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ABSTRACT In the field of WiFi sensing, as an alternative sensing source of the channel state informa-
tion (CSI) matrix, the use of a beamforming feedback matrix (BFM) that is a right singular matrix of the
CSI matrix has attracted significant interest owing to its wide availability regarding the underlying WiFi
systems. In the IEEE 802.11ac/ax standard, the station (STA) transmits a BFM to an access point (AP),
which uses the BFM for precoded multiple-input and multiple-output communications. In addition, in the
same way, the AP transmits a BFM to the STA, and the STA uses the received BFM. Regarding BFM-based
sensing, extensive real-world experiments were conducted as part of this study, and two key insights were
reported: Firstly, this report identified a potential issue related to accuracy in existing uni-directional BFM-
based sensing frameworks that leverage only BFMs transmitted for the AP or STA. Such uni-directionality
introduces accuracy concerns when there is a sensing capability gap between the uni-directional BFMs for
the AP and STA. Thus, this report experimentally evaluates the sensing ability disparity between the uni-
directional BFMs, and shows that the BFMs transmitted for an AP achieve higher sensing accuracy compared
to the BFMs transmitted from the STA when the sensing target values are estimated depending on the angle
of departure of the AP. Secondly, to complement the sensing gap, this paper proposes a bi-directional sensing
framework, which simultaneously leverages the BFMs transmitted from the AP and STA. The experimental
evaluations reveal that bi-directional sensing achieves higher accuracy than uni-directional sensing in terms
of the human localization task.

INDEX TERMS Wireless sensing, channel state information, beamforming feedback, bi-directional.

I. INTRODUCTION
WiFi sensing [1], [2] has attracted notable interest as a
technology that adds value to existing wireless local area
networks (WLANs) beyond the communication infrastruc-
ture, which is under standardization by IEEE 802.11bf
task group [3]. In WiFi sensing, a widely used radio
frequency (RF) information is channel state information
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(CSI). It is used in multiple-input multiple-output orthog-
onal frequency-division multiplexing (MIMO-OFDM) sys-
tems [1]. CSI is generally measured in the MIMO-OFDM
communication procedures and includes high sensing capac-
ity to facilitate CSI-based sensing with low implementation
cost and high sensing accuracy.

CSI-based sensing is associated with an issue regarding
the applicability of the underlyingWLAN system. Generally,
access to the physical layer (PHY) component is necessary to
obtain the CSI. However, only a few wireless chips permit
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FIGURE 1. Overview of previous and proposed BFM-based sensing frameworks. The previous framework uses only the uni-directional
BFM (i.e., either VAP or VSTA) and ignores other directional BFM. The proposed framework uses the bi-directional BFMs (i.e., both of VAP

and VSTA).

such access to the PHY layer [4]–[6]. Therefore, CSI-based
sensing cannot necessarily be applied tomost existingWLAN
systems. To extend their applicability, a new RF information,
beamforming feedback matrix (BFM), has been utilized for
sensing purposes [7]–[12]. In the IEEE 802.11ac/ax stan-
dard [13], [14], the BFM, which is a right singular matrix
of the CSI matrix, is transmitted from a station (STA) to an
access point (AP) and is used for the precoding procedure
in the AP for MIMO transmissions. Moreover, in the same
way, the AP transmits BFM to the STA, and the STA uses
the received BFM for the precoding procedure in some sce-
narios, such as the STA that acts as a relay station. The BFM
transmission procedure is conducted without any encryption,
Thus, BFM-based sensing can be only conducted by cap-
turing the BFM with a media-access-control (MAC) frame
capture tool, without any access to the PHY layer of the
communication pair. This fact enables us to utilize most
WLAN devices for BFM-based sensing.

We show an existing BFM-based sensing framework
[7]–[12] in Fig. 1(a). Let the BFM transmitted from the STA
to the AP and the BFM transmitted from the AP to the
STA be denoted by VAP and VSTA, respectively. In these
studies, the frame capture acquires BFMs and estimates the
sensing target values (e.g., human locations [7]–[9], device
location [8], [9], and respiratory rate [10]) by feeding BFMs
to machine learning (ML) models. The existing BFM-based
sensing frameworks [7]–[11] are referred to as uni-directional
sensing, and they leverage either VAP or VSTA. Therefore,
even when the AP and STA transmit BFMs to each other, the
existing works [7]–[11] leverage only uni-directional BFMs
(i.e., either of VAP or VSTA) and ignore the other directional
BFMs.

