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ABSTRACT Spectrum sharing in radar bands with interference forecasting for enhanced radar protection
can help design proactive resource allocation solutions which can achieve high data rates for wireless
communication networks on one hand and help protect the incumbent radar systems. We consider radar
spectrum sharing in 5.6GHz where a weather radar operates as a primary system and the dominant secondary
system is an enterprise network consisting of access points (APs) in a university campus. Our work models
transmit the power of the APs as a time series with multinomial distribution based on real collected data.
The aggregated interference due to the transmissions from the APs at the radar is forecasted using a long
short-term memory (LSTM) based neural network. Monte Carlo dropout is utilized to generate prediction
intervals that capture the uncertainties in the interference from the APs. Finally, by using both average
and upper limits of predicted interference time series a cloud-assisted efficient sharing and radar protection
algorithm is proposed. Tracking the rotating radar is not required in the proposed system. The results show
that the proposed efficient sharing and radar protection system ensures better radar protection and increased
throughput for wireless communication users.

INDEX TERMS Aggregated interference, DFS, LSTM, neural networks, radar, real network data, spectrum

sharing, time series forecasting, WLAN.

I. INTRODUCTION

Innovative new wireless applications are increasing the spec-
trum demands of both beyond 5G cellular networks and wide
local area networks (WLANS), such as enterprise networks.
Spectrum sharing between wireless communications and
other wireless technologies is one solution to address the
growing spectrum demand [1]. TV White Space (TVWS) is
one well-known example of spectrum sharing. Radar bands
have generated immense interest in being another candidate
for sharing large amounts of spectrum [2]. Radar spectrum
in L-band (960-1400MHz), S-band (2700-3650MHz), and
C-band (5-5.85GHz) have become good potential candidates
for spectrum sharing with different wireless technologies as
current networks, such as 4G Long Term Evolution (LTE),
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Worldwide Interoperability for Microwave Access (WiMAX)
and WLAN are also operating in one of these bands [3].

The challenge of using radar bands for spectrum sharing is
that most of the radar systems have their critical functions,
such as in military radars, air surveillance radars, and
meteorological radars. Therefore, it is crucial to know the
spectrum usage characteristics of a particular radar to design
the appropriate spectrum sharing model to maximize the
usage of the shared spectrum while protecting the primary
radar operations. Among various radar systems, weather
radars can be found in many parts of the countries near
urban areas. Despite of the communication benefits to society
of the secondary network, the priority of the spectrum
sharing mechanism is to protect the main radar operation
from any potential interference coming from the secondary
network. The dynamic frequency selection (DFS) model is
standardized for radar protection by detecting a radar at the
user side. However, it is not optimal due to its 1 min channel
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availability check (CAC) time and 30 min channel silence
period after detecting a radar signal [4].

The secondary users need to interrupt their transmissions
for the instants of time only when the radar signal is detected
in temporal DFS (DFS-T) instead of leaving the radar channel
as in the conventional DFS [5]. Nevertheless, DFS and DFS-T
require sensing the signal and tracking the rotation of a
weather radar which is found out to be with quasi-periodic
rotation in [6]. Hence, a recent study [7] recommended
to use of advanced cloud-based technologies such as a
Radio Environment Map (REM) repository with an online
database to receive the interference information from sensors
and a spectrum manager to execute the dynamic temporal
spectrum sharing. Most of the frameworks currently used for
radar protection depend mainly on the spectrum monitoring
sensors called environmental sensing capability (ESC). ESC
equipment is deployed in the vicinity of the protection
zones to accurately detect incumbent user transmissions [8].
Moreover, there is an extended version of ESC which
can do multi-functions such as detecting the presence of
radar, measuring any interference from secondary users
for incumbent protection, and measuring airtime utility of
secondary users [7]. These sensors can periodically update
the interference information at the radar and send an alert
to the cloud-based REM repository in case exceeding the
interference limit.

However, these radar protection systems cannot guarantee
that the aggregated interference at the radar caused by the
secondary system will not exceed the tolerable interference
threshold of a radar due to the delays involved in the
process of sensing, processing, and reporting. One possible
solution is to apply an interference forecasting mechanism
using machine learning algorithms in a cloud-based REM
repository. In general, the interference from the wireless
systems can be measured or generated by using realistic
models and stored as a time series in the REM repository.
Medium-to-short-term interference levels can be forecasted
using these historical time series data. Our recent work [9]
investigated various time series forecasting techniques for
wireless traffic usage in an enterprise network and showed
that machine learning methods have many advantages, such
as being able to utilize extra feature information. In [10],
the forecasting performances of machine learning methods
are improved and proved that physical layer data has more
predictive power than network layer data in the time series
forecasting aspect.

Rather than making only point forecasts, LSTM based
neural networks can also estimate the degree of uncertainty
in forecasted wireless interference values via the use of
prediction intervals (PIs). A Pl is a type of confidence interval
used with predictions; it is a range of values that predicts
the value of a new observation, based on an existing model.
In spectrum sharing with radar band, the quality-of-service
(QoS) and the data rate of the secondary system are also
important to consider, besides being able to accommodate
more users in a secondary network. The required QoS and

40368

— cloud based REM\
ﬁ Information

= D
and Calculation j //\J

Resource

Spectrum
Datab:
atabase V Manager
Data from o Exchange
eor — .. Data
(0‘*))
((i)) %\"? 5
L B i CORNY
P e “‘75\ b

.~7700e 3w - X 8\‘“0)
. &_<z2=="— "Radar Maurﬂ?eamM é

N Weather Radar ‘“»——»A_\
Th—l = ~~University Campus /

(((")) ((“’)) _ o

FIGURE 1. Proposed system diagram.

data rate can be provided by combining the main channel
outside radar bands and a channel in radar bands using the
channel bonding (CB) technique which was introduced to
fulfill the IEEE 802.22 requirements on the speed in TVWS
cognitive radio systems [11]. There are two main types of
CB methods: contiguous CB which aggregates the adjacent
available channels to combine as a common larger channel
for better data rate, and non-contiguous CB which allows
to aggregate the available channels even if they are not
adjacent. Non-contiguous CB is widely used in cognitive
radio technologies due to its flexibility and higher data rate
than contiguous CB [12].

