Green,
Near-Infrared) bands, obtained during spring and summer
seasons through integrating NDVI and DSM data, to obtain
the final 2 five band orthomosaics. Such a process was of sig-
nificant importance because OTB segmentation requires only
one rasta image as the input data. Spectral separability is of
significant importance when it comes to image classification.
The M-static defined in Equation 13 was employed [72] to
measure the separability of NDVI and DSM layers of varying
types of vegetation.

M =
| µ1 − µ2 |

σ1 + σ2
(13)

where, µ1 is the mean value of class 1 and µ2 is the mean
value of class 2. σ1 is the standard deviation of class 1 and
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FIGURE 24. Flowchart of the model that harmonises RF and kNN [73].

σ2 is the standard deviation of class 2. If M < 1 it signifies
overlap of classes, if M > 1 it denotes that classes are well
separable. The segmentation process considered both seman-
tic properties and radiometric information. Large-scale mean
shift (LSMS) segmentation was used in the study because of
its ability to perform tile-wise segmentation of large VHR
imagery [72]. The OTB LSMS segmentation process fol-
lowed the steps of LSMS smoothing, LSMS segmentation,
LSMS merging and LSMS vectorisation. Classification was
performed for five different land cover classes, namely, grass,
cork oak, soil, shrubs and shadows. Two supervised learn-
ing algorithms including RF and SVM were used to per-
form the classification. SVM performs linear separation in
a hyperspace using a µ(.) mapping function. In the case
where objects are not linearly separable, the kernel method
is used where it takes into account projections of feature
space [72]. RF uses decision trees for bagging to produce dif-
ferent subsets of variety of trees. Every decision tree in the RF
participates in the classification process and the classification
label returned is the class with the most votes.

Another study [73] analysed the performance of kNN and
RF classifiers for mapping forest fire areas. The authors [73]
implemented kNN and RF to classify forest areas and
explained the effects of different satellite images on both
classifiers. Figure 24 shows the flow chart of the model.
The model being a supervised approach was implemented
by using multi-spectral images obtained from Landsat8,
Landsat-2, and Terra sensors. The classification accuracy was
determined by the confusion matrices. The machine learning
classifier based on kNN and RF produced excellent results
with k set to 5 for kNN and 400 trees for RF. The results from
the hybrid model achieved a very high classification accuracy
with an Overall accuracy (OA) > 89% and Dice coefficient
(DC) > 0.8. Other studies [74], [75] have also implemented

non-parametric algorithms such as kNN and RF in remote
sensing applications.

VI. IMAGE SEGMENTATION
An input image is partitioned (or subdivided) into meaning-
ful image objects (segments). Image segmentation can be
classified into two categories: supervised (empirical discrep-
ancy methods) and unsupervised (empirical goodness meth-
ods) [76]. Unsupervised approaches evaluate a segmentation
result based on how well the image object matches a human
perception of the desired set of segmented images, and they
use quality criteria that are typically created in accordance
with human perceptions of what constitutes a good segmen-
tation. Supervised methods compare a result from segmenta-
tion with a ground truth [2]. If ground truth can be reliably
established, supervised methods are preferred.

A. TYPES OF IMAGE SEGMENTATION
Pixel, edge, and region-based image segmentation methods
are the three primary types of traditional image segmenta-
tion. [77].

(a) Pixel Based Methods
This method involves two important processes: (1) image
thresholding and (2) segmentation in feature space. For
image thresholding, image pixels are divided according
to their intensity level [78]. There are three types of
thresholding [79], [80]:

(1) Global thresholding - T being the appropriate
threshold value. The output of an image q(x,y)
based on T is obtained from an original image p(x,y)
as

q(x, y) =

{
1, ifp (x, y) > T
0, ifp (x, y) ≤ T
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(2) Variable thresholding - This when the value of T
varies varies over an image and it comes in two
flavours:

• Local Threshold - T depends on the neighborhood of x
and y.

• Adaptive Threshold - T’s value is a function of x and y.
(3) Multiple thresholding - It has multiple values of T.

The output image is computed as follows:

q(x, y) =


m, ifp (x, y) > T1
n, ifp (x, y) ≤ T1
0, ifp (x, y) ≤ T0

However, these methods suffer from incomplete segmenta-
tion, so the output results need to be clumped. Also, these
methods are appropriate for images with lighter objects than
the background.

