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ABSTRACT Homomorphic authenticated encryption allows implicit computation on plaintexts using
corresponding ciphertexts without losing privacy, and provides authenticity of the computation and the
resultant plaintext of the computation when performing a decryption. However, due to its special function-
ality, the security notions of the homomorphic authenticated encryption is somewhat complicated and the
construction of fully homomorphic authenticated encryption has never been given. In this work, we propose
a new security notion and the first construction of fully homomorphic authenticated encryption. Our new
security notion is a unified definition for data privacy and authenticity of homomorphic authenticated
encryption. Moreover, our security notion is simpler and stronger than the previous ones. To realize our new
security notion, we also suggest a construction of fully homomorphic authenticated encryption via generic
construction. We combine a fully homomorphic encryption and two homomorphic authenticators, one fully
homomorphic and one OR-homomorphic, to construct a fully homomorphic authenticated encryption that
satisfies our security notion. Our construction requires its fully homomorphic encryption to be indistinguish-
able under chosen plaintext attacks and its homomorphic authenticators to be unforgeable under selectively
chosen plaintext queries. Our construction also supports multiple datasets and amortized efficiency. For
efficiency, we also construct a multi-dataset fully homomorphic authenticator scheme, which is a variant of
the first fully homomorphic signature scheme. Our multi-dataset fully homomorphic authenticator scheme
satisfies the security requirement of our generic construction above and supports amortized efficiency.

INDEX TERMS Authentication, cryptography, data security, encryption, fully homomorphic authenticated
encryption, homomorphic authenticator, homomorphic encryption, security notion.

I. INTRODUCTION
While the idea of homomorphic cryptography itself is quite
old [1], it was Gentry’s first fully homomorphic encryption
(FHE) scheme [2] which has strongly motivated the whole
homomorphic cryptography area. Since then, there has been
many works (for example, [3]–[6]) on cryptographic primi-
tives that have homomorphic property such as homomorphic
authenticators (HA), homomorphic authenticated encryption
(HAE) and homomorphic encryption (HE) itself. These prim-
itives play an important role in cloud computing since they
preserve security while allowing homomorphic evaluations
on ciphertexts or authentication tags. In this work, we focus
on HAE.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Wang .

HAE provides privacy and authenticity of the plaintext and
assures that the ciphertext is honestly generated with respect
to a given circuit. Similar to HE, we may use ciphertexts of
HAE to homomorphically evaluate a given circuit to produce
the ciphertext which decrypts to the value of the circuit, with-
out losing privacy. Moreover, using the decryption algorithm
of HAE, we can verify whether the ciphertext of HAE is
valid or not.

The first formal definition and construction of HAE was
given by Joo and Yun [5]. In their work, the security notion
of HAE was given in two parts; privacy and authentic-
ity. As an encryption scheme, a secure HAE scheme is
required to be indistinguishable against chosen plaintext
attack (IND-CPA), or even chosen ciphertext attack (IND-
CCA) formalized in the usual find-then-guess games. Also,
as an authentication scheme, a secure HAE scheme must be
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strongly unforgeable against chosen plaintext attack (SUF-
CPA) or chosen ciphertext attack (SUF-CCA). The authors
showed that an HAE scheme which satisfies IND-CPA and
SUF-CPA, relatively weaker security notions, necessarily
satisfies the strongest security notions, IND-CCA and SUF-
CCA.Using this, the authors showed that their construction of
a somewhat homomorphic authenticated encryption scheme
satisfies IND-CCA and SUF-CCA.

However, there are some shortcomings of Joo and Yun’s
work [5]. First, the definition of IND-CCA security has
complicated restriction on the decryption queries that adver-
saries are allowed to make. This restriction comes from the
homomorphic functionality of HAE and the find-then-guess
formalism that was used for defining IND-CCA security.
Specifically, after the challenge phase, the adversary can
easily produce a ciphertext that allows winning the challenge,
using homomorphic evaluation on the challenge ciphertext.
Therefore, rather complicated restrictions on the decryption
queries after the challenge phase were unavoidable to define
IND-CCA security in the find-then-guess formalism. Second,
the first construction of HAE is only somewhat homomorphic
and not compatible with multiple datasets. For broader usage,
multi-dataset fully homomorphic authenticated encryption
(MDFHAE) is more desirable.

A. OUR CONTRIBUTIONS
In this work, we mainly propose some improvements of
aforementioned shortcomings of the original HAE work [5].
First, we propose a new security notion that is simpler
and stronger than the original ones and implies privacy
and authenticity simultaneously. Second, we propose the
first fully homomorphic authenticated encryption (FHAE)
scheme that is compatible with multiple datasets and has
amortized efficiency. Lastly, we propose an efficient multi-
dataset fully homomorphic authenticator (MDFHA) scheme
that can be used as a part of the generic construction
of FHAE.

Our security notion follows real-or-random-like formalism
instead of find-then-guess. The challenger first flips a coin
b and defines oracle E and D according to the value of b.
If b = 0, then the challenger lets E = Enc and D = Dec
where Enc andDec are encryption and decryption algorithms,
respectively, of an HAE scheme. On the other hand, if b = 1,
then the challenger lets E = $ and D = ⊥ where $(·) is
an algorithm that samples a ciphertext independent of the
message input and ⊥(·) is the trivial algorithm that always
outputs ⊥. Afterwards, the challenger gives oracle access
of E and D to the adversary. To win the security game,
the adversary must guess b correctly. To prevent trivial dis-
tinguishing attacks, the adversary is not allowed to make
decryption queries, the queries to the oracle D, that he or she
already knows the answer of; a ciphertext that is generated by
homomorphic evaluation on the previous encryption queries,
the queries to the oracle E . One may say that the purpose
of the security game is to distinguish the real world, b = 0,
and the ideal world, b = 1.