Regarding the existing uni-directional sensing, we are
concerned that there may be a sensing capability disparity

between the usage of VAP and VSTA, resulting in the risk of
using a BFM with a low sensing capability between VAP and
VSTA. The disparity is because VAP and VSTA correspond to
the right and left singular matrices of H , respectively, and
the right and left singular matrices of a matrix are generally
different; thus, VAP and VSTA are different. This difference
between VAP and VSTA results in BFM disparity in the sens-
ing accuracy.

To account for the accuracy disparity, we experimentally
evaluate the sensing ability gap between VAP and VSTA

for the AP’s angle of departure (AoD) estimation task in a
real environment using off-the-shelf equipment, which are
equipped with non-linear antenna arrays. The experimental
evaluation confirmed that sensing using VAP resulted in a
higher AoD estimation accuracy than sensing based onVSTA.
Moreover, this difference in the accuracy of AoD sensing
implies that there is an accuracy difference for practical sens-
ing tasks in which the sensing target values to be estimated
depend on the AP’s AoD. Specifically, we experimentally
evaluate the difference in accuracy between sensing withVAP

and VSTA using a human localization task in which the angle
from the human to the AP corresponds to the AP’s AoD of
the human-reflected path. The experimental results confirm
the existence of a sensing accuracy disparity between the uni-
directional BFMs.

Furthermore, in this report, a simple but powerful method
called bi-directional sensing is proposed to address the poten-
tial accuracy concern. An overview of the bi-directional
sensing process is shown in Fig. 1(b). In this method, the
uni-directional BFMs are integrated into an input feature
and are fed to the ML model. Our experimental evalua-
tions reveal that the proposed bi-directional sensing achieves
higher sensing accuracy than the previous uni-directional
sensing. Moreover, it is determined that when the ML model
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is trained using the bi-directional BFMs, it leverages more
appropriate BFM of the uni-directional BFMs. Specifically,
if the sensingwithVAP achieves higher accuracy than sensing
with VSTA, the ML model with bi-directional BFMs assigns
higher importance metrics to the input features generated
from VAP compared to those of VSTA, and vice-versa. Note
that the importance metrics indicate the contribution of each
input feature to the sensing accuracy.

The contributions of this study are summarized as follows:

1) We experimentally validate that VAP achieves supe-
rior sensing accuracy than VSTA for the AP’s AoD
estimation.

2) We experimentally validate the difference in the sens-
ing accuracy between VAP and VSTA for a human
localization task, which is caused by the difference in
sensing accuracy for the AP’s AoD estimation. This
finding highlights potential accuracy risks in existing
BFM-based sensing schemes, which are not found in
previous works that used only uni-directional BFM
(i.e., either VAP or VSTA). To the best of our knowl-
edge, in-depth discussions on the difference between
uni-directional BFMs in terms of sensing accuracy
have not been presented in the BFM-based sensing
literature.

3) We propose a novel BFM-based sensing framework
called bi-directional sensing. In this approach,VAP and
VSTA are integrated into an input feature, which is fed
to the ML model. We experimentally validate that the
proposed bi-directional sensing achieved higher accu-
racy than the preexisting uni-directional sensing for a
human localization task.

In this study, our main objective is to show that the sens-
ing abilities of the BFM transmitted for an AP and STA
are different, and that the bi-directional BFM-based sensing
framework is beneficial in terms of sensing accuracy when
compared to uni-directional BFM-based sensing. Namely,
our focus is on the difference in the directivities of BFMs in
BFM-based sensing frameworks. Thus, the comparison of the
proposed framework to other RF-information-based sensing
frameworks (e.g., CSI-based sensing and received-power-
based sensing) is out of the scope of this report. Moreover,
we should note that the BFM-based sensing framework is
explicitly different from other RF-information-based sensing
frameworks in terms of its system requirements. Specifically,
the BFM-based sensing can be conducted using frame cap-
ture without access to the AP and STA, whereas the other
RF-information-based sensing frameworks generally require
such accessibility.