Therefore, we propose an efficient sharing and radar
protection system which consists of two parts of algorithms
with the aid of cloud-based REM using predicted time series
of interference at the radar and non-contiguous channel
bonding technique. The novel efficient sharing and radar
protection system optimizes the data sharing of an enterprise
network and ensures radar protection without requiring
tracking the quasi-periodic radar rotation. The overview of
the proposed system diagram is shown in Fig. 1. The main
contributions of this paper are:

1) The model of transmission power (TP) time series
for all access points (APs) is proposed based on real
measurements collected from the University of Oulu
by mapping the number of connected users to the
measured TP data using multinomial based fit.

2) By considering the stochastic nature of neural net-
works, the upper and lower limits of predicted interfer-
ence time series are also obtained to utilize in the radar
protection system.

3) Anovel efficient sharing and radar protection algorithm
is proposed and compared with other radar protection
mechanisms such as DFS and real-time protection
without interference forecasting.
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The rest of the paper is organized as follows. Section II
provides the previous literature related to the spectrum
sharing model of radar systems, time series forecasting, and
channel bonding methods. The description of the collected
dataset from our enterprise network as well as detailed
explanations of time series modeling such as TP mapping
and interference at the radar can be seen in Section III
Section IV presents the interference time series forecasting
methods and performance metrics used in this paper. The
novel efficient sharing and radar protection algorithm is
proposed in Section V. The complete simulation system is
evaluated by comparing it with others in Section V1. Finally,
we conclude in Section VII by discussing the outcomes and
the future direction of this paper.

Il. RELATED LITERATURE

After several initiatives of spectrum sharing techniques such
as TVWS, unlicensed wireless access search for underutilized
licensed spectrum bands has increased and radar C-band
which operates in SGHz has become popular for spectrum
sharing with enterprise WLAN networks. From various types
of radars, weather radars that use C-band can be found widely
across the countries near the urban area. For radar channels
in C-band, dynamic frequency selection (DFS) is widely
used to enable spectrum sharing between a primary system
with the licensed spectrum and the unlicensed secondary
devices [4]. However, it is not efficient in searching for
available spectrum since it requires long sensing periods and
long non-occupancy periods. In [6], the characteristics and
behaviors of a particular weather radar in Finland are studied.
They proved that radar patterns are not always periodic
but mostly quasi-periodic which is not reliable for tracking
radar rotation and sensing-based temporal spectrum sharing
models. Hence, our proposed system is designed to protect
the radar without requiring to track the rotation of a weather
radar.

In general, the priority of shared spectrum access is
to protect the primary user with a licensed spectrum.
In zone-based sharing with radar band, REM repository
is used to provide the sharing rules to users in secondary
network by collecting dynamic information of radar and
interference at radar since [6] stated that sensing-based
sharing model does not work in a weather radar system.
Moreover, the Internet of Things (IoT) has become a huge
dynamic global network and the demand for connectivity for
IoT devices is rising endlessly [13]. The REM architecture
for shared spectrum is also proposed in [14] to increase
the connectivity of IoT devices in both 5G networks and
enterprise networks. It also explained the facts for the
zone-based shared access (SA) suitability, implementation
challenges, and spectrum goodness metrics for IoT appli-
cations. Therefore, a zone-based sharing system with a
cloud-based REM repository is used in this work to collect the
data and execute the forecasting algorithm for the prediction
of interference at the radar.
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The detailed mechanism of the REM elements to utilize for
spectrum sharing in radar systems is also investigated in [15].
Instead of channel sensing at the secondary users’ side, using
a sensor at the radar to measure the interference has more
guarantee of radar protection. The detailed implementation of
an FPGA-based spectrum monitoring ESC sensor for shared
access with rotating radars, which is high-speed and low-
cost compared to other ESCs, is proposed in [16]. Upon
receiving the alert of interference exceeding the limit from the
ESC sensor implemented at the radar, the spectrum manager
in the REM repository updates the sharing rules based on
the utilized spectrum sharing model [7]. It also introduced
two different database-assisted spectrum sharing mechanisms
such as a distributed unified channel access (UCA) method
and a cloud-based UCA method. In these types of real-time
radar protection systems without forecasting interference,
there is a drawback that the sharing rules are updated only
when the interference at the radar has already exceeded the
threshold. To overcome this problem, in this paper, time series
of predicted interference at the radar is utilized to help in
proactive spectrum assignments for the APs of an enterprise
network.

In [5], the authors considered aggregated interference to
the radar for interference threshold calculated under temporal
DFS (DFS-T), which is the modified version of the DFS
system, with a cooperative sharing scheme. They modeled the
interference from cognitive users for both radar antenna main
lobes and side lobes by using link budget power calculation.
A mathematical model for the aggregated interference to
the radar by WLAN devices is presented and the WLAN
devices are considered uniformly distributed within a circle
of radius R in [17]. It also stated that the adverse effect of
aggregated interference is only shown in an area with more
than 10 WLAN devices per square kilometer. The simulation
model of cellular systems sharing the same spectrum with
rotating radar can be seen in [18]. The parameters values
used for weather radar, such as tolerable interference-to-
noise ratio (INR) and so on, are also stated in this literature.
However, cognitive users, which are WLAN devices in [5],
[17], and [18], still need to sense the radar signal as in
conventional DFS system. In our proposed system, the
aggregated interference is also considered but the secondary
users do not need to sense the radar signal since the sharing
rules are updated by the cloud-based REM.

Theoretical and empirical performance comparisons of
different forecasting methods for wireless traffic data of an
enterprise network can be seen in our recent work [9]. The
detailed time series pre-processing, analysis, and stationarity
testing steps are also explained. Previous work [10] also
proved that physical layer data such as channel utilization or
transmit power time series have more predictive power and
higher accuracy in forecasting using LSTM than network-
level data. For the radar protection system, we need to capture
the uncertainty of the forecasting model to ensure that the
radar is fully protected. The machine learning models used
in [9] and [10] are the standard neural networks that do not
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consider the uncertainty of their outputs. To measure the
uncertainty range such as upper and lower PIs of forecasting
models, the Monte-Carlo dropout (MC-dropout) method is
introduced in [19]. MC-dropout is the method that simply
applies the Monte Carlo loop, a class of computational
algorithms that rely on repeated random sampling to obtain a
distribution of some numerical quantity, at testing time. The
usages of MC-dropout and its benefits can be seen in [20]
and [21]. Hence, LSTM with MC-dropout is used to compute
the averaged prediction and PIs of the interference at the radar
time series.