Our new security notion has two advantages over the orig-
inal definition. First, it is simpler. Unlike the definition of
IND-CCA security, our security notion’s restriction on adver-
saries is straightforward. Later on, the restricted decryption
queries will be called redundant queries since it is a homo-
morphic version of classical redundant queries. Second, it is
stronger. It can be proved that our new security notion implies
IND-CCA and SUF-CCA security, the strongest notions prior
to ours, at the same time.

For realization, we also propose the first FHAE scheme
that satisfies our new security notion. Overall, our FHAE
scheme can be considered as following the encrypt-then-
authenticate generic composition paradigm, using one FHE
scheme and one fully homomorphic authenticator. In order to
achieve the security definition we propose, our construction
uses one additional OR-homomorphic HA. The ciphertext c
of our scheme consists of three parts: a ciphertext c of the
FHE scheme that encrypts a plaintext m, an authentication
tag σ̄ of the FHA scheme that authenticates c, and another
authentication tag σ̌ of the OR-homomorphic authenticator.
For broader usage, our FHAE scheme maintains the multi-
dataset compatibility and amortized efficiency if the two HAs
used also have the same property.

Our MDFHAE construction can also be seen as an
MDFHA with amortized efficiency. To our knowledge, our
MDFHAE construction is the second method to achieve an
adaptively secure MDFHA with amortized efficiency. The
first such scheme is the fully homomorphic signature scheme
of Gorbunov, Vaikuntanathan and Wichs [4], which is con-
structed using their selective-secure basic scheme. Compared
with theirs, our construction satisfies stronger authenticity
guarantee, have essentially the same efficiency, and provides
privacy as well.

For efficiency of our FHAE scheme, we also propose an
efficient MDFHA that satisfies the security requirement of
our generic construction of FHAE. Namely, our MDFHA
scheme is strongly unforgeable against selectively chosen
message attacks. Our MDFHA scheme is a variant of the first
fully homomorphic signature scheme [4], but our construc-
tion supports multiple datasets more efficiently.

B. RELATED WORKS
1) ADAPTIVELY SECURE FULLY HOMOMORPHIC
AUTHENTICATORS
Since the first construction of fully homomorphic authenti-
cator (FHA) scheme [3], there have been some studies about
adaptively secure FHA. The most notable one is the work
with the first fully homomorphic signature scheme presented
by Gorbunov, Vaikuntanathan and Wichs [4]. The authors
proposed a selectively secure fully homomorphic signature
scheme using lattice trapdoors, and constructed methods to
strengthen security and functionality. Based on their meth-
ods, one can construct an adaptively secure MDFHA scheme
with amortized efficiency. Other works proposed adaptively
secure fully homomorphic authenticators as well, but failed
to preserve amortized efficiency [7]–[9].
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2) STRONGER NOTION OF FULLY HOMOMORPHIC
AUTHENTICATORS
Catalano, Fiore, and Nizzardo have proposed a simpler and
stronger security notion for homomorphic signatures [10].
Their new notion is more intuitive than previous ones.
The authors also have proposed a generic transform using
OR-homomorphic signatures that can make existing homo-
morphic signatures to satisfy their new security notion. Our
construction adapts their use of OR-homomorphic authenti-
cation for our purposes.

3) UNIFIED SECURITY NOTION FOR AUTHENTICATED
ENCRYPTIONS
Our security definition can be considered as a homomorphic
adaptation of the ‘all-in-one’ security definition for authen-
ticated encryptions first given by Rogaway and Shrimpton
in [11]. As ours, their security notion challenges the adver-
sary to distinguish the encryption/decryption oracles from
the random/rejection oracles. The authors also proved that
their security notion is equivalent to the original definitions
of privacy and authenticity.

II. PRELIMINARIES
A. NOTATIONS AND CONVENTIONS
(γ, ·) ∈ S and (γ, ·) 6∈ S are shorthand notations for
∃x, (γ, x) ∈ S and ∀x, (γ, x) 6∈ S, respectively. Similarly,
we will use notations like (γ, ·, ·, ·) ∈ S.

For a function f : X × Y → Z , we define a function
f (x, ·) : Y → Z as f (x, ·)(y) := f (x, y). Similarly, for
an algorithm Alg defined on input space X × Y , we define
Alg(x, ·) as the algorithm that takes y ∈ Y as an input
and outputs Alg(x, y). Similarly, we will use notations like
f ′(·, x, ·, ·) and Alg′(x, ·, y, ·).
For any positive integer n, the set {1, . . . , n} is denoted by

[n]
Let X and Y be random variables onX andY , respectively.

We say X and Y are statistically indistinguishable, or X
stat
≈ Y

if the value 1
2

∑
z∈X∪Y |Pr[X = z]− Pr[Y = z]| is negligi-

ble.
Let D be a distribution and X be a set. If x is sampled

according to the distribution D, then we write x ← D. If x
is sampled from uniform distribution of the set X , then we

write x
$
← X .

We define advantages of indexed games AdvGame i
A (λ) :=∣∣∣ 12 − Pr[Game i(λ) = 1]

∣∣∣ and AdvGame i,Game j
A (λ) :=

1
2 |Pr [Game i(λ) = 1]− Pr [Game j(λ) = 1]| for any
indices i and j,
For an integer q, we write the ring of integers modulo

q as Zq. We represent elements in Zq by the integers in
(−q/2, q/2]. For a matrix (or a vector) U ∈ Zn×mq , we write
‖U‖∞ ≤ β if the absolute values of every entry inU does not
exceed β.

For a function f , we write f (λ) = poly(λ) if there is a
constant C > 0 such that f (λ) = O(λC ).