This study focuses on the difference in the sensing accu-
racy between three sensing methods: sensing with VAP,
VSTA, and both VAP and VSTA (that is, VAP sensing, VSTA

sensing, and bi-directional sensing). Thus, we consider that
the evaluation of a scenario in which the training and testing
datasets are generated in the same environment can be used to
evaluate the difference. It is beyond the scope of this study to

provide a detailed evaluation of the train-test difference prob-
lem (that is, the problem that occurs when the environments
of the training and testing datasets differ).

II. RELATED WORKS
Table 1 summarizes the system requirements of the existing
WiFi sensing, by categorizing them into the received signal
strength indicator RSSI-, CSI-, and BFM-based methods.
Traditionally, owing to its ease of availability and broad
applicability, the received signal strength indicator (RSSI) has
been used for WiFi sensing, such as human detection [16],
human tracking [17], and human localization [18]. Con-
sidering the spread of the MIMO system in WLAN, CSI-
based sensing has attracted notable interest in terms of the
improvement of the sensing capacity. Since the CSI includes
more fine-grained information than the RSSI, specifically
CSI includes the attenuation between each transmit-receive
antenna pair for each OFDM subcarrier, CSI-based sensing
achieves higher sensing accuracy [19]–[22] and success in
more complex sensing tasks [23]–[26] than RSSI-based sens-
ing. In the existing CSI-based sensing literature, either of the
firmwares [4]–[6] have been mainly used for CSI extraction.
However, they can only be used on a few wireless chips.
Therefore, there are device limitations in the realization of
CSI-based sensing.

TABLE 1. Summary of RF information used for WiFi sensing in terms of its
system requirements.

Table 2 summarizes the existing BFM-based sensing liter-
ature. Compared to CSI-based sensing, BFM-based sensing
is a firmware-agnostic wireless sensing method [8]–[11].
As mentioned in the previous section, BFMs can be collected
via MAC-layer frame capture without any special constraints
regarding the firmware. Although a vast number of stud-
ies addressed CSI-based sensing [1], there are few studies
on BFM-based sensing; human detection [7]–[9], respira-
tory rate estimation [10], and camera image estimation [11].
Moreover, these experimental studies [7]–[11] addressed
sensing tasks using uni-directional BFM (i.e., either VAP or
VSTA). In contrast to those investigations [7]–[11], this report
focuses on the difference between the BFM transmitted for an
AP and STA and leverages bi-directional BFMs to improve
sensing accuracy.

III. PRELIMINARIES: MIMO-OFDM
This section describes a MIMO-OFDM communication
system using Eigen beam space division multiplexing
(E-SDM) [27]. The system consists of a transmitter (TX)
and a receiver (RX) that are compliant with IEEE
802.11ac/11ax [13], [14]. The TX sends frames to the RX
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TABLE 2. Summary of BFM-based WiFi sensing.

using MIMO-OFDM. The RX estimates the CSI, computes
the BFM based on the CSI, and transmits the BFM to the TX.
The TX uses the BFM as a precoding matrix.

Formally, let the CSI matrix from the TX to the RX at the
kth subcarrier be denoted byH[k] ∈ CNr×Nt , whereNt andNr
are the number of antennas of the TX and RX, respectively.
The CSI matrix is estimated at the RX using the pilot signals
(e.g., null data packet) at each OFDM subcarrier. From the
CSI matrix, the RX calculates a right singular matrix V [k] of
H[k] using singular value decomposition, as

H[k] = U[k]Σ[k]V [k]H, (1)

where V [k] and U[k] are unitary matrices, and Σ[k] is a
diagonal matrix with singular values. Subsequently, the RX
transmits the right singular matrix V [k], which is referred
to as a BFM, to the TX using the BFM frame. In the TX,
the BFM is used for the precoding procedure. Given a trans-
mitting data vector x[k], the transmitted signal vector s[k] is
denoted by

s[k] = V [k] x[k]. (2)