To maximize the QoS and the data rate of connected
secondary users, the non-contiguous CB technique can be
utilized also in the spectrum sharing model of the weather
radar system. The recent work [22] proposed distributed
and coordinated channel bonding methods under signal-
to-interference-noise ratio (SINR) and collision-protocol
models. The method called pi-Aut is under the SINR-protocol
model and pi-sig is under the collision-protocol model.
Both proposed methods are tested in two scenarios such
as combining only adjacent channels (contiguous CB) and
combining both adjacent or non-adjacent channels (non-
contiguous CB). The SINR and collision-protocol models
designed in [22] are also suitable for shared access in
rotating weather radar systems, and the SINR model with
non-contiguous CB is used in our proposed system. The
results showed that the non-adjacent channels scenario has
a higher averaged sum data rate in [22] and [12] also proved
that non-contiguous CB is more flexible and can provide a
higher data rate than contiguous CB.

Ill. NETWORK TIME SERIES DATA MODELS

A. DESCRIPTION OF COLLECTED REAL NETWORK DATA

In our proposed efficient sharing and radar protection system,
the collected channel occupancy rate time series, which is
the physical layer data of each AP, is used to calculate
and predict the total interference level caused by secondary
users at the radar. We have access to collect the channel
occupancy data from only seven APs operating with high
traffic transmissions which are deployed in the student
lounge area of the University of Oulu, Finland. Physical
layer data represents the occupancy percentage of a radio
frequency (RF) channel within a particular period ¢. The APs
were configured to collect the channel occupancy data of a
5.6GHz WLAN channel at every 5-minute interval between
January 22 to February 22, 2020. Hence, each physical
layer data time series has over 8000 data points. We also
collected network layer data from the APs deployed around
the Linnanmaa campus of the University of Oulu due to the
limitation in physical layer data collection.

The received and transmitted traffic data, the number
of connected users, locations, and the names of each AP
of a total of 470 APs, including both types of APs using
2.4GHz and 5.6GHz, around the campus are collected as
the network layer dataset. There are around 50 APs that are
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using 5.6GHz in the University campus. Each data point of a
total of 5040 of the time series provides the measurement at
every 10-minute interval within the period of January 5 to
February 22, 2020. The transmitted traffic data, which is
known as downlink data, is considered as the network traffic
utilization (TU) and it always dominates the received traffic
data at every APs. For this reason, we focus only on the
interference from downlink transmissions. By assuming that
transmission occurs at the maximum allowed power level
(Py), channel occupancy percentage data indicates the power
utilization percentage (TPp,,) of the total transmissions and
transmission power from all kinds of sources operating on
the same specific channel within period ¢ can be defined as,
TP = TPe, x P;.

The channels utilized in an enterprise network are shared
among multiple wireless technologies so that the usage of
other IoT devices excluding users connected to the APs
around the campus with the same channel can be included
in the measured data. Hence, the TP of secondary users (or
APs) mentioned later in this work is considered as downlink
transmissions from the APs to the connected users which are
mainly dominant, and the other possible transmissions from
IoT devices on the same channel. Along with TU data, the
number of connected users to each AP is also collected since
it is one of the important factors for the enterprise network,
and in the next subsection, we show how to stochastically map
the number of users to TP data. We focus our investigation on
only weekdays (working days) data of both physical layer and
network layer data series as in [9].

B. TP MAPPING

As we studied the relation between TU data and the number
of connected users time series in our previous work [9], the
Pearson correlation between TU and connected users of an
AP is significant for highly utilized APs although a small
number of users with heavy data usage can contribute most
of the traffic in APs. Therefore, we investigate the relation
between the TP data and the number of connected users
for seven APs that are deployed in the crowded area of the
University in this work. Surprisingly, the two time series have
a similar pattern and are fitted together for most of the highly
utilized APs, an example is shown in Fig. 2. We proved that
most of the highly utilized APs have similar traffic and users
patterns in [9] and most of the APs using 5.6GHz channels
are included in the highly utilized APs category. Hence,
we can model the TP time series for other APs with 5.6GHz
channels by mapping the numbers of connected users to the
TP time series of collected seven APs. It is important to note
that the mapping is not one-to-one but stochastic mapping
which gives a distribution of TP values for each number of
connected users. This reflects reality since channel usage by
users varies randomly.

To be able to calculate and predict the total interference
caused by the University network, we need to collect the
historical data of shared channel occupancy of all APs.
Despite being able to collect TP data of only seven APs in the
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FIGURE 2. The collected power usage percentage and the number of
connected users for an AP vs time.

University, our investigation shows that it is possible to model
the TP time series for others 5.6GHz APs of the University.
Since the TP data series have a fitting shape with the number
of connected user time series and not all connected users are
utilizing an equal amount of power usage level at a time,
the TP time series can be modeled as follows. There is also
no strict limitation for the maximum TP percentage for a
user.

If we define TP percentages i = 0, 1, ..., k for each user
with £ maximum TP per user, no. of total connected users at
time ¢ as n; and set the optimal weights as P = po, p1, . . ., Pk,

we can model the number of users U = ug, uy, ..., u using
i" TP percentage at time ¢ with multinomial distribution as
U ~ Mult(n;, P). Then, the total TP percentage of all users
at time ¢ (for a given AP) can be expressed as:

k
o =3 iu, (1)

i=0

where Zle u; = ny. The weights, po,p1,...,pk, are
modeled as natural exponential decaying function since there
can be only a few users with heavy usage while others are just
connected.

It is modeling with probability p; that a user is consuming
i percentage of the channel in the time domain. Then we use
multinomial distribution to get random channel usage from
n; users (where the number of users data is coming from our
comprehensive measurements in the University of Oulu). For
example, assume that the studied AP has 10 connected users.
Now, the multinomial output can be [5 3 2], which means that
5 connected users are not using the channel, 3 users are using
the channel with 1% utilization, and 2 users are using the
channel with 2% utilization. Total utilization is then 5 x 0 +
3 x 142 x 2 = 7 percent. Since the multinomial distribution
is random, another realization of the multinomial variable can
lead to another output (for example [4 4 2], now the channel
utilization would be 4 x 0 +4 x 1 + 2 x 2 = 8 percent).
This means that the mapping from several connected users to
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time-domain utilization of the physical channel is stochastic.
The idea in the selecting of the weights p; is to minimize the
difference in the observed distribution of the TP data for a
given number of users and the distribution coming from the
use of the multinomials.

However, brute force optimization to get minimum differ-
ence between the true TP data and TP data generated from
the model, is very difficult due to computational complexity.
To reduce the computational time, one possible solution is
to model the natural exponential function with 2" degree
polynomial for each weight value such as

Dx =exp(czx2+clx+co), x=0,1,...,k, 2)

where cp, c1, 2 are polynomial coefficients which are the
variables to optimize. Now we have reduced the number of
variables to optimize from k to only three which makes the
problem much simpler.