For a function f , we say that f is negligible with respect
to λ, or write f (λ) = negl(λ), if f (λ) = o(λ−C ) for any
constant C . In this work, we often just say f is negligible if f
is negligible with respect to the security parameter λ that can
be inferred.

We will consider cryptographic schemes which can
be formalized as a tuple of algorithms. When H =

(alg1, alg2, . . . , algl) is such a cryptographic scheme, wewill
refer to its components using the dot notation: H .algi is algi
in the tuple H = (alg1, alg2, . . . , algl).

1) CIRCUITS
As in Joo andYun [5], here a circuit is a directed acyclic graph
(DAG) where a gate is assigned to each vertex with a positive
indegree and a positive outdegree, and there is a unique
dedicated wire wout called the output wire. For convenience,
we assume that all gates in a circuit have indegree 1 or 2, but
the construction can be generalized to more general cases.

2) BINARY ENCODING
We assume that any set S in this work has a certain integer
n such that any element e ∈ S is given by a binary encoding
〈e1, . . . , en〉 of e such that ei ∈ {0, 1} for i ∈ [n].

3) BITWISELY DESCRIBED CIRCUITS
Suppose every element of C is given by n-bit binary encoding.
A bitwisely described circuit f̄ = (f1, . . . , fn) is a function
from Cl to C such that

f̄ (c1, . . . , cl)

=
〈
f1
(
(ci′,j′ )(i′,j′)∈[l]×[n]

)
, . . . , fn

(
(ci′,j′ )(i′,j′)∈[l]×[n]

)〉
where fj : {0, 1}ln → {0, 1} are circuits for j ∈ [n] and〈
ci,1, . . . , ci,n

〉
is the binary encoding of ci ∈ C for i ∈ [l].

We say fi is the ith encoding circuit of a bitwisely described
circuit f̄ = (f1, . . . , fn). The depth of a bitwisely described
circuit f̄ = (f1, . . . , fn) is defined by the maximum value
of the depths of the circuits f1, . . . , fn. Any deterministic
algorithm that takes an element in Cl and outputs an element
in C can be given as a bitwisely described circuit. We also
say π̄k is the bitwisely described kth projection from Cl to
C if π̄k = (πk,1, . . . , πk,n) for some n projection circuits
πk,1, . . . , πk,n such that πk,j((bi′,j′ )(i′,j′)∈[l]×[n]) = bk,j for any
bits bi′,j′ for (i′, j′) ∈ [l]× [n]. We can see that

π̄k (c1, . . . , cl)

=
〈
πk,1((ci′,j′ )(i′,j′)∈[l]×[n]), . . . , πk,n((ci′,j′ )(i′,j′)∈[l]×[n])

〉
=
〈
ck,1, . . . , ck,n

〉
= ck

where ci′,j′ are bits such that
〈
ci,1, . . . , ci,n

〉
is the binary

encoding of ci ∈ C for i = [l].

B. (MULTI-)LABELED PROGRAMS
1) LABELED PROGRAMS
Since we consider situations where storage is outsourced to a
server and all the client has is only somemetadata, we need to
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be able to refer to the client’s data when evaluating a function.
This notion is formalized as the labeled program [3].

AnHAE encrypts a plaintextm ∈M under a ‘label’ τ ∈ L,
and a labeled program is a function together with information
telling which plaintexts should be used as inputs.

More formally, let M be a set which we consider as the
message space and L the ‘label space’. A label is simply an
arbitrary element τ ∈ L. A labeled program is a tuple P =
(f , τ1, . . . , τl), where f :Ml

→M is a function with arity l,
and τ1, . . . , τl ∈ L are labels. The intuition is that a message
m ∈ M is associated with the label τ ∈ L, and the label τ
is used to refer to m. Then, evaluating the labeled program
P = (f , τ1, . . . , τl) means computing f (m1, . . . ,ml), where
mi is the message associated with the label τi. We also write
the resulting function value as P(m1, . . . ,ml).
Let P1, . . . ,Pl be labeled programs such that Pi =

(fi, τi,1, . . . , τi,li ). For P1, . . . ,Pl and a circuit f : Ml
→

M, the composed program denoted by f (P1, . . . ,Pl) is a
labeled program that evaluates the circuit f on the out-
puts of P1, . . . ,Pl . More specifically, f (P1, . . . ,Pl) =
(f ∗, τ, . . . , τl∗ ) where f ∗ is a circuit that evaluates f on the
outputs of circuits f1, . . . , fl where the input wires with the
same labels are merged, and τ, . . . , τl∗ are all distinct labels
of P1, . . . ,Pl .
If there is a set of admissible functions F for an

HAE or homomorphic authenticator defined below, then we
say P = (f , τ1, . . . , τl) is an admissible program if f ∈ F .

Let P = (f , τ1, . . . , τl) be a labeled program. We say
P is fully bound if there is a path from every internal wire
(including input wire) to the output wire in the circuit f . For
any labeled program P, using a graph traversal algorithm,
we can always find the labeled programs P0 and P′ such that
P′ = (f ′, τ ′1, . . . , τ

′

l′ ) is fully bound, P = π1(P′,P0) and
every path that ends with output wire is included in P′ where
π1 is the first projection function. We say such P′ is the fully
bound sub-program of P.