In addition to V [k], the subcarrier-averaged substream gain
Σ̄ is transmitted from the RX to the TX via the IEEE
802.11ac/11ax protocol [13], [14], where

Σ̄ =
1
K

K∑
k=1

Σ[k], (3)

where K is the number of subcarriers.
In the BFM transmission procedure of the IEEE

802.11ac/ax standards [13], [14], the BFM is quantized in the
RX using the Givens transform to reduce the communication
payload size of the BFM frame. In this process [13], [14],
the BFM V [k] is represented by an M -dimensional vector
v′[k] ∈ RM , whereM is determined by Nt and Nr as follows:

M = 2NtN ′ − N ′(N ′ + 1),

N ′ := min(Nr,Nt − 1). (4)

For shorthand notation, let the M × K matrix V ′ denote
the coordination of (v′[k])Kk=1. Moreover, the quantized BFM
calculation function from the CSI matrices is denoted as f B,
where

V ′ = f B((H[k])Kk=1). (5)

It should be noted thatV ′ represents information obtained via
frame capture and is used for BFM-based sensing.1

IV. BI-DIRECTIONAL BEAMFORMING FEEDBACK
MATRIX SENSING
A. SYSTEM MODEL
Fig. 2 shows the system model, which consists of an AP,
an STA, and a frame capture device. TheAP and the STAperi-
odically transmit MIMO frames between each other. For the
MIMO transmission, the BFM frames are transmitted from
the AP to the STA, and from the STA to the AP over the air
without encryption. The frame capture obtains both the BFM
transmitted from the AP and STA. More formally, the CSI
matrices from the AP to the STA and from the STA to the
AP at the subcarrier k are denoted as HAP[k] and HSTA[k],
respectively. Based on Section III, the BFMs that are trans-
mitted from the AP and STA are denoted as VAP and VSTA,
respectively, where

VAP
= f B((HAP[k])Kk=1), (6)

VSTA
= f B((HSTA[k])Kk=1). (7)

FIGURE 2. Detailed procedure of bi-directional sensing frameworks. Note
that frame capture facilitates WiFi sensing without any access to the STA
and the AP.

In this report, based on existing BFM-based sensing meth-
ods, an ML-based sensing technique is developed. Thus, the
system has two-time phases: a training phase and a test-
ing phase. In the training phase, the frame capture obtains
BFMs and the ground-truth target label (e.g., actual measured
location of a human subject), and the BFMs are used as
input features. The ML model is trained using a tranining
dataset consiting of the input features and target labels. In the

1In this report, V [k] denotes the right singular matrix of the CSI matrix at
the kth subcarrier, and V denotes the payload of the BFM matrix.
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testing phase, whenever the frame capture obtains the BFM
frame, it estimates the target label by feeding the BFM to the
trained ML model. Additionally, as with the existing sensing
with prior training, the system model in this report requires
rebuilding theMLmodel when the input dimension of theML
model is changed (for example, when the number of antennas
of the AP and STA are changed).

B. BFM DISPARITY
The disparity between the two BFMs in sensing accuracy
(that is, a difference in the sensing accuracies of VAP and
VSTA) is suspected for two reasons. First, if there exists
channel reciprocity between the AP and STA, there is gener-
ally no BFM reciprocity (that is, VAP generally differs from
VSTA), which is detailed in the following paragraph. Second,
although the AoD of the AP can be estimated from VAP [15],
the sensing accuracy of the AoD of the AP using VSTA and
bi-directional BFMs (that is, using bothVSTA andVAP) is not
clear.

Even if channel reciprocity exists between the AP and the
STA, BFM reciprocity does not exist. Specifically, even if
channel reciprocity exists, VAP differs from VSTA, because
VAP and VSTA correspond to right and left singular matrices
of H , respectively, and generally, the right and left singular
matrices of a matrix are different. Thus, VAP and VSTA are
different, and the difference between VAP and VSTA results
in BFM disparity in the sensing accuracy.

Specifically, given the channel reciprocity, the CSI matrix
from the STA to the AP (that is, HSTA) is represented by

HSTA
= (HAP)T. (8)

Further, VAP and VSTA are right singular matrices of HAP

and HSTA, respectively.