(b) Edge Segmentation methods
Edge-detecting operators are employed to detect all possi-
ble edges that are found in an image. Adjacent edges are
clearly separated by a gray sharp edge, but there could be
a case where the gray value is not continuous [81]. The
edges will be represented by discontinuity in gray level, color,
texture, etc. This discontinuity is detected by using derivative
operations such as differential operators [82]. The Prewitt,
Roberts, and Sobel operators are the most frequently utilized
first order differential operators [83]. There are a number
of edge detection operators such as the template matching
edge detectors. One challenge with edge-based segmentation
is that sometimes it presents edges in locations where there
is no border. Filtering, enhancement, and detection are the
three processes in edge segmentation algorithms [77]. The
purpose of the filtering process is to reduce the amount of
noise present in the imagery. The enhancement uses high
pass filtering to detect and reveal local changes in intensity.
Finally, the edges detected (using threshold techniques) are
combined or linked together to form the boundaries of the
image object. One challenge with edge-based segmentation
is that, sometimes it presents edges in locations where there
is no border.

(c) Region Based Segmentation
Images are segmented into regions with similar properties
using region-based approaches [81]. There are three types
of region based segmentation, namely: (1) region-growing
segmentation, (2) region-splitting and merging segmenta-
tion [82], [84].

(1) Region Growing Segmentation
It starts with the matrix’s origin (seed point), which is then

subjected to a rule that joins surrounding pixels to these start-
ing regions, and the procedure is repeated until a particular
threshold is met [81]. The method is repeated until there
are no more pixels to ascribe. This process is repeated until
the entire image is segmented. The algorithms, on the other
hand, suffer from a lack of control over the region’s growth
break-off criterion [85].

FIGURE 25. Region splitting.

FIGURE 26. Image segmentation state of the art [76].

(2) Region splitting and region merging

The original image is split or subdivided into sub images.
Each sub-image is recursively divided into its own
sub-images based on the condition or predicate given. If the
condition is not satisfied, further splitting ceases [82].
Figure 25 shows the splitting process.

B. IMAGE SEGMENTATION STATE OF THE ART
Reference [76] proposed a segmentation process that
improves segmentation accuracy bymodifying the super-pixel
extraction methodology so as to increase robustness to added
noise. The segmentation method is based on Gabor filter-
ing and Principal Component Analysis (PCA). Figure 26
presents the state-of-the-art segmentation process. The
method depends on two principal tasks: (1) pre-segmentation
(super-pixel extraction), and (2) clustering of previously
extracted pixels.

(a) Pre-segmentation

An input image is subdivided into a number of regions
of interest. Each region is made up of pixels with similar
features. The Watershed Transform (WT) clustering based
super-pixel algorithm has previously been considered for
super-pixel extraction [86], [87].

(b) Gabor filter

Gabor filters are used to extract spatially localized spectral
features [76]. They have been advocated for because they are
based on principles found in similar human visual systems
and have key features that can be utilized to segment images.

Before the introduction of deep learning, machine learn-
ing techniques such as SVM, K-means clustering, Random
Forest, etc., were the chief algorithms for image segmenta-
tion. Semantic segmentation using deep learning has proven
to work better than the aforementioned techniques because
they classify each pixel of an image rather than the entire
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FIGURE 27. AlexNet [89].

image object. The next chapter gives an overview of semantic
segmentation techniques.

VII. SEMANTIC SEGMENTATION USING DEEP LEARNING
This section introduces fundamental ideas of CNNs and sub-
sequent variants for semantic segmentation, as well as their
network structures [88].

A. AlexNet, VGGNet AND GoogleNet
These are the three chief deep neural networks for image
classification, which formed the major foundations of later
developments. The networks support network architectures
for semantic segmentation.

1) AlexNet
AlexNet is made up of five convolutional layers and three
connected layers [89]. In between the convolutional layers is a
pooling layer whose role is aimed at reducing dimensionality
and computational complexity. AlexNet’s pooling strategy
is max pooling, and the strategy is to obtain the biggest
value covered by the filter, which is used to remove noisy
components [88]. Filters of sizes 11× 11 and 5× 5 are used
in the first and second convolutional layers, respectively. The
last three layers use small-sized filters of 3 × 3. The whole
process is described in Figure 27. The primary purpose of
such filters is to be solely used for feature extraction. Varying
filters accommodate objects of different scales.