2) BITWISELY DESCRIBED PROGRAMS
Suppose every element of M is given by n-bit binary
encoding. A bitwisely described program is a tuple P̄ =(
f̄ , τ1, . . . , τl

)
, where f̄ = (f1, . . . , fn) is a bitwisely

described circuit, which also is a function fromMl toM for
some integer l, and τ1, . . . , τl ∈ L are labels. We assume that
elements in M are given by their unique binary encodings.
The intuition is that, for i ∈ [n], the circuit fi has ln input wires
that are associated with elements of {τ1, . . . , τl} × [n], and a
bit mj,k of the jth input message m̄j =

〈
mj,1, . . . ,mj,n

〉
∈M

of f̄ associated with τj is associated with the input wire of fi
corresponding to (τj, k) ∈ {τ1, . . . , τl} × [n]. Evaluating the
bitwisely described program P̄ for an input (m̄1, . . . , m̄l) ∈
Ml means computing〈

f1
(
mj,k

)
(j,k)∈[l]×[n] , . . . , fn

(
mj,k

)
(j,k)∈[l]×[n]

〉
where m̄j =

〈
mj,1, . . . ,mj,n

〉
. We also write the resulting

function value as P̄ (m̄1, . . . , m̄l).

Let P̄1, . . . , P̄l be bitwisely described programs such that
P̄i =

(
f̄i, τi,1, . . . , τi,ri

)
for a bitwisely described circuit

f̄i = (fi,1, . . . , fi,n) and an integer ri for i ∈ [l]. Also, let
Pi,j :=

(
fi,j, (τi,s, t)(s,t)∈[ri]×[n]

)
for (i, j) ∈ [l] × [n]. For

P̄1, . . . , P̄l and a bitwisely described circuit ḡ = (g1, . . . , gn),
from Ml to M, the composed bitwisely described program
denoted by ḡ(P̄1, . . . , P̄l) is a bitwisely described program
that evaluates the function ḡ on the outputs of P̄1, . . . , P̄l .
More specifically, ḡ(P̄1, . . . , P̄l) = (ḡ∗, τ1, . . . , τl∗ ) where
ḡ∗ = (g∗1, . . . , g

∗
n) and g∗i is the circuit of the composed

program gi
(
(Ps,t )(s,t)∈[l]×[n]

)
for i ∈ [n] and τ1, . . . , τl∗ are

all distinct labels of P̄1, . . . , P̄l .
Let P̄ =

(
f̄ , τ1, . . . , τl

)
be a bitwisely described program

such that f̄ = (f1, . . . , fn). We say P̄ is fully bound if,
for each i ∈ [l], there is at least one path from the input
wire corresponding to (τi, j) to the output wire among all
the paths in the circuits f1, . . . , fn for any j ∈ [n]. For any
bitwisely described program, P̄ = (f̄ , τ1, . . . , τl), using a
graph traversal algorithm, we can always find l ′ ∈ [l] such
that, without loss of generality, i > l ′ if and only if each
of the input wire of (τi, j) in f1, . . . , fn does not have a path
that ends with its output wire for j ∈ [n]. For k ∈ [n], let f ′k
be the circuit fk without the wires that have a path from the
input wire corresponds to (τi, j) for i > l ′ and j ∈ [n], and
let f̄ ′ = (f ′1, . . . , f

′
n). Then we say P̄′ = (f̄ ′, τ1, . . . , τl′ ) is

the fully bound bitwisely described sub-program of P̄. Also,
P̄ = π1

(
P̄′, P̄0

)
for some P̄0.

3) MULTI-LABELED PROGRAMS
A multi-label is a pair (1, τ ) ∈ D × T . Here, 1 is referred
to as the dataset identifier and τ is referred to as the data
identifier. Sometimes they are also referred to as the dataset
label and the data label. In this paper, D is referred to as the
dataset identifier space and T is referred to as the data iden-
tifier space. A multi-labeled program is a pair P1 = (1,P),
where 1 ∈ D is a dataset identifier and P = (f , τ1, . . . , τl)
is a labeled program with data labels τ1, . . . , τl ∈ T as
labels.

The idea is that we are considering multiple datasets,
and individual data items belong to one of the datasets.
For example, consider a class of students and imagine
we have data on their exam scores. Imagine you have
to compute the average of the exam scores. The notion
‘average’ corresponds to a labeled program AVG =

(average, ‘‘student 1’’, ‘‘student 2’’, . . . , ‘‘student l’’), where
average is the mathematical function average(m1, . . . ,ml) =
(m1+ · · ·+ml)/l, and the data label ‘‘student i’’ refers to the
exam score of the ith student. Then, for example, the multi-
labeled program AVG‘‘midterm’’ = (‘‘midterm’’,AVG) is the
average of themidterm scores, whileAVG‘‘final’’ is the average
of the final exam scores.

III. HOMOMORPHIC AUTHENTICATED ENCRYPTION
Here we describe the syntax of the homomorphic authenti-
cated encryption.
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A. SYNTAX
1) HOMOMORPHIC AUTHENTICATED ENCRYPTION
Definition 1 (MDHAE): A multi-dataset homomorphic

authenticated encryption (MDHAE) is a tuple of PPT algo-
rithms (KeyGen,Enc,Eval,Dec) which can be described as
follows:
• (ek, sk) ← KeyGen(1λ): outputs a public evalua-
tion key ek and a secret key sk for the given security
parameter λ.

• c ← Enc(sk,1, τ,m): given sk, outputs a ciphertext
c ∈ C of the message m ∈M with respect to the dataset
identifier 1 ∈ D and the data identifier τ ∈ T .

• c← Eval(ek, f , c1, . . . , cl): given ek, deterministically
outputs the homomorphically evaluated ciphertext c ∈ C
with respect to an admissible function f ∈ F of arity l
and ciperhtexts c1, . . . , cl ∈ C.

• m or ⊥← Dec(sk,1,P, c): given sk, deterministically
outputs the decrypted value m of the ciphertext c ∈ C
with respect to the dataset identifier 1 ∈ D and the
admissible labeled program P of arity l, or outputs ⊥
if something is wrong.