HSTA
= USTAΣSTA(VSTA)H, (9)

HAP
= UAPΣAP(VAP)H. (10)

Substituting (8) to (9),

(HAP)T = USTAΣSTA(VSTA)H,

HAP
= (VSTA)∗(ΣSTA)T(USTA)T. (11)

From (11),VSTA corresponds to a left singular matrix ofHAP.
By comparing (10) and (11), VAP and VSTA correspond to
right and left singular matrices of HAP, respectively. 2 Gen-
erally, a left and right singular matrix of a particular matrix
are independent. Thus, VAP differs from VSTA, resulting in a
BFM disparity in the sensing accuracy.

V. EXPERIMENTAL SETUP
We experimentally evaluated the accuracy of BFM-based
sensing methods for two sensing tasks, AoD estimation and

2Although UAP and (VSTA)∗ correspond to the right singular matrix
of HAP, UAP and (VSTA)∗ are not necessarily the same. This is because
provided an arbitrary matrix H , multiple matrices can be its right singular
matrix.

human localization, using off-the-shelf WiFi devices in out-
door and indoor environments. These sensing tasks are for-
mulated as classification problems. For shorthand notation,
we denote VAP sensing and VSTA sensing as uni-directional
sensing with VAP and VSTA, respectively.

A. SYSTEM COMPONENTS
As depicted in Fig. 3, the system consists of an AP, an STA,
and frame capture. The AP and STA are equipped with four
antennas, i.e., Nt = Nr = 4. Since the number of antennas
of the AP and STA is identical, the dimension of the BFM
at each subcarrier is the same among VAP and VSTA, and M
is 12. 3 In this evaluation, the quantized bit widths VAP and
VSTA were the same and followed the IEEE 802.11ac [13]
standard.

FIGURE 3. Layout of experimental setup. AP, STA, and frame capture are
at a height of 75 cm.

This study evaluated BFM-based sensing using either of
two sets of equipment: equipment set A and equipment set
B, which are listed in Table 3. For both equipment sets, the
same products were used for the AP and STA (that is, the
chipset and antenna array were identical among the AP and
STA). Equipment set A and B comply with IEEE 802.11ax
and IEEE 802.11ac, respectively. For equipment set A and
B, the number of subcarriers K were 64 and 52, respectively,
resulting in a BFM of 12 × 64 and 12 × 52, respectively.
Moreover, all the equipment was off-the-shelf devices.

We loaded heavy traffic using iperf in both uplink and
downlink. Specifically, the throughput of the uplink and
downlink were set as 100Mbit/s so that the AP and STA
transmit BFMs at an average interval of 0.1 s. Note that, in this
evaluation, the AP and STA are connected such that the STA
acts as a relay station.

B. EXPERIMENTAL SCENARIO
The experimental evaluation uses two sensing tasks: AoD
estimation and human localization, in two real-world environ-
ments: an outdoor and an indoor environments, respectively.
Unless otherwise noted, the evaluation was conducted with
equipment set A. The evaluation of the human localization
task in the outdoor environment was conducted using either
equipment set A or equipment set B. It should be noted that
the evaluation aims to compare the three sensing methods

3The dimensionM is determined by the number of the antenna of the AP
and STA following (4).
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TABLE 3. Experimental equipment.

using the same equipment in the same environment. Thus,
we avoided comparing the results obtained from different
environments or equipment.

1) AoD ESTIMATION
This evaluation aims to assess the accuracy difference of the
AP’s AoD estimation on the realistic environment of two
uni-directional sensing approaches: sensing using VAP and
sensing using VSTA. Specifically, we estimate the AoD of the
line-of-sight path.

FIGURE 4. Equipment deployment in outdoor environment. Preparation
of a polar coordinate system centered on the AP. The antenna array of the
AP is placed parallel to the zero-degree direction. For the AoD estimation
task, the STA is located at any of 21 points, and is depicted as black dots
in Fig. 4(a). For the human localization task, the STA is fixed at the
position (6 m,90◦), while a human stands at any of the 21 points and is
depicted as black dots in Fig. 4(b).