1) It supports the application of non-saturating Rectified
Linear Unit (ReLU) whose output is defined by

F(x) = max(x, 0).

2) It employs the overlapping max pooling strategy
(which means that each filtering operation’s step
size (stride) is smaller than the filter’s overall size).

3) To reduce over-fitting, it uses the dropout approach in
fully-connected layers.

2) VGGNet
The network is made up of three fully connected layers and
a varying number of convolutional layers. This is shown in
Figure 28. Unlike AlexNet, VGGNet has fixed small size
filters of 3 × 3 in the convolutional layer [90]. The number
of weights in the network is reduced by using small filters,
which minimizes the training complexity. Just like AlexNet,
VGGNet uses max pooling over a 2 × 2 window slide of
2 pixels. The advantage of simplifying convolutional layers

FIGURE 28. VGGNet [89].

FIGURE 29. GoogLeNet [89].

FIGURE 30. Inception Module [69].

to a greater extent is that it increases network depth, thereby
improving the accuracy of the network. The network’s perfor-
mance in tasks like semantic segmentation and target detec-
tion is improved by using features extracted from CNN that
are structured in a hierarchy of scales [91]. Other classifiers,
such as SVMs, can use the features without fine-tuning [92].

3) GoogLeNet
The architecture is different from the other three in that it
involves three aspects, namely the inception module, at the
training stage, an auxiliary classifier is required, as well
as one fully connected layer [93]. Output results from
these filters are concatenated with the maximum pooling
result. Between the inception modules, maximum pooling
is employed, and after the last inception module, average
pooling that employs dropout is used [94]. The flow chart
diagram is shown in Figure 29. The network is so deep
because it is made up of nine inception modules and up to
three convolutional layers. Because of the profundity of the
network, the smooth flow of gradient from layer to layer
becomes an issue. Figure 30 shows the Inception Module.
The issue is addressed by adding an auxiliary classifier in the
middle of the convolutional layers, whose role is to process
the outputs from the inception modules. The loss from these
classifiers is added to the overall loss of the network during
training. Auxiliary classifiers are prohibited from making
decisions during the prediction phase.

VOLUME 10, 2022 45305



C. Kwenda et al.: Machine Learning Methods for Forest Image Analysis and Classification

FIGURE 31. FCN Network [95].

B. FULLY CONVOLUTIONAL NETWORK
Fully convolutional networks for semantic image seg-
mentation are an extension of AlexNet, VGGNet, and
GoogLeNet [95]. Multi-convolutional, deconvolutional, and
fusion are the three steps that define the network. The flow
chart is shown in Figure 31. Convolutional layers have been
substituted for fully linked layers, with the specification that
each image’s score be computed using a 1 × 1 convolution.
Because of pooling, the output image from convolutional
layers is smaller than the input image. The deconvolutional
process is used to restore the image. It uses the same methods
as the convolutional process, but cushions the framework (by
padding the matrix) and joins the elements inside a deconvo-
lution filter to increase the input size. The process of recov-
ering the original image through the deconvolution process
has some side effects; for example, some details are lost as a
result of the dilution of class scores. To circumvent the side
effects, the skip architecture combines semantic information
obtained from layers with location details obtained from
previous layers. By element wise addition, the up-sampled
deep layer is fused with the yield or output of a shallow
layer.

C. UNET
The building blocks of Unet are the convolutional and decon-
volutional layers. The network works well with small images,
hence the paramount step is downsizing of input images [96].
Convolutional layers use filters of size 3 × 3 which produce
output images that are subsequently subjected to Relu for
processing, followed by maxpooling (which uses a stride
of two). Maxpooling generates downsized outputs. Feature
channels in the convolutional layers double at each and every
step. The deconvolutional layer does upsampling, but a 2 ×
2 convolution is used to limit the number of features to the
required standard. The network generates the segmentation
result by applying a 1 × 1 convolution on the feature map

FIGURE 32. Unet [89].

and labeling pixels. The interconnection of layers in Unet is
shown in Figure 32.