We assume that evaluation key ek implicitly contains
the information about the message space M, the ciphertext
space C, the dataset identifier space D, the data identifier
space T and the admissible function space F . As men-
tioned above, we assume both Eval and Dec are deterministic
algorithms.

2) COMPACTNESS
An MDHAE is required to have compact ciphertexts, where
the compactness is defined as follows. If (ek, sk) ←
KeyGen(1λ) for a security parameter λ, then the output size of
algorithms Enc(sk, ·, ·, ·) and Eval(ek, . . . ) must be bounded
by a polynomial in λ regardless of the choice of their inputs.
This way, the ciphertext size becomes independent of the
evaluated function.

3) CORRECTNESS
An MDHAE is required to satisfy the following correctness
properties except for negligible probability.
• Correctness of the evaluation:

f (m1, . . . ,ml)

= Dec(sk,1,P,Eval(ek, f , c1, . . . , cl))

holds for any λ, any ciphertexts c1, . . . , cl that satisfy
mi = Dec(sk,1,Pi, ci) for some mi ∈ M and admis-
sible labeled program Pi for all i ∈ [l], the labeled
program P = f (P1, . . . ,Pl), any arity-l function f :
Ml
→ M such that P is admissible and (ek, sk) ←

KeyGen(1λ).
• Projection preservation:

ci = Eval(ek, πi, c1, . . . , cl)

for any λ and any ciphertexts c1, . . . , cl that satisfymi =
Dec(sk,1,Pi, ci) for somemi ∈M, admissible labeled

program Pi for all i ∈ [l] and (ek, sk) ← KeyGen(1λ),
where πi is the ith projection function over Ml .

Note that it follows that an MDHAE also satisfies the
correctness of encryption:

m = Dec(sk,1, (id, τ ),Enc(sk,1, τ,m))

holds for the identity function id.
Remark 1: Suppose m = Dec(sk,1,P, c) for an MDHAE

where (ek, sk)← KeyGen(1λ). If we let P′ be the fully bound
sub-program of P, then from the correctness properties of
an MDHAE, we see that m = Dec(sk,1,P′, c). Similarly,
if ⊥ = Dec(sk,1,P, c) then ⊥ = Dec(sk,1,P′, c).

4) EFFICIENT DECRYPTION
We say that anMDHAE supports efficient decryption, if there
exist two additional algorithms Prep and EffDec such that:

• skP ← Prep(sk,P): given sk and the admissible pro-
gram P, deterministically outputs a decryption key skP
for P. Note that this does not involve any dataset identi-
fier 1 ∈ D.

• m or ⊥ ← EffDec(skP,1, c): deterministically outputs
the decrypted value m ∈ M of the ciphertext c ∈ C
with respect to the decryption key skP for an admissible
programP and the dataset identifier1 ∈ D, or outputs⊥
if something is wrong.

The above algorithms are required to satisfy the following
properties.

• Correctness: EffDec(skP,1, c) = Dec(sk,1,P, c) for
any dataset identifier1 ∈ D and ciphertext c ∈ C, when
(ek, sk) ← KeyGen(1λ) and skP ← Prep(sk,P) for
some admissible program P.

• Amortized efficiency: let P be an admissible program.
Let (m1, . . . ,ml) ∈Ml be an input for P, and let t(l) be
the time required to compute P(m1, . . . ,ml). For skP←
Prep(sk,P), the time required for EffDec(skP,1, c) is
o(t(l)).

B. A NEW SECURITY NOTION FOR MULTI-DATASET
HOMOMORPHIC AUTHENTICATED ENCRYPTIONS
We define a new security notion of an MDHAE H using
the security game GameMDHAE below. Unlike the original
definitions given in Joo and Yun [5], this is an ‘all-in-one’
definition, combining both privacy and authenticity of an
MDHAE.

Let $(·, ·, ·, ·) be an algorithm such that $(sk,1, τ,m)
samples and outputs a ciphertext c from a distributionCsk,1,τ
over the ciphertext space C of an HAE H . So, the output of
$(sk,1, τ,m) is independent of m. Let⊥(·, ·, ·) be the trivial
algorithm that outputs ⊥ for any input.
The challenger only answers non-redundant decryption

queries. The definition of a non-redundant decryption query
comes after the main definition.
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GameMDHAE
H ,$,A (λ) :

Initialization
A key pair (ek, sk)← H .KeyGen(1λ) is generated,
and ek is given to A. The challenger initializes a set

S with ∅, and flips a coin b
$
← {0, 1}. If b = 0,

then the challenger defines oracles E and D as
E = H .Enc(sk, ·, ·, ·) and D = H .Dec(sk, ·, ·, ·).
Otherwise, the challenger lets E = $(sk, ·, ·, ·) and
D = ⊥(·, ·, ·). The adversary is given oracle access
to E and D. For convenience, E-queries and D-
queries are also called as encryption queries and
decryption queries, respectively.

Queries
A makes encryption and decryption queries adap-
tively. The queries are handled as follows.
• For each encryption query (1, τ,m),
if (1, τ, ·, ·) 6∈ S, then the challenger returns
the answer c ← E(1, τ,m) to A, and update
S ← S ∪ {(1, τ,m, c)}. Otherwise, the chal-
lenger rejects the query.

• For each decryption query (1,P, c), if P is
admissible and the query is non-redundant with
respect to S, then the challenger returns the
answer m or ⊥ ← D(1,P, c) to A. Otherwise,
the challenger rejects the query.

Finalization
A outputs a bit b′. The challenger returns 1 if b = b′,
and 0 otherwise.