Figs. 4(a) and 5(a) show the outdoor and indoor environ-
ment, respectively, where we generated a dataset consisting
of seven classes in terms of AoD, which is either of seven
angles {0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}. In the outdoor and
indoor environments, in each class, the STA is located at one
of three and two positions, respectively.

Specifically, the distances between each position and the
AP are given as {1m, 3m, 5m} and {2m, 3m}, respectively.
The AoD only depends on the position of the STA. In the

outdoor and indoor experiments, we obtained 12,600 and
1,800 data samples, of which 1,800 and 200 samples cor-
responded to each AoD, respectively. The orientation of the
antenna array of the STA was randomly changed throughout
the experiment. The AoD depended only on the position of
the STA and not on the orientation of the antenna array of the
STA.

2) HUMAN LOCALIZATION
This evaluation aims to assess the accuracy of the
uni-directional sensing and the proposed bi-directional sens-
ing approaches on more practical sensing tasks than AoD
estimation. Figs. 4(b) and 5(b) show the overviews of the
outdoor and indoor environments, respectively. We generated
a dataset wherein a human was located at any of the 21 and
14 positions in the outdoor and indoor environments, respec-
tively. The positions are denoted using the distance r and the
angle θ to the AP. As such, the target label is represented
by a two-dimensional vector (r, θ). In this scenario, two ML
models are trained to estimate the angle θ and the distance d .
The positions of the STA are fixed. It should be noted that θ
corresponds to the AP’s AoD of the human-reflected path in
this experimental scenario.

FIGURE 5. Equipment deployment in indoor environment. The AP and
human are located on either of the 14 points depicted by the black dots
for AoD estimation and human localization, respectively.

This evaluation was conducted using either experimental
equipment set A or equipment set B. When using equipment
set A, we obtained 12,600 and 1,600 data samples, wherein
600 and 200 samples corresponded to each position in the
outdoor and indoor environments, respectively. In the case of
equipment set B, we obtained 4,200 data samples, of which
200 samples corresponded to each position in the outdoor
environment.

C. MACHINE LEARNING
Three ML models are utilized: a random forest (RandF) [28],
a light gradient boosting machine (LightGBM) [29], and
support vector machine (SVM) [30]. The AoD estimation
and the human localization are formulated as the classifi-
cation problem. In this evaluation, the dataset is randomly
divided into training and testing datasets with a ratio of 9:1.
When using the RandF and LightGBM,we performed 10-fold
leave-one-out cross-validation for ten trials with a different
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random seed. When using the SVM, we did not conduct
cross-validation and the ML model was trained only once.

The hyperparameters are selected as follows unless oth-
erwise indicated. For the RandF, the maximum depth, the
splitting criterion, and the number of trees are selected as 5,
Gini impurity, and 50, respectively. For the LightGBM, the
maximum depth, the splitting criterion, the number of trees,
and the learning rate are selected as infinite, multi-class log
loss, 5, and 0.1, respectively. For the SVM, the regularization
parameter and the kernel are selected as 1.0, and the Gaussian
kernel, respectively.

D. FEATURE GENERATION
In bi-directional sensing, the bi-directional BFMs are inte-
grated to generate an input feature. For equipment set
A andB, we used a differentmethod to generate bi-directional
BFMs. When using equipment set A, given that VAP and
VSTA are captured within a time interval of less than t0, they
are flattened and concatenated. The input feature vector with
a dimension of 1,536 is then generated. In the experimental
evaluation process, t0 is set to 0.15 s.

When using equipment set B, for each target class (that is,
human location or AoD of the AP), we first obtained VAP

and subsequently, obtained VSTA; then VAP and VSTA were
randomly integrated into an input feature of bi-directional
sensing. The input feature vector with a dimension of 1,248
was then generated.

However, in uni-directional sensing, either VAP or VSTA is
used. To allow for a fair comparison between uni-directional
sensing and bi-directional sensing, the former uses the input
feature, for which the dimension is the same as that of
bi-directional sensing. Thus, two BFMs that were captured
within a time interval of less than t0 are flattened and con-
catenated, and the input feature vector is then generated.