D. SegNet
The network is composed of two subnetworks, namely; the
encoder and decoder networks. The encoder network’s man-
date is the downsizing of featuremaps. It consists of a varying
number of convolutions and subsequent maxpooling opera-
tions for feature extraction [97]. However, features produced
have vague or ambiguous spatial information. The issue is
solved by saving an element index that will be used later in
the decoder network’s up-sampling procedure. Convolutions
map low-resolution features to high-resolution features in the
decoder network. A 2×2 low-resolution feature, for example,
is up-sampled to a 4 × 4 matrix. This process may result in
the loss of spatial information; therefore, reusing the pooling
index from the encoder network completely recovers the lost
information. The SegNet network is depicted in Figure 33.

E. DeepNet
It is a variant of FCN that employs dilated convolution to
broaden the scope of filters to include image context in
a larger neighborhood while also allowing for flexibility
over feature response resolution [17]. Deeplab uses Atrous
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FIGURE 33. SegNe [95].

FIGURE 34. Residual Net [89].

Spatial Pyramid Pooling (ASPP) for up-sampling. Several
atrous convolutions operated on the same kernel but with
various sampling rates are used in the scheme. An additional
operator combines the output from all convolutions. Down-
sampling processes and subsequent maxpooling operators
make segmentation results lose some fine details. To solve the
problem, conditional random filters (CRFs) are employed to
improve the spatial localization of segmentation. CRFmodels
contribute to the smooth segmentation process based on the
underlying image intensities [98]. They boost the accuracy
score by 1% to 2%.

F. ResNet
The residual network is well recognized for its 152 layer
depth and residual block introduction [99]. The residual block
is presented in Figure 35. As based on traditional neural
networks, the greater the number of layers, the better the per-
formance of the network. However, because of the vanishing
gradient problem, first layer weights will not be updated cor-
rectly through the backpropagation algorithm [100]. As the
error gradient is propagated to earlier layers it goes through
a repeated multiplication process such that the gradient
becomes very small hence the network performance gets
saturated and will start to decrease. This problem is solved by
using the identity function, whereby the gradient is multiplied
by one so as to preserve the input and avoid any loss in
the information. The network is made up of the following
components; 3 × 3 filters, CNN downsampling layers with
a stride of 2, global average pooling, and a 1000-way fully
connected layer with softmax at the end. ResNet employs
a skip relation, which means that an original input is also
connected to the convolution block’s output. This aids in the
solution of the vanishing gradient problem by allowing the
gradient to flow in a different direction. The network diagram
of the residual network is shown in Figure 34.

G. APPLICATION OF DEEP LEARNING TECHNIQUES
New emerging technologies such as deep learning have
gained ground in the remote sensing science fraternity

FIGURE 35. Residual block [95].

because the automatic processing of images by these tech-
niques chiefly depends on human expert knowledge, which
has impacted the way land surveys are done [101]. The
main advantage of deep learning approaches is the automatic
computational extraction of features, unlike other machine
learning algorithmswhere feature extraction is typicallyman-
ual [102]. The strength of deep learning algorithms lies in
learning from examples. The learning process consists of
a number of steps: first, an architecture of a network of
nodes is clearly defined. The nodes that form an Artificial
Neural Network (ANN) are arranged into layers. An ANN
with many layers is referred to as a Deep Neural Network
(DNN). The behaviour of the DNN is determined by the
type and number of nodes as well as the connection between
the nodes [101]. If an existing DNN is to be customized
for an new application context, its weights are recursively
updated to achieve the new desired response. This process is
referred to as ‘‘transfer learning’’. Deep learning was origi-
nally used for locating and classifying different tree species in
a mosaic built from UAV-acquired images [103], [104]. [105]
devised a deep learning technique to detect and identify tree
species. The objective of the study was to classify patches
corresponding to tree species. The authors developed a Deep
Learning (DL) architecture, which is a hybrid of ResNet and
UNet, to come up with a semantic segmentation algorithm for
tree spices that is precise and efficient. Seven orthomosaic
images were collected using UAV in the winter, and one
orthomosaic image was collected using UAV in the summer.
The algorithm pipeline is presented in Figure 36. The first
step of the technique identified the classes corresponding to
each mosaic patch. The focus was on classifying the pix-
els in each mosaic patch. The incorporation of the ResNet
architecture into the DL network enhanced the accuracy and
efficiency in classifying forest images [104], [106]. Images
were divided into patches in response to the prescribed anno-
tations, and each patch was assigned to a list corresponding
to the classes that matched it. Patches could belong to more
than one class, resulting in patches having to be labelled
repeatedly. Because of the repeated labelling of patches, the
algorithm is referred to as a Multi-label Patch (MLP) based
classifier. The ResNet architecture went through the training
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FIGURE 36. Algorithm pipeline [106].