The advantage of the adversary A in the game GameMDHAE

for the scheme H with respect to the algorithm $ is defined
as

AdvMDHAE
H ,$,A (λ) :=

∣∣∣∣Pr [GameMDHAE
H ,$,A (λ) = 1

]
−

1
2

∣∣∣∣ .
We say that an MDHAEH is secure if there exists an algo-

rithm $ such that the advantage AdvMDHAE
H ,$,A (λ) is negligible

for any PPT adversary A.
Let (1,P, c) be a decryption query. Let P′ =

(f ′, τ ′1, . . . , τ
′

l′ ) be the fully bound sub-program of P. The
decryption query (1,P, c) is redundant with respect to S if
(1, τ ′i ,m

′
i, c
′
i) ∈ S for some (unique) m′i ∈M and c′i ∈ C for

all i ∈ [l ′] and c = H .Eval(ek, f ′, c′1, . . . , c
′

l′ ). And we say
that a decryption query is non-redundant if it is not redundant.
In other words, the decryption queries that can trivially

distinguishes H .Dec(sk, ·, ·, ·) and ⊥(·, ·, ·) are not allowed;
for a redundant query (1,P, c) as above, it is guaranteed
that the response for the query is f (m′1, . . . ,m

′

l′ ) 6= ⊥, when
D = H .Dec(sk, ·, ·, ·).

IV. HOMOMORPHIC ENCRYPTION
A. SYNTAX
1) HOMOMORPHIC ENCRYPTION
Definition 2 (HE): A homomorphic encryption (HE) is

a tuple of PPT algorithms (KeyGen,Enc,Eval,Dec) as
follows:

• (ek, sk) ← KeyGen(1λ): outputs a public evaluation
key ek and a secret key sk for the given security param-
eter λ.

• c← Enc(sk,m): given sk, outputs a ciphertext c ∈ C of
the message m ∈M.

• c← Eval(ek, f , c1, . . . , cl): given ek, deterministically
outputs the homomorphically evaluated ciphertext c ∈ C
with respect to an admissible function f ∈ F of arity l
and c1, . . . , cl ∈ C.

• m← Dec(sk, c): given sk, deterministically outputs the
decrypted value m of the ciphertext c ∈ C.

We assume that evaluation key ek implicitly contains
the information about the message space M, the cipher-
text space C and the admissible function space F . As men-
tioned above, we assume both Eval and Dec are deterministic
algorithms.

2) COMPACTNESS
An HE is required to have compact ciphertexts, where the
compactness is defined as follows. If (ek, sk)← KeyGen(1λ)
for a security parameter λ, then the output size of algorithms
Enc(sk, ·) and Eval(ek, . . . ) must be bounded by a polyno-
mial in λ regardless of the choice of their inputs. This way,
the ciphertext size becomes independent of the evaluated
function.

3) CORRECTNESS
An HE is required to satisfy the following correctness prop-
erties except for negligible probability.

• Correctness of the evaluation:

f (m1, . . . ,ml) = Dec(sk,Eval(ek, f , c1, . . . , cl))

holds for any λ, any ciphertexts c1, . . . , cl such that
ci ← Eval(ek, fi, ci,1, . . . , ci,ti ) for some admissible
circuit fi ∈ F and ciphertexts ci,j ← Enc(sk,mi,j) that
satisfies mi = fi(mi,1, . . . ,mi,ti ) for some mi,j ∈M for
(i, j) ∈ [l]× [ti] and any circuit f ∈ F such that f ∗ ∈ F
where f ∗ is a circuit that evaluates f on the outputs of
circuits f1, . . . , fl when (ek, sk)← KeyGen(1λ).

• Projection preservation:

ci = Eval(ek, πi, c1, . . . , cl)

and the circuit for Eval(ek, πi, . . . ) is also the bitwisely
described ith projection over Cl for any λ and any cipher-
texts c1, . . . , cl that satisfy mi = Dec(sk, ci) for some
mi ∈ M for all i ∈ [l] when (ek, sk) ← KeyGen(1λ)
and πi is the ith projection function over Ml .

Note that it follows that an HE also satisfies the correctness
of encryption:m = Dec(sk,Enc(sk,m)) holds for the identity
function id since Eval(ek, id,Enc(sk,m)) = Enc(sk,m).
Remark 2: Unlike conventional correctness property,

we additionally require projection preservation. But some
(leveled) fully homomorphic encryption already satisfies the
projection preservation [6].
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B. A SECURITY NOTION FOR HOMOMORPHIC
ENCRYPTIONS
We define a security notion of an HE K using the security
game GameHE below. For ease of comparison, we change
some formalisms from conventional IND-CPA security def-
inition, but the equivalence of two formulations can be
proven.

Let $(·, ·) be an algorithm such that $(sk,m) samples
and outputs a ciphertext c from a distribution Csk over the
ciphertext space C of an HE K . So, the output of $(sk,m) is
independent of m.
GameHEK ,$,A(λ) :

Initialization
A key pair (ek, sk)← K .KeyGen(1λ) is generated,
and ek is given to A. The challenger flips a coin

b
$
← {0, 1}. If b = 0, then the challenger defines an

oracle E as E = K .Enc(sk, ·). Otherwise, the chal-
lenger lets E = $(sk, ·). The adversary is given
oracle access to E , and for convenience, E-queries
are also called as encryption queries.

Queries
A makes encryption queries adaptively. For each
encryption query m ∈ M, the challenger returns
the answer c← E(m) to A.

Finalization
A outputs a bit b′. The challenger returns 1 if b = b′,
and 0 otherwise.

The advantage of the adversary A in the game GameHE for
the scheme K with respect to the algorithm $ is defined as

AdvHEK ,$,A(λ) :=
∣∣∣∣Pr [GameHEK ,$,A(λ) = 1

]
−

1
2

∣∣∣∣ .
We say that an HE K is secure if there exists an algorithm

$ such that the advantage AdvHEK ,$,A(λ) is negligible for any
PPT adversary A.