However, the optimized differences between true TP data
and TP data generated from the model with 2" degree
polynomial for each weight value become higher than
optimizing all of the £ weights. After comparing the weight
values from two different optimization schemes, we found
out that the slope between pg and p; is huge and it cannot be
modeled with 2" degree polynomial for the initial weight pg.
The variable py is the probability that a connected user is not
using the channel. In fact, by modeling the initial weight pg as
a separate variable and modeling the rest of the weights with
the natural exponential function with 2" degree polynomial
as above, not only the computation time for optimal weights
is reduced but also the minimum differences between true
TP data and TP data generated from the model as shown in
Fig. 3 are smaller than before. The variables pg, co, c1 and
¢ are optimized using nonlinear minimization method called
Nelder-Mead simplex method [23]. The weights cg, c¢; and
¢y are fed to the polynomial model, equation (2), in order
to get the probabilities p, for x = 1,2,---,k where
k is the assumed maximum time domain utilization per
user.
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C. INTERFERENCE TO RADAR SYSTEM MODEL

We consider a ground-based meteorological radar operating
at 5610 MHz band which is located at certain kilometers
away from the Linnanmaa campus of the University of Oulu,
Finland. This weather radar is equipped with an extended
ESC sensor that can measure the interference around the
radar. We define three different zones for the radar [14], such
as radar channel will not be used by APs in zone 1, radar
channel can be used by certain rules to avoid the interruption
of the radar communication in zone 2, and radar channel is
free to use in zone 3. A circle with radius R, km can represent
the campus area within the radar zone 2 and a total of N active
APs are operating in the 5.6GHz band inside the campus
circle. The measured aggregated interference time series from
the sensors can also be used in the efficient sharing and radar
protection system. In this work, we generated the realistic
aggregated interference at the radar time series by using real
collected data from an enterprise network and using the model
for other possible transmissions.

We mainly consider the downlink transmission of APs with
an additive white Gaussian noise (AWGN) channel since it
dominates the uplink transmission at every APs inside the
campus as we mentioned above. We also consider possible
downlink transmissions such as other active WLAN devices
using the 5.6GHz band in radar zone 2 which are outside
and a bit far from the campus area. With the use of the
DEFS algorithm, APs have to avoid using the channel in zone
2 when the radar signal is detected, and APs need to track
the radar rotation with DFS-T algorithm [5]. However, the
considered scenario for our proposed system is that even
when the radar main beam is on the campus area, APs
operating in the same band as radar will continue operating.
This is possible as long as the predicted interference at
the radar is not exceeded the pre-calculated interference
threshold which can occur without service degradation of
the radar. The proposed method can operate without quasi-
periodic time-domain gaps leading to more usability of the
spectrum sharing as compared to DFS-T.

Assuming the radar main beam is on the campus area, the
parameters used in this work are provided in Table 2. If the
required INR is set as —10 dB [18], this corresponds to the
maximum tolerable interference threshold of —104 dB which
is calculated as [24]:

Threshold = INR + N, 3)

where, N = —144(dBm) + 10logo(Bradar)MH; + n(dB).
We defined path loss model to calculate interference where
the received signal power from an i™ AP at the radar is:

"¢
Pri =Py <—> 4
do;

where, d; > dy; is the distance between i AP and the radar.
The reference received power Py at the close-in reference

40372

TABLE 1. Parameters used in radar system model.

Parameter Notation Values
TP Percentage per User (Max) | k 30 %
No. of APs (Inside Campus) N 50

No. of APs (Outside Campus) | M 10
Radius of Radar Zone 1 Ry 3 km
Radius of Radar Zone 2 R 5 km
Radius of the Campus Area R, 1 km
Radar Channel Bandwidth Bradar 10 MHz
AP Channel Bandwidth Bap 20 MHz
Center Frequency fe 5.6 GHz
Wavelength (in meter) A 0.0536 m
Antenna Length D 0.05 m
AP Transmit Power (Max) Py 180 mW
Radar Gain (Max) Gradar(maz) | 44 dBi
Radar Gain (Min) radar(min) | ~21dBi
AP Gain Gy 6 dBi
Path Loss Exponent a 3
Building Entry Loss Lgy, 11.5dB
Noise Figure n 10
Interference to Noise Ratio INR -10dB

distance dp; = max{%, D, ;} of i™ AP is given by:

Pi)?

0= Gndo)? ©)

where P;; is the transmit power of an i AP. Path loss between
an i™ AP and the radar is defined as Lpr; = %. Then, the
interference power at the radar caused by the secc;ndary users
at time ¢ is [24]:

N
Q Pti . Gti ' Gradar(max) . Bradar ' th
main = Z

Bap-Lpp,i - LgL

(0)

i=1
where Lgy, is the building entry loss of an AP located in the
campus [25], Byadar and Bap are bandwidths of radar channel
and AP channel, respectively.

While the radar main lobe is on the university campus
area, the interference at the radar is not only from the
main lobe of radar but also from the side lobes which are
directed to the outside of the campus area. To model the
simulation, locations of the APs are generated randomly
within the campus area (the exact locations of the APs
do not significantly affect the aggregated interference at
the radar) and we defined uniformly distributed M active
WLAN devices outside of the campus area within zone 2 as
in [17]. The TP utilization of these WLAN devices at time
t, ®y(side), 1s also generated uniformly with a specific value,
k, for maximum power utilization of each device. Hence,
the interference power at the radar caused by the side lobes
is [17]:

M
Ptj ' th . Gradar(min) ' Bradar . cbt(sia’e)
Qside = Z

@)
e Bj-Lprj- LgL

The total interference from both the main and the side lobes
at the radar at time ¢ is Q; = Quain + Rside- Then, the time
series of total interference at the radar is generated by using
this model.
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FIGURE 4. The block structure of LSTM.