phase so that it would be able to classify the patches. The
MLP classification algorithm produced coarsely segmented
images. A watershed segmentation algorithm was applied
to refine the segmentation process. The UNet architecture,
originally used for medical image segmentation [96], is also
very useful for remote sensing images. The UNet architecture
was trained with data and pixel-wise annotation patches. The
segmentation process follows a number of steps: (1) mosaic
images were split into patches for processing, (2) a UNet
model was trained to predict patch segmentation, and (3)
patch joining was used to obtain semantic segmentation for
the entire mosaic image. The model achieved an effective
learning transfer with a 12.48% improvement over random
weights. Overall, the model reached a higher accuracy of
nearly 95%.

Another study [104] proposed a Residual Neural Net-
work (ResNet) architecture for classifying tree species
acquired using a camera mounted on a UAV platform. In tem-
perate forests, UAV images have been successfully used to
distinguish between living and dead forest species [107]. The
motivation of the study was that, most of the existing methods

for tree species classification are cost-sensitive because they
require very large data sets and are restricted to specific tree
species [108]. The study proposed a model based on CNN
to classify tree species at an individual level by analysing
high resolution RGB images obtained from the UAV. A CNN
was chosen in the study because of its ability to learn highly
descriptive features from tree canopies. The study proposed
a CNN model with 50 convolutional layers, referred to as
ResNet50. Figure 38 shows the architecture of ResNet50.
The procedure for performing tree crown delineation was
based on the iterative local maxima filtering technique that
was used to identify probable tree tops. Tree tops were
designed as markers, hence a marker controlled watershed
segmentation was performed as a means of complementing
the DSM for segmenting the tree crowns. Figure 37 shows a
tree crown segmented polygon. The tree crown delineation
process enables tree crown identification labelling. In the
training phase, images were shuffled in unison with their
corresponding labels to randomise the input data so that the
neural network becomes generalised. The model achieved an
overall classification accuracy of 80%. The study concluded
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FIGURE 37. Tree crown delineation [104].

FIGURE 38. CNN model architecture [104].

that classification accuracy increases with an increase in the
number of training images.

The task of classifying and mapping vegetation images has
been difficult because the conventional methods employed
are highly labour intensive. Deep learning and CNN came
as solutions to the problems posed by traditional meth-
ods, but they are still not efficient in detecting ambiguous
objects [109]. There is a little research that employs CNN
to detect and classify vegetation in remote sensing science
images [109]. A study by Guirado [110] successfully used
CNN to detect wild shrubs from Google Earth images. The
author demonstrated that a CNN is much better than tradi-
tional object detection methods. Another study [109] used
a deep learning model and the chopped picture method to
detect vegetation from Google Earth images. The study was
carried out against the backdrop that existing work still faces
huge challenges in classifying vegetation that has ambiguous
and amorphous shapes, such as clonal plants. The training
data was prepared using the chopped picture method, and
images were put into two sets; one set with images com-
pletely covered with bamboo trees and the other set without
bamboo trees. Images were then chopped into small squares
and subsequently used as training images. A classical deep
learning model in the form of a LeNet network was employed
by the study because it is efficient in processing small-sized
images. The network is composed of two convolution layers,

two pooling layers, and one fully connected layer. The final
layer was used to detect bamboo coverage in Google Earth
images. Input images were randomly shuffled to alleviate
overlapped training and validation data. 72% percent of the
data was used for training and 25% of the data for testing. The
model achieved an average classification accuracy of 97.52%.