V. HOMOMORPHIC AUTHENTICATOR
A. SYNTAX
Definition 3 (MDHA): A multi-dataset homomorphic

authenticator (MDHA) is a tuple of PPT algorithms
(KeyGen,Auth,Eval,Verify) as follows:

• (ek, sk)← KeyGen(1λ) : outputs a public key pk and a
secret key sk for the given security parameter λ.

• σ ← Auth(sk,1, τ,m) : given sk, outputs an authenti-
cation tag (or sometimes just called a tag) σ ∈ 6 of the
message m ∈ M with respect to the dataset identifier
1 ∈ D and the data identifier τ ∈ T .

• σ ← Eval(ek, f , (m1, σ1), . . . , (ml, σl)) : given ek,
deterministically outputs the homomorphically evalu-
ated authentication tag σ ∈ 6 of the message m =
f (m1, . . . ,ml) with respect to an admissible function
f ∈ F of arity l and tags σ1, . . . , σl ∈ 6 of the messages
m1, . . . ,ml ∈M, respectively.

• b← Verify(sk,1,P,m, σ ): given sk, deterministically
outputs the acceptance bit b of a tag σ ∈ 6 with respect
to the dataset identifier 1 ∈ D, the message m ∈ M
and the admissible labeled program P of arity l.

We assume that keys ek and sk implicitly contains the
information about the message space M, the tag space 6,
the dataset identifier spaceD, the data identifier space T and
the admissible function space F .

1) COMPACTNESS
An MDHA is required to have compact authentication tags,
where the compactness is defined as follows. If (ek, sk) ←
KeyGen(1λ) for a security parameter λ, then the output size of
algorithms Auth(sk, . . . ) and Eval(ek, . . . ) must be bounded
by a polynomial in λ regardless of the choice of their inputs.
This way, the tag size becomes independent of the evaluated
function.

2) CORRECTNESS
An MDHA is required to satisfy the following correctness
properties except for negligible probability.
• Correctness of the evaluation: For a homomorphically
evaluated tag σ ← Eval(ek, f , (m1, σ1), . . . , (ml, σl)),

1← Verify(sk,1,P, f (m1, . . . ,ml), σ )

holds for any λ, any tags σ1, . . . , σl ∈ 6 such that
1 = Verify(sk,1,Pi,mi, σi) for a dataset identifier 1,
a message mi ∈ M and an admissible program Pi for
i ∈ [l], the labeled program P = f (P1, . . . ,Pl) and any
arity-l function f :Ml

→M such that P is admissible
when (ek, sk)← KeyGen(1λ).

• Projection preservation:

σi = Eval(ek, πi, (m1, σ1), . . . , (ml, σl))

for any λ and any tags σ1, . . . , σl ∈ 6 that satisfy
1 = Verify(sk,1,Pi,mi, σi) for some mi ∈ M and
some admissible labeled program Pi for all i ∈ [l] when
(ek, sk) ← KeyGen(1λ), where πi is the ith projection
function overMl .

3) EFFICIENT VERIFICATION
We say that an MDHA supports efficient verification,
if there exist two additional deterministic algorithms Prep and
EffVerify such that:
• skP ← Prep(sk,P): given sk and the admissible pro-
gram P, deterministically outputs a verification key skP
for P. Note that this does not involve any dataset identi-
fier 1 ∈ D.

• b← EffVerify(skP,1,m, σ ): deterministically outputs
the acceptance bit b of the authentication tag σ with
respect to the verification key skP for P, dataset iden-
tifier 1 ∈ D and a message m ∈M.

The above algorithms are required to satisfy the following
properties.
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• Correctness: For any dataset identifier 1 ∈ D
and a tag σ ∈ 6, EffVerify(skP,1,m, σ ) =

Verify(sk,1,P,m, σ ) when (ek, sk) ← KeyGen(1λ)
and skP← Prep(sk,P) for some admissible program P.

• Amortized efficiency: let P be an admissible program.
Let (m1, . . . ,ml) ∈ Ml be an input for P, and let
t(l) be the time required to compute P(m1, . . . ,ml).
For skP ← Prep(sk,P), the time required for
EffVerify(skP,1,m, σ ) is o(t(l)).

4) MULTI-DATASET FULLY HOMOMORPHIC
AUTHENTICATOR
We say that T is multi-dataset leveled fully homomorphic
authenticator (MDFHA) if the admissible function space F
is defined as

F = {f | f :Ml
→M is a circuit of

depth at most d for some l = poly(λ)}

for some d = poly(λ).

5) BITWISELY EVALUABLE MDHA
We say that an MDHA T is bitwisely evaluable (or T is a
BE-MDHA) if the algorithms T .Eval and T .Verify takes a
bitwisely described circuit and a bitwisely described program
as a part of their inputs instead of an ordinary circuit and
an ordinary program, respectively. Also, selective security,
correctness and the support for efficient verification can be
defined as above by replacing circuits and programs to bit-
wisely described counterparts. Moreover, we say that T is
a bitwisely evaluable multi-dataset leveled fully homomor-
phic authenticator (BE-MDFHA) if the admissible function
space F is defined as

F = {f̄ | f̄ :Ml
→M is a bitwisely described circuit of

depth at most d for some l = poly(λ)}

for some d = poly(λ).
Remark 3: Since most homomorphic encryption has expo-

nential ciphertext space and our generic construction for
FHAE uses encrypt-then-authenticate structure, we need an
homomorphic authenticator scheme that can authenticate
messages with exponential size. But, to our knowledge, there
is no direct MDHA construction that has exponentially large
message space. Therefore, we define BE-MDHA as above and
suggest a generic construction of BE-MDHA using existing
MDHA with message space {0, 1} in Section VII.