IV. INTERFERENCE TIME SERIES DATA FORECASTING

A. FORECASTING METHOD

To be able to utilize advantages of machine learning methods
we have used long short-term memory (LSTM) neural
networks which gave the overall better performances in our
previous works for the interference forecasting. LSTM is a
variance of recurrent neural networks (RNNs). It is one of
the most powerful tools for forecasting time series. LSTM can
remember the previous information for a long time as in RNN
and can also remove unnecessary data from its memory units.
A LSTM block is formed as a cell with 3 main regulation
structures which control the amount of information flow such
as input gate (i;) to tell what new information is going to
be stored in the cell state, forget gate (f;) to throw away
unnecessary information from the cell state and output gate
(o;) which is used to provide the activation to the final output
of LSTM block [26]. One main characteristic of LSTM is
that not only the states of the gates but also the candidate
cell state (¢;) is computed as the current cell state (¢;) and
the final output (h;). The block structure of LSTM can be
seen in Fig. 4. The Sigmoid (o) activation functions are used
in the gates of a cell in LSTM to set the outputs of the gates
between 0 and 1 where O represents that the gates are blocking
everything and 1 represents that the gates allow all data to pass
through them. The tanh activation functions which push the
values passing through them to be in [—1,1] are used to create
a memory vector of the current candidate value (¢;) and used
in calculating the final outputs (h,) of the LSTM block.

The cost function (J) of LSTM model used in our work is
the mean absolute error (MAE). If we denote all weights and
bias (w, b) of the LSTM layer as wygy, bisim, and the dense
layer as Wgenses Ddaense» the objective function of LSTM model
is defined as [27]

(WZSIWH wa’ensev blslmv bdem‘e) = arg minJ,
w,b

argm1n—Z|Yt Y,| 8)
w,b
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where N is the number of samples in a predicted period and
Wistms Waense Pistms Ddense are the updated weights and bias
of LSTM and dense layers, respectively. Among different
optimizers for LSTM model training, the Adam optimizer
is selected in our work since it can converge faster than
other optimizers [28]. The closed-form expressions for the
LSTM layer can be found for example in our previous
work [9].

By using our real collected network dataset described
in Section III-(A), we generated the TP time series of all
APs using 5.6 GHz channels with the TP mapping model
introduced in Section III-(B). From equations (6) and (7)
in terms of generated TP values, the time series of total
interference at the radar at time ¢ is calculated as Q; =
Qonain + Qside, Where Q,,4in and Qg ;4. are the interference at
the main lobe and the side lobe of radar respectively, caused
by the secondary users at time ¢. The total interference at
the radar is generated at every 10-minute interval for only
weekdays (20 days) between January 22 to February 22,
2020. Hence, the time series dataset has over 2880 data
points. The generated dataset used in the LSTM model is
divided into a 75% (15 days) training dataset and a 25%
(5 days) testing dataset.

We also used the features-like grid training data structure
that we introduced in [10]. Moreover, the number of future
time periods for which forecasts must be produced is defined
as the forecast horizon (FH). Hence, one training input
data sample is in the shape of a 6 x 6 grid for 1-hr
FH which is defined as X; = {x;, x;+1,...,Xr4+5} Where
Xi+i = {Q+i, Qtit1s - -5 Q+its}. The corresponding
target sample of training data to compare with predicted
values of the model is in the shape of an 1 x 6 array
for 1-hr FH as Y, = {Qu412, Qev12+15 -5 Qrg1245}
in which the indexes of input and target samples are
separated by 2 x 6 period not to be overlapped. Then, the
corresponding predicted output sample can be denoted as
Yt = {Q,, Qt+1, .. Q,+5} where Qt is the predicted total
interference power at the radar at time ¢.

For neural network learning models selection, it is common
to use the K-fold cross-validation approach with K equal
parts of randomly separated data. However, this K-fold cross-
validation method cannot capture the temporal dependency
of considered time series so that it is not suitable for
time series forecasting [29]. Therefore, the time series
cross-validation method called rolling origin evaluation in
which n — 1 chronological windows are used for training
and n" window is used as validation [30] is used in our
work. The generated training dataset of total interference time
series is split into 3 windows each with 5 days since our time
series data is in daily periods and the hyper-parameters which
gave the optimal averaged result of all windows are selected
for the LSTM model used in our work. Optimizing the
hyper-parameters of neural network-based machine learning
methods is important. The steps and methods of optimizing
the hyper-parameters for wireless network parameters are
presented in our previous works [9] and [10].
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TABLE 2. The optimal hyper-parameters for LSTM.

Hyper-parameter Considered values
No. of layers (1) 2
No. of neurons (nn) 32
Dropout (dp) 0.4,0.5
Learning rate 0.001
Losses MAE
Optimizer Adam
Epochs 5000

For neural network-based machine learning methods, deep
and narrow networks can create more complex feature
representations of the current input than shallow and wide
networks [31]. However, stacking many layers does not
always help for time series forecasting. The optimal number
of layers also depends on the data, hence, we first started
with commonly used parameters for time series forecasting
such as {1, 2, 3} layers, {32, 64} neurons of LSTM in each
layer, and dropout value range from {0.1 to 0.9} where value
1 means no dropout is applied. The optimal hyper-parameters
of LSTM for our time series optimized by using the time
series cross-validation approach are presented in Table 2.
The optimized LSTM model consists of 2-layer LSTM each
layer with 32 nodes (memory cell size). Each LSTM layer
is followed by an MC-dropout layer with a probability of
0.5 to prevent overfitting and to be able to compute the Pls
of interference at the radar time series. Then, one dense layer
is added as the output layer to directly output the predictions
at the end. The linear activation function is used in the dense
layer as it does not change the weighted sum of the input
of the dense layer and returns the predicted numerical value
which is suitable for regression-type predictive modeling
problems [29]. In addition, the averaged accuracy values of
200 iterations are presented in this work by considering the
stochastic nature of neural network.

B. MC-DROPOUT AND UPPER LIMITS OF FORECASTING
General regression and machine learning methods do not
capture the model uncertainty [19]. The Monte Carlo dropout
technique is the interpretation of the regular dropout as a
Bayesian approximation of the Gaussian process. The regular
dropout is applied at both training and testing steps so that
the output of the model is no longer deterministic. The
main purpose of MC-dropout is to generate the multiple
prediction outputs and consider them as random variables
of a probabilistic distribution which is called Bayesian
interpretation.

By using MC-dropout, the statistical properties of the
outputs, such as upper and lower limits of the predictions
can be computed. In statistics, the range between actual upper
and lower limits of the expected estimate is called prediction
interval (PI) and it is associated with a probability with which
the true value will be within that interval [32]. For example,
the considered PIs vs percentages of true data within the given
PI for different dropout values with 1-hr FH is shown in
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FIGURE 5. True data within forecasted prediction interval vs different
dropout values for 1-hr FH.

Fig. 5. The benefit of considering upper limits of predictions
with high probability PI in the radar protection system is
that capturing the wide range of uncertainty in interference
predictions guarantees comprehensive protection for a radar.