VIII. FEATURE EXTRACTION TECHNIQUES
This section delves into the main techniques for feature
extraction, and these include (1) Principal Component
Analysis (PCA); (2) Independent Component Analysis
(ICA); (3) Linear Discriminant Analysis (LDA); and
(4) t-Distributed Stochastic Neighbor Embedding (t-SNE).

1) PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA is popularly used as a dimensionality reduction tech-
nique [111]. It was first proposed by [54]. From the original
data input, the PCA method tries combinations of input fea-
tures in order to determine the best features that summarise
the original data. This is accomplished by looking at pair-wise
distances to maximize variances andminimize reconstruction
error [112]. Since PCA is an unsupervised learning algorithm
it leads to misclassification of data in some cases [111]. Dis-
tortion errors arise when data is reconstructed back because
samples would have been projected onto a subspace [113].

2) INDEPENDENT COMPONENT ANALYSIS (ICA)
ICA, like PCA, is a linear dimensionality reduction method
that combines discrete components to produce input data with
the goal of correctly identifying each of them [111]. It is based
on the principle that two features are deemed independent if
their linear and nonlinear dependence are both zero [114].
Independent Component Analyses are extensively used in
medical applications such as Electroencephalography (EEG)
and Functional Magnetic Resonance Imaging (FMRI) analy-
sis to differentiate useful from unhelpful signals [111].

3) LINEAR DISCRIMINANT ANALYSIS (LDA)
LDA is a supervised learning dimensionality reduction tech-
nique and a machine learning classifier [111]. The method is
similar to PCA in the sense that it calculates the projection
of data along a direction, but instead of maximising variation
of data, the LDA uses label information to determine a pro-
jection by maximising the ratio of between class variance to
within class variance [113]. The goal of LDA is formulated
as the Fisher criterion [115].

J (u) :=
uT SBU
uT SWU

(14)

Recently, this technique has been used for indoor positioning
or localisation systems for the purpose of obtaining superior
and higher accuracy [116]. The performance of LDA in the
construction of data using independent variables is directly
proportional to the number of data patterns [116]. However,
its performance is yet to be confirmed in the context of
non-linearity [117].
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4) LOCALLY LINEAR EMBEDDING (LLE)
The LLE is built on a foundation of manifold learning.
A manifold is a D-dimensional object that is embedded in
a higher-dimensional space. A manifold is considered as an
integration of small linear patches, which is done through
piece-wise linear regression [118]. To do the integral opera-
tion, [119] proposed the construction of a kNN graph similar
to an isomap. Then all the sample data is represented by a
weighted summation of its k nearest neighbors. Considering
wi to be row i of the n x k weight matrix w, the solution to the
goal is found by:

Wi =
1

1T (G−1i T )
G−1i 1 (15)

G := (xi1T − Vi)T (xi1T − Vi) (16)

where G is called a Gram matrix and V is a n x k matrix.
After the process of representing samples as a weighted
summation of their neighbors, LLE represents samples in the
lower dimensional space by their neighbors with the same
obtained weight.The method has been successfully used in
feature extraction of Motor Imagery Electroencephalography
(MI-EEG) and it outperformed methods such as Discrete
Wavelet Transform (DWT) in classification accuracy with
fewer feature dimension [120].

5) T-DisTribuTed STOCHASTIC NEIGHBOR EMBEDDING
(T-SNE)
tSNE is an improvement of Stochastic Neighbor Embedding
(SNE) [121], which is used for data visualisation. The main
goal is to preserve the joint distribution of data samples in
the original and embedding spaces. Considering Pij and Qij
to donate the probability that xi and xj and are neighbors and
yi and yj are neighbors, it follows that:

pij =
Pj|i+ Pj|j

2n
(17)

pij =
exp(−||xi − xj||22/2σ

2
i∑

K 6=1 exp(−||xi − xk ||
2
2/2σ

2
i

(18)

qij = (
1+ ||yi − yj||22)

−1∑
k 6=1(1+ ||yk − yl ||

2)−1
2

(19)

Embedded samples are then obtained by adopting the gra-
dient descent method over minimizing Keullback-Leibler
divergence [122] of p and q distributions. Themain advantage
of t-SNE is the ability to deal with the problem of visualising
‘‘crowded’’ high dimensional data in a low dimensional space
(e.g., 2D or 3D) [122], [123].