VI. RESULT
A. ANGLE OF DEPARTURE ESTIMATION
In this section, the results show that higher accuracy was
obtained for VAP sensing in the process of the AoD esti-
mation of the AP than for VSTA sensing, which validates
contribution 1 in section I. As shown in Table 4(a), regardless
of the ML model and the experimental environment, VAP

sensing achieved higher accuracy than VSTA sensing in the
AoD estimation of the AP. Moreover, in an outdoor environ-
ment, the accuracy of VAP sensing was higher than 0.98 for
the three ML models, indicating that the performance was
almost perfect. Table 4(b) shows the average error for AoD
estimation using the three ML models. The average error for
VAP sensing was much smaller than that for VSTA sensing,
regardless of the ML model used. Specifically, regardless
of the ML model, the average error for VAP sensing was
lower than 0.3◦ and 0.9◦ in outdoor and indoor environ-
ments, respectively. However, the error of VSTA sensing was
larger than 4.0◦ and 2.5◦ in outdoor and indoor environments,
respectively.

TABLE 4. Classification accuracy of seven classes and average error of
AoD estimation using three ML models. VAP sensing achieved higher AP
AoD accuracy than VSTA sensing.

FIGURE 6. Empirical CDF of estimation error in AoD estimation using
three ML models. The red and green lines represent the results for VAP

and VSTA sensing, respectively.

Fig. 6 shows the empirical cumulative distribution func-
tion (CDF) of the AoD estimation error in the outdoor envi-
ronment. Regardless of the ML model, in the case of VAP

sensing, more than 99% of the test samples had an error less
than 30◦, whereas for VSTA sensing, less than 92% of the
samples met this criterion. In addition, the effect of the ML
hyperparameters on accuracy in the RandF model is shown
in Fig. 7. This finding is consistent with the results described
so far; the accuracy for VAP sensing is higher than that of
VSTA sensing, regardless of the number of trees. Thus, we can
conclude that VAP sensing achieves higher AP AoD sensing
accuracy compared to VSTA sensing.

B. HUMAN LOCALIZATION
1) ACCURACY COMPARISON
In this section, the accuracy of the three BFM-based sensing
methods (i.e., VAP sensing, VSTA sensing, and bi-directional
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FIGURE 7. Effect of the number of trees of RandF on AoD estimation
accuracy.

BFM-based sensing) was evaluated based on a human local-
ization task. These parameters were considered as part of the
evaluation including the angle, distance, and position.

Table 5 shows the three accuracy metrics for the three
BFM-based sensing methods. In the case of angle accuracy,
which is shown in Table 5(a), VAP sensing achieved higher
accuracy than VSTA sensing, regardless of the ML model.
Considering that the angle θ corresponds to the AoD of the

TABLE 5. Classification accuracy of human localization with equipment
set A. For the outdoor environment, the angle, distance, and position
accuracy were defined as the classification accuracy of 7, 3, and
21 classes, respectively. For the indoor environment, they were defined as
the classification accuracy of 7, 2, and 14 classes, respectively.

AP of the human-reflected path in the experimental setup, the
difference in angle accuracy is because VAP includes more
useful information for theAoD of theAP than the BFMVSTA,
as indicated in section VI-A. Owing to the difference in angle
accuracy, VAP sensing achieved a higher position accuracy
than VSTA sensing, as shown in Table 5(c). Thus, we can
conclude that there is a difference in the sensing capabilities
of VAP and VSTA in terms of the human localization task,
which validates contribution 2 in section I. However, in terms
of the distance accuracy, as shown in Table 5(b), the accuracy
of VSTA sensing was comparable to that of VAP sensing,
regardless of the ML model. This implies that the variability
ofVSTA in terms of human-distance estimation is comparable
to that of VAP.

As shown in Table 5, bi-directional sensing achieved
higher accuracy compared to uni-directional sensing in terms
of the accuracy metrics and ML models, which validates
contribution 3 in section I. This difference in accuracy is
because the ML model that is trained based on bi-directional
BFMs leverages the more appropriate BFM of the two uni-
directional BFMs, which is validated in the following section.
The difference in accuracy between bi-directional and uni-
directional sensing is more robustly validated in terms of the
localization error in the following section.