V. EFFICIENT SHARING AND RADAR PROTECTION
ALGORITHM

Previously, temporal DFS or cloud-based system with zone-
based shared access dividing three geographical zones is
used for radar protection. In zone-based shared access, the
secondary operation on the radar channel is strictly forbidden
in zone 1 and the radar spectrum is free to use in zone 3 while
temporal sharing is allowed with a tolerable interference
threshold in zone 2 whenever the radar’s main beam is
pointing in another direction. The drawback of DFS or
temporal DFS with zone-based shared access is that sensing
the radar signal at the user side is not optimal for the
throughput of secondary users. Moreover, secondary users
need to track the radar rotation time while most of the weather
radar rotations are quasi-periodic so that comprehensive radar
protection is not guaranteed. Our novel efficient sharing and
radar protection system aims to achieve optimal temporal
sharing while ensuring that radar is almost completely
protected and tracking the radar rotation is not required.

The main objective of the proposed system is to maximize
the averaged throughput over all connected users over all time
periods where the throughput of each user j connected to an
AP at time ¢ is defined as:

Throughput; = Bap - log,(1 + SINR) - ¢;,

Pr
SINR = ——,
P, + wj
P, -G
PR — t [’
Lyser
P, =n 'NO(linear) - Bap, )

while minimizing the aggregated interference points over the
tolerable threshold of radar, P,;, which is denoted with the

VOLUME 10, 2022



S. P. Sone et al.: Proactive Radar Protection System in Shared Spectrum

IEEE Access

indicator function at time 7, I,(?), as:

T
Py = Y Iy(0),
t=0

1, ifQR > Threshold,

L(t) =
b® 0, if QR < Threshold,

(10)

where ¢; is the TP percentage of the user j, P is the received
signal power from an AP that user j is connected, w; is the
interference at the user j caused by other APs, L, is the
path loss between user and the connected AP, and P,, is the
noise power with —174 dBm reference noise, No. Moreover,
T is the total number of time instances and QX is the total
interference at the radar at time ¢ after the radar protection
system is applied.

By considering the random nature of radio propagation, the
radar protection of the proposed system can be expressed in
terms of the probability of total interference which exceeds
the tolerable radar interference level and the permissible
probability of harmful interference at the radar, €, as in [17]
and [33]:

Pr(QR > Threshold] < €,. (11)

The value of €, varies depending on the operating frequency
and the radar type [33]. Reference [17] considered €, =
0.05 for a weather radar operating in 5.6 GHz.

For simulation, we assumed that the university is inside
the zone 2 of a weather radar which is 4 km away from the
center of the radar. Instead of sensing the radar or tracking its
rotation, the proposed algorithm is designed for the secondary
users to be able to use the radar channel even when the
main beam of radar is illuminating on them. The aggregated
total interference at the radar is calculated based on the real
collected data from the university’s network. The APs inside
the university are operating with the main channel excluding
a radar channel and a subordinate channel which is a radar
channel. Whenever the radar channel is allowed to be used as
a subordinate channel for an AP, the SINR channel bonding
model introduced in [22] is used to bond the main and
subordinate channel for better throughput for the connected
users of an AP. The proposed algorithm makes sure to protect
the radar system by denying the access of necessary APs for
the subordinate channel usage with the help of cloud-based
REM. It is divided into two parts such as AP part (Algorithm
part 1) and the Cloud-based REM part (Algorithm part 2).

A. ALGORITHM PART 1

In Algorithm 1 - AP part, all APs are required to register
with cloud-based REM to be able to use the radar channel
as a subordinate channel. If an AP is in Zone 1 and Zone 3,
the rules are the same as before. If an AP is in Zone 2, the
radar channel will be assigned as a subordinate channel. The
transmission on the radar channel will be stopped for a certain
period (10 minutes in our case) only when the notification
from REM is received and then, the APs will connect to
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Algorithm 1: Part 1 - AP Part

Each APido

Select: A main channel p € M,,, where M), is the set of

available channels excluding radar channels.

Assign a radar channel as subordinate channel for higher

data rate,

Initialize: Register with cloud-based REM.

Get: Rules for sharing with radar system, zone,
distances and silence period for an AP i
information

if zone == 1 or silence period for an AP i is on then

No Access: for a Radar Subordinate channel, only
| the main channel is assigned.
else if zone == 2 and silence period for an AP i is off
then

Select: Utilize a Radar channel as Subordinate

channel by defined rules.
for t = start to requested time interval do
if notification to move channel from REM is
received then
Stop: Accessing radar channel for a certain

silence period
Perform: Transmission by using only
Primary channel during silence
period

else
| Continue utilizing.

else
Radar channels are free to use.

L Select: A Radar channel as Subordinate channel.
Perform: Non-contiguous channel bonding with the
main and subordinate channels.

the radar channel again. On top of the 10-min break period,
there is also an option called the silence period. The optional
silence period is introduced to use during busy hours (mostly
from 10 am to 4 pm during weekdays) of the highly utilized
APs from the university’s network. As we analyzed in [9],
there is a peak utilization period in most of the highly utilized
APs, and TP levels will be high all the time during these
periods. Therefore, instead of connecting the radar channel
again after a 10-min break, AP cannot use the radar channel
again once its access is denied as long as the silence period
for an AP is on. When the silence period is over for an AP, the
radar channel can be assigned and used until receiving further
notification from REM again.

B. ALGORITHM PART 2

The Cloud-based REM collects the necessary information
of each APs, calculates the interference data or collects the
measured interference data from the ESC sensors at the radar,
and decides which APs to remove not to over the tolerable
interference threshold of the radar. The Cloud-based REM
also computes the average and upper limits of predicted
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Algorithm 2: Part 2 - Cloud-Based REM Part

A radar channel is assigned as a Subordinate channel for
higher data rate.