A. FEATURE EXTRACTION STATE OF THE ART
In image retrieval, calibration, classification, and clustering,
it is critical to extract useful features or characteristics from
the image [124]. Color histogram is the most significant
method to represent color features [125]. [126] provided
a state-of-the-art feature extraction model that consists of

two parts: (a) adaptive color region extraction via the defi-
nition circle (DC) model, and (b) corner feature extraction
via the edge detection model, which includes a suppression
mechanism.

The purpose of the algorithm was to produce a clear and
precise forest saliency map. The algorithm is broken down
into three parts, and those are: (a) the color feature extraction
part; (b) the determination of the center of the DC model;
and (c) an accurate description of color. The algorithm is
expressed in figure 36.

(A) Colour feature extraction
Model appropriate for the extraction of color features is
the DC model, which is comprised of the following steps:
(1) using the RGB picture G histogram to calculate the DC
model’s center; (2) mapping the image to the HIS color space
or lab color; (3) using the k-means procedure to find the DC
model’s radius. The flow chart of the DC model is shown in
Figure 41.

(1) Determine the center of the of the DC model
While the DC model can describe color fluctuations under
specific gradients, the forest region’s dominating hue is gen-
erally green, implying that the ’greenish’ pixels in the forest
area must be filtered off. As a result, the G channel (green)
in the RGB three-channel system will be the focal point
for filtering out pixels that fall within a given range and
calculating the mean value within the range. That value will
be regarded as the center of the circle.

(2) Color description
It is critical to note that the purity of the green is determined
by the circle’s center, thus the radius must be adjusted to
account for a variety of color variations and fault tolerance.
The RGB channel, on the other hand, does not function well
for color adjustments. The RGB color system is converted to
Hue, Saturation, and Intensity (HSI) or lab color space to fix
the problem. The color can be defined more correctly using
only two channels, namely hue and saturation, rather than the
RGB color space.

(3) Adjustment of DC Model radius
To improve the accuracy and adaptability of forest region
extraction, the center and entire remote sensing picture
acquired in the first phase is mapped or converted to HIS
color space.Each pixel’s Euclidean distance to the RSI center
is calculated. The k-means clustering algorithm subdivide the
forest into clusters and determines the Euclidean distance
between the cluster center and the DC model’s center, which
is then used as the DC model’s radius.

h = [h, s, i] (20)

R = (h− h0)2 + (s− s0)2 + (i− i0)2 (21)

δ(i) =
k∑

k=1

|U i
k − U

i−1
k | (22)

P denotes the center of the DC model and the value would
have been obtained by the histogrammodel in the RGB toHIS
color scheme. R is the Euclidean distance and δ(i) represents
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FIGURE 39. DC model in color extraction feature [126].

FIGURE 40. Edge feature extractor.

an is the iterations of the class algorithm. Figure 39 shows the
color extraction feature of the DC model

(B) Edge Feature extraction
The goal of this procedure is to successfully eliminate non-
forest areas. [126] proposed the canny operator as the edge
detection operator because of its better performance than
other operators in terms of edge feature detection. In partic-
ular, denoising is key for image processing, and in this par-
ticular instance, a Gaussian filter was employed to smoothen
the image, thereby preserving the edges. The amplitude and
direction of the gradient are then calculated using the finite
difference of the step-wise derivative. The canny edge detec-
tor operator returns only the maximum value and uses the
non-maximum suppression operation to suppress the field’s
conspicuous points, resulting in a corner point with high
precision and clear vision. Finally, by using a dual threshold
setting, discrete edges are linked together to form a contin-
uous edge. Figure 35 shows the stages of an edge feature
extractor.

IX. PERFORMANCE EVALUATION MATRIX
The major matrices to measure the performance of the model
in forest image classification are: False Positive Rate (FPR),
Accuracy (Acc), F1 score, Precision-Recall Curve, and

FIGURE 41. Flow diagram of the algorithm [126].

Average Precision (AP).