2) EFFECT OF EQUIPMENT
Table 6 summarizes the effect of the equipment on position
accuracy in the outdoor environment. Regardless of the ML
model and equipment,VAP sensing achieved higher accuracy
than VSTA sensing, and the accuracy of bi-directional sensing
was higher than that of uni-directional sensing. Thus, we can
conclude that regardless of the equipment, BFM disparity
exists in terms of sensing accuracy, and bi-directional sensing
is superior to uni-directional sensing. This further validates
the contributions of 2 and 3 in section I.

TABLE 6. Effect of experimental equipment on position accuracy of
human localization in outdoor environment.

3) LOCALIZATION ERROR COMPARISON
This section validates that the proposed bi-direction sensing
achieves lower human-localization error than uni-directional
sensing. Table 7 shows the average error of human local-
ization tasks in the outdoor environment, wherein the error
is defined as the Euclidean distance between the estimated
and ground-truth locations. Regardless of the ML model,
bi-directional sensing achieved a lower average error com-
pared to uni-directional sensing. For example, when using
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FIGURE 8. Empirical CDF of the localization error for three sensing methods using three ML models.

TABLE 7. Average localization error for the human localization task in
outdoor environment.

TABLE 8. Feature importance of the ML model trained using
bi-directional BFMs. The importance of the feature generated from the
VAP and that from VSTA are represented separately.

the SVM model, the average error of bi-directional sensing
is lower than 0.1m, whereas that of uni-directional sensing
is larger than 0.15m. Fig.8 shows the empirical CDF of the
human-localization error of threeMLmodels. Comparing the
ratio of the test sample, which has an error less than 1m, that
of bi-directional sensing is higher compared to that of uni-
directional sensing. For example, when the RandF model is
used, the errors associated with bi-directional sensing, VAP

sensing, and VSTA sensing are 74.4%, 65.2%, and 59.0%,
respectively. Thus, we can conclude that bi-direction sensing
achieves higher accuracy than uni-directional sensing, which
is consistent with the results presented in this section and
further validates 3 in Section I.

4) FEATURE IMPORTANCE COMPARISON
Table 8 shows the feature importance of the RandF and Light-
GBM models that were trained using bi-directional BFMs.
The feature importance is defined in decision tree models
such as the RandF and LightGBM models. This parameter

is assigned to each feature element, and indicates the con-
tribution of each feature to the reduction of the Gini coeffi-
cient. A higher importance indicates a greater contribution of
the corresponding feature. Since bi-directional sensing uses
the input feature of VAP and VSTA, Table 8 represents the
importance assigned to the feature generated from VAP and
that from VSTA. Note that since the target vector is two-
dimensional (i.e., angle and distance), theMLmodel includes
two groups of trees (i.e., angle estimation trees and distance
estimation trees); Thus, we show the feature importance for
the two tree groups.

Considering the angle estimation trees, the input features
of VAP have greater importance than those of VSTA. Recall
that in terms of the sensing accuracy difference discussed so
far, VAP sensing achieves a higher angle estimation accu-
racy compared to VSTA sensing. This importance difference
implies that the ML model recognizes that VAP is more valu-
able than the VSTA. However, considering the angle estima-
tion trees, the input features of VAP have comparable or less
importance than those of VSTA. This is because the accuracy
of VSTA sensing is comparable to or higher than that of VAP

sensing.

VII. CONCLUSION
In this investigation, it was experimentally validated that
the sensing accuracy of two cases of sensing using the
BFM transmitted for the AP and sensing based on the BFM
transmitted for the STA are different for human localization
and the AP’s AoD estimation tasks. The results imply that
there exist a potential accuracy degradation in uni-directional
BFM-based sensing, which uses either BFM transmitted for
the AP or BFM transmitted for STA. To overcome the poten-
tial accuracy degradation, we propose a bi-directional BFM
sensing, which simultaneously uses BFMs transmitted for the
AP and STA. We experimentally established that the pro-
posed bi-directional BFM sensing achieved higher sensing
accuracy than uni-directional BFM sensing.
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