Get: TP levels of APs

Set: silence indicator = 0

for Each time t do

if silence indicator > 0 then

Set: silence indicator = silence period - 1

if rotal interference at time t-1 > threshold then

Set: Reduced Interference = 0

while Reduced Interference < Amount of

previous Interference over threshold do
Denied: Access of an AP with highest

TP level among updated
connected APs list
Calculate and Update: Reduced
Interference and
Connected APs
L list
Send: Notifications to change channel only
at t to APs whose accesses are denied

else
Keep: The same connected APs list (do not

allow already removed APs to access
during silence peroid).

ilence Period OfT: if silence indicator < 0 then
if Predicted total interference at time t+1 >
threshold then

Set: Reduced Interference = 0 and

silence indicator = silence period

while Reduced Interference < Amount of
predicted Interference over threshold at t+1
do

|72}

Denied: Access of an AP with highest
TP level among total connected
APs
Calculate and Update: Reduced
Interference and
Connected APs
L list
Send: Notifications to change channel only
at t+1 to APs whose accesses are
L denied
else

Initialize: All APs to use radar channel as
usual

total interference at the radar by using collected historical
data. The predicted total interference of the next period is
compared with the threshold and APs with the highest TP
level are removed until the total interference is below the
threshold. If an AP is decided to be removed for the next
period (10-min), REM sends the notification to the specific
AP.
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Using silence period is optional for the efficient radar
protection system with predicted total interference at the
radar. When it is applied, the silence period will be on for
certain hours right after the first time removing some APs.
Once the silence period is on, the radar channel is not assigned
again to the already removed APs in the next period, and
the interference at the radar at time ¢+ — 1 (after removing
the previous APs) is used to compare with the threshold and
decided the numbers of new APs to remove for the current
period ¢. All the APs which are removed during the silence
period cannot use the radar channel until the silence period
is off again. In Algorithm 2 - Cloud-based REM part, all the
steps will be used when the silence period is applied, and only
the part after “Silence Period Off” will be used when the
silence period is not applied.

V1. SIMULATION SYSTEMS AND COMPARISONS

A. DFS AND TEMPORAL DFS RADAR PROTECTION
SYSTEM

In the DFS radar protection system, radar protection is done
by detecting a radar at the secondary user side. The DFS
requirements standardized by International Telecommunica-
tion Union (ITU) are —64 dBm threshold when radiated
power higher than 200 mW, 60-sec channel availability
check (CAC) time, and 30 min non-occupancy period after
detecting a radar signal [4]. For a considered weather radar,
the rotation time of the main beam to illustrate on the
same area is 60 sec (rotating with 6° per sec) so that radar
signal will be always detected at the user side within 60 sec
CAC period [34]. It means the DFS system does not allow
transmission within zone 2 where the received radar signal is
stronger than the standardized threshold. If the DFS system is
applied, none of the APs from the university which is located
within zone 2 will be able to use the radar channel as the
subordinate channel.

Temporal DFS (DFS-T) which is an extended version of
DFS utilizing the temporal opportunity for secondary users
is also widely used previously. In DFS-T, APs are assumed
to know the exact antenna pattern and periodic rotation of
the radar and utilize them to calculate the adjusted threshold.
In reality, weather radars are quasi-periodic [22] and it is
difficult for APs to know the exact antenna pattern and
rotation of the radar [34]. The cooperative method with a
combination of DFS-T and centralized dynamic threshold
proposed in [5] which allows secondary user transmission
in zone 2 is only for the secondary users with constant
transmission and lower aggregated interference than tolerable
interference threshold of a radar which is not suitable for
our considered secondary users with stochastic transmission
power and higher aggregated interference level. To overcome
the drawbacks of DFS and DFS-T systems, one possible way
is utilizing the real-time feedback data from the radar to
ensure its protection.

B. REAL-TIME RADAR PROTECTION SYSTEM
In a real-time radar protection system, we have assumed
that the measured interference at the radar with the help of
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FIGURE 6. The total interference at the radar vs calculated threshold for
different radar protection systems.

extended ESC sensor at + — 1 is fed back to cloud-based
REM at every ¢ and it is used to compute the decision
for removal of APs at + + 1. This system provides the
near-optimal secondary usage of the radar channel with
simple feedback and computing mechanism. However, the
drawback of a real-time radar protection system is that there
are at least two time-step delays to remove the necessary
APs for radar protection although the interference at the
radar is already over the threshold. Moreover, it is impossible
to keep the current interference level below the threshold
using previous values even when the silence period is on
due to the stochastic nature of the TP time series of APs.
The example of interference at the radar time series vs
calculated threshold for real-time radar protection system
without predicting interference time series can be seen in
Fig. 6 (a).

C. PROPOSED RADAR PROTECTION SYSTEM

Instead of waiting for the real-time feedback data, we used
time series of predicted interference at the radar. First,
the interference historical data are calculated or collected
and the prediction of interference at the radar is computed
at the cloud-based REM. The benefit of using predicted
interference is that the real-time feedback from the radar is
not required anymore at which there can be a delay (which
reflects reality) in removing the necessary APs for radar
protection. However, the averaged prediction values are not
precise enough to protect the radar completely. Especially, the
total interference at the radar is over the threshold when the
predicted interference is less than the real interference value
at time ¢. Therefore, we also used time series of upper limits
prediction of interference for an efficient radar protection
system.

The main advantage of using upper limits prediction is
ensuring with a high probability that the actual interference
will not be over the upper limits of the predicted time series.
It provides almost perfect radar protection with the trade-off
between lower interference at the radar and higher throughput
of the users. Moreover, the silence period is not required
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TABLE 3. Comparison for interference forecasting with LSTM and
different dropouts for 1-hr forecast horizon.

Dropout | RMSE | NRMSE | MAE | R2 score
0.8 0.5396 0.0375 | 0.4291 0.9869
0.6 0.4291 0.0294 | 0.3381 0.9911
0.5 0.38752 | 0.0257 | 0.2880 | 0.9932
0.4 0.3833 0.0262 | 0.2901 | 0.9929

Naive 1.6905 0.1159 | 1.1326 | 0.8629

in the efficient radar protection system with Upper limits
prediction since the upper limits already provides the guard
interval by considering the stochastic nature of interference
time series. The examples of interference at the radar time
series vs calculated threshold for proposed radar protection
system with average and upper limits of predictions with 90%
PI are shown in Fig. 6 (b) and (c), respectively.

D. PERFORMANCE COMPARISONS

In this section, performance comparisons of different radar
protection systems are presented. Before going to the
numerical results of the different radar protection systems,
performances of the forecasting method used in the proposed
radar protection system are also presented. To be able to
utilize the uncertainty range of machine learning methods,
we used the LSTM forecasting method with MC dropout
to predict the averaged interference time series for a certain
number of realizations to capture the stochastic nature of the
interference time series.

The best LSTM averaged prediction result is with dropout
0.5 in Table 3 so that using the average and upper limits
of predicted interference time series with dropout 0.5 gave
the best efficient sharing and radar protection performances,
which will be explained in detail later. The performances
of predicting the upper limits of interference time series
with different PIs are also shown in Fig. 7. Although the
upper limits prediction with 99.9% PI captured the highest
uncertainty range, using the upper limits predicted time series
with 80% PI gives higher throughput per connected user with
smaller ¢, value than using the average of predicted time
series which is also explained in a later paragraph.