F1 = 2
Precision ∗ Recall
Precision+ Recall

(23)

FRP =
Numberofmisclassifiedforestimages

Numberofimages
∗ 100% (24)

Acc =
Numberofcorrectlyclassifiedimages

Numberofimages
∗ 100% (25)

AP = areaundertheprecision-recallcurvePRC (26)

Measurements for image segmentation area evaluation are
presented in Table 2. The Area Fitness Index (AFI) was
proposed by [63] and the remaining measurements by [2]

The average distance between the reference object and its
matching image object is described by the Position Discrep-
ancy Index (PDI). The Overall PDI is the average of the PDI.

let a = (x(k)− Xr )2 + (Y (k)− Yr )2 (27)

let b =
M∑
i=1

√
(X (I )− Xr )2 + (Y (I )− Yr )2) (28)

PDI =
1

N +M
(
N∑
k=1

√
(a+ b) (29)

PDIOverall =
1
n

n∑
i=n

PDI (i) (30)

X. PERFORMANCE ANALYSIS OF THE STATE OF THE ART
Results based on the CNN with hyperparameter settings
of patch size L = 15, regulation strength α = 0.001, and
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TABLE 2. Evaluation Matrix.

TABLE 3. Segmentation results based on PDI and ADI.

TABLE 4. Edge feature extractor.

C = 32 filter kernels in the first convolutional layer up to a
maximum of C’ = 128 kernels. Using Tensorflow and Keras
mechanisms, the final CNN classifiers used the hyperspectral
imagery to outperform the RGB subset image as indicated by
precision, recall, or F-score. Results are presented in Table 3.

Table 4 displays state-of-the-art segmentation results
obtained using a supervised segmentation method and
the following matrix measurements: AFI (index), OE,
OEOVERALL, CE, CEOVERALL, ADI, PDI.
Object fate analysis and the method proposed by [63]

do not objectively express segmentation quality results.
Table 5 indicates that AFI ranges from 0.561 to−0.280 when
shape and compactness are both at 0.1 and the scale parameter
is changed from 60 to 120.

TABLE 5. Performance of CNN.

XI. RECOMMENDATION
Pixel-based techniques have been commonly used for image
analysis and classification for a very long time. However,
due to the massive growth of high spatial resolution images
and the fact that pixel based methods only work with spec-
tral information, the technique could not be fully utilized
because it does not incorporate spatial, texture, and shape
information, [127]. Previous studies have also shown that
such approaches cause noise in the output message, other-
wise known as the ‘‘salt and pepper effect.’’ [128]. Due to
the limitations of traditional pixel-based methods to cope
with high-resolution imagery, OBIA methods have become
increasingly popular because they have a high degree of infor-
mation utilization, strong anti-interference, a high degree
of data integration, and high classification accuracy [129],
[130]. However, GEOBIA techniques are made up of knowl-
edge and rules purely from domain expert knowledge, such
that they enhance the subjectivity of image interpretation
processes. Given the evolution of remote sensing science
as a result of artificial intelligence, this study suggests that
we pay more attention to Good Old-Fashioned Artificial
Intelligence (GOFAI), which is based on sound mathematics
and logic to construct symbolic representations of abstract
notions [1]. This research highly recommends a shift towards
remote sensing image analysis with ontologies because such
technology allows management, aggregation, and sharing
of the knowledge of remote sensing and domain experts.
Formal ontologies explicitly define expert knowledge that
is used to interpret remote sensing images. This improves
the sharing and reuse of formalized remote sensing expert
knowledge.
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XII. CONCLUSION
This paper is a critical and analytical survey of the methods
for forest image detection and classification. It is a compre-
hensive review of the techniques used to detect objects of
interest in an image that will be analysed for classification
of forests. These techniques cover semantic segmentation
techniques, feature extraction methods and finally classifica-
tion techniques. Exploration of knowledge based approaches
in form of GEOBIA were analysed and how their short-
coming in terms of dual mode of defining geographic con-
cept, vagueness and ambiguity of geographic concepts, and
semantic gaps were addressed by ontology knowledge based
approaches. Performance of the state of the art Tensorflow
and Keras for image classification were analysed. Formal
ontologies knowledge representation was recommended for
state of the art approach for detecting objects of interest. CNN
methods for semantic segmentation were critically analysed
and these were; AlexNet, VGGNet, GoogLeNet, FCN, UNet,
SegNet, DeepNet and ResNet.
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