The performances of different radar protection systems
such as DFS, real-time system and proposed systems with
predicted interference are compared based on two metrics:
(a) points over the threshold (P,;) for a certain period and
(b) averaged throughput of each user j connected to the APs
in the university (Throughout;). The ranges of the permissible
probability of harmful interference at the radar which is
defined as ¢, = %, to represent the radar protection
performances for different radar protection systems are also
investigated. The comparison of total interference time series
and points over threshold for one example realization when
different radar protection systems are applied is shown in
Fig.6. For the DFS system, points over the threshold will
be always zero since none of the APs can use the radar
channel. In fact, the number of points over the threshold for
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FIGURE 7. Forecasting total interference at the radar using LSTM with
1-hr FH.

different systems presented should also be averaged for a
certain number of realizations by considering the stochastic
nature of interference time series. The averaged points over
the threshold for the real-time system proposed protection
with averaged prediction system, and DFS system are 27, 25,
and 0, respectively. For proposed protection with the upper
limits prediction system, the averaged points over the thresh-
old can vary from 0.45 with 99.9% PI to 22 with 80% PIL.

From the results, the DFS system has the best radar
protection and our proposed efficient radar protection system
with upper limits prediction has higher radar protection per-
formance than the rest. However, comparing the throughput
of the users connected to each APs of the university is
necessary to optimize the transmission of connected users.
The averaged throughputs per user connected to each AP
in the university for different radar protection systems are
presented in Fig. 8. Due to a trade-off between radar
protection and efficient sharing in the weather radar band,
the averaged throughput with the DFS system is significantly
lower than any other system. The proposed system with
averaged prediction has slightly higher averaged throughput
per user with better radar protection (lower €, values) than in
the real-time system. The radar protection performance of our
proposed system is improved by utilizing the upper limits of
different PIs so that lower ¢, value is always achieved for the
same averaged throughput per user than in the system with
averaged prediction and the real-time system. Our proposed
scheme with upper limits prediction can be used between
€, = 0.0006 with 99.9% PI and ¢, = 0.043 with 75% PI
which does not exceed the recommended value, €, = 0.05,
for a weather radar operating in 5.6 GHz [33].

The main advantage of the proposed system with upper
limits prediction is that it achieves higher averaged through-
put per user with lower ¢, value for 85% and 80% PIs
compared to the real-time and averaged prediction systems.
The radar protection performance of the proposed system
with an upper limits prediction for 99.9% PI is also close
to the protection performance of the DFS system but with
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different radar protection systems vs ¢p.

significantly higher averaged throughput per user as shown in
Fig. 8. Hence, the proposed efficient radar protection system
with upper limits prediction, which has significantly higher
averaged throughput per user, ensures the radar protection
by even allowing some of the APs to transmit when radar
main beam is illustrated on them unlike in the DFS system,
which ensures the radar protection by not allowing any APs
to transmit.

VII. CONCLUSION AND FUTURE WORK

Spectrum sharing between radars in the 5.6 GHz band
and wireless enterprise networks can help in providing
higher capacity. However, designing such a sharing scheme
is challenging and to address this, we have proposed
a machine learning-driven technique which can facilitate
efficient sharing. Our proposed technique enables a radar
protection system via neural network-based interference
prediction which in turn helps in optimizing spectrum
sharing. While the proposed technique can be used for sharing
with any rotating radar system in various bands, however, our
focus in this paper is on radar protection for a weather radar
that rotates quasi-periodically in a 5.6GHz band. To model the
interference generated to a radar system from an enterprise
wireless network, in our work, we studied the stochastic
relationship between the number of connected users and
physical layer transmit power (TP) data of 7 different APs to
model the TP time series for 50 APs operating with 5.6 GHz
in the real enterprise network. In simulations, these generated
TP time series from the multinomial-based model are used
to calculate the aggregated interference at the radar by using
appropriate path loss models.

The calculated aggregated interference time series at the
radar (which can also be measured by a sensor) are utilized
in training the LSTM-based machine learning model which
then makes interference-related predictions. To ensure robust
radar protection, we also consider the prediction intervals
for the predicted interference values by using the MC
dropout method. The proposed efficient sharing and radar
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protection system consists of two parts of algorithms. In part
1, AP part, APs are listening to the cloud-based REM whether
to access the radar channel or not. Once the radar channel
is allowed access, the non-contiguous channel bonding is
performed by the APs. In part 2, the Cloud-based REM part,
the predicted interference at the radar is compared with a
tolerable threshold and some APs are removed with certain
rules whenever the predicted interference is about to exceed
the threshold.

We also compared different radar protection systems
in terms of how often the interference is exceeded over
the threshold when a particular system is used. Moreover,
achieved averaged throughput per user connected to the APs
is also utilized to compare with other systems. According to
the facts, the secondary users located inside zone 2 of the
considered radar will not be able to use the radar channel as
a subordinate channel when the DFS system is applied. The
real-time radar protection system and the proposed system
with averaged predicted interference have higher throughput
per user than the DFS system but cannot provide the
comprehensive radar protection. To address these limitations,
the proposed system is made robust by incorporating a
PI-based technique in which an upper limits of predicted
interference time series ensures that similar radar protection
performance with significantly better throughput per user
than conventional DFS system.

Dynamic threshold calculation aims to achieve higher
throughput than static thresholds. However, the limitation in
previous works considering dynamic threshold calculation
(e.g. [5] and [17]) is that they cannot guarantee comprehen-
sive radar protection due to the inefficient radar sensing time
and the quasi-periodic weather radar rotations. To address
this limitation as a future direction of our work, dynamic
tolerable thresholds of the radar can be calculated with
the help of neural networks-based radar rotation predic-
tion. With its powerful nonlinear mapping ability, neural
networks-based time series predictions can help forecast
the quasi-periodic radar rotations which can be used in
calculating the dynamic tolerable threshold of the radar to
guarantee comprehensive radar protection. Unlike in this
work, a sufficient historical radar signal time series obtained
using the approach for example in [6], will be required for
the radar rotations prediction methods. Dynamic tolerable
thresholds calculation with neural networks-based radar rota-
tion prediction can provide the throughput improvement as
compared to the current efficient sharing and radar protection
system which only considers the threshold of worst-case
scenario that the radar main beam is illuminating on the
university.
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