6) OR-HOMOMORPHIC MDHA
We say that an MDHA T is OR-homomorphic if the admissi-
ble function space F is defined as

F = {f | f :Ml
→M is a circuit of depth d for some

l = poly(λ) such that all the gates of f are OR gates}

for some d = poly(λ).

B. A SECURITY NOTION FOR MULTI-DATASET
HOMOMORPHIC AUTHENTICATORS
We define a security notion of anMDHA T using the security
game GameMDHA below. Unlike the security definition of
a homomorphic signature in Gorbunov, Vaikuntanathan, and
Wichs [4], our security definition is over MDHA that can
authenticate for freely chosen data identifiers. Also, unlike
previous security notions above, we define selective security
of an MDHA; for our purposes, the selective security of
MDHA is enough.
GameMDHA

T ,A (λ) :
Selective Queries

A makes authentication queries selectively. A
selects polynomiallymany queries ((1i, τi,mi))i∈[q]
and sends ((1i, τi,mi))i∈[q] to the challenger.

Initialization and Response
If (1i, τi) = (1j, τj) for some i 6= j, then the
challenger rejects the query. If (1i, τi) 6= (1j, τj)
for any i 6= j, then the challenger generates a
key pair (ek, sk) ← T .KeyGen(1λ) and computes
σi← T .Auth(sk,1i, τi,mi) and sends (ek, S) to A
where S = {(1i, τi,mi, σi)}i∈[q].

Finalization
A outputs a forgery attempt (1∗,P∗,m∗, σ ∗) such
that for the fully bound sub-program P∗′ =
(f ∗, τ ∗1 , . . . , τ

∗
l ) of P∗ where f ∗ ∈ F , there is

(1∗, τ ∗i ,m
∗
i , σ
∗
i ) ∈ S for some (unique) m∗i ∈

M and σ ∗i ∈ 6 for all i ∈ [l]. If 1 ←
T .Verify(sk,1∗,P∗′,m∗, σ ∗) and (m∗, σ ∗) 6=

(m∗∗, σ ∗∗) where m∗∗ = f ∗(m∗1, . . . ,m
∗
l ) and

σ ∗∗ ← T .Eval(ek, f ∗, (m∗1, σ
∗

1 ), . . . , (m
∗
l , σ
∗
l )),

then the challenger outputs 1. Otherwise, the chal-
lenger outputs 0.

The advantage of the adversary A in the game GameMDHA

for the scheme T is defined as

AdvMDHA
T ,A (λ) := Pr

[
GameMDHA

T ,A (λ) = 1
]
.

We say that an MDHA T is selectively secure if the advan-
tage AdvMDHA

T ,A (λ) is negligible for any PPT adversary A.

VI. GENERIC CONSTRUCTION OF SECURE FULLY
HOMOMORPHIC AUTHENTICATED ENCRYPTION
A. OVERVIEW OF OUR CONSTRUCTION
In this section, we construct a secure FHAE. Our FHAE
scheme is a generic construction using one FHE scheme
and two HA schemes, one fully homomorphic and one OR-
homomorphic. Overall, our construction can be regarded as
following the encrypt-then-authenticate paradigm, but with
one additional HA to meet our new security notion.

Before giving construction directly, we give a high-level
overview of how we created our construction and some pre-
liminary definitions.

First, letH0 be a straightforward encrypt-then-authenticate
construction made out of a FHEK and anMDFHA T̄ , as well
as additional random functions F̄0 and Ḡ0: H0 encrypts an
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input (1, τ,m) as (c, σ̄ ) ← H0.Enc(sk0,1, τ,m), where
c ← K .Enc(sk,m) and σ̄ ← T̄ .Auth(s̄k, 1̄, τ̄ , c) for 1̄ :=
F̄0(1) and τ̄ := Ḡ0(τ ).

For homomorphic evaluation of H0, we define
H0.Eval(ek0, f , . . . ) as applying the homomorphic eval-
uation algorithm K .Eval(ek, f , . . . ) to the first parts of
its input ciphertexts, encryptions of K , and the algo-
rithm T̄ .Eval(ēk,K .Eval(ek, f , . . . ), . . . ) to the second
parts, the tags of the first parts. The decryption algo-
rithm H0.Dec(sk0,1,P, c0) parses P = (f , τ1, . . . , τl)
and c0 = (c, σ̄ ), and outputs K .Dec(sk, c) when
1 ← T̄ .Verify(s̄k, 1̄, P̄, c, σ̄ ), ⊥ otherwise where P̄ =
(K .Eval(ek, f , . . . ), τ̄1, . . . , τ̄l).
The constructionH0 is comparable to the generic construc-

tion of adaptively secure fully homomorphic signature given
by Gorbunov, Vaikuntanathan and Wichs [4]. Their basic
scheme satisfies only the selective security, but, by using their
homomorphic trapdoor function as a homomorphic version
of a chameleon hashing [12], they constructed an adaptively
secure fully homomorphic signature scheme. In our con-
struction, the inner FHE serves two purposes: the first is to
encrypt the message to achieve privacy, the second is, like
a chameleon hashing, to upgrade the authentication security
from selective to adaptive.

Now, let us observe the security of H0. If an FHE K is
secure, then there is an algorithm $K that is indistinguishable
from K .Enc. Therefore, if we define H ′0 to be the same as H0
except using $K instead of K .Enc, then H ′0 and H0 are also
indistinguishable. Note that H ′0.Enc randomizes its inputs
with F̄0, Ḡ0 and $K , and is independent of its message input.
Using lazy sampling on random functions F̄0 and Ḡ0, one can
answer adaptive queries of H ′0.Enc using selective queries
of T̄ .Auth with random inputs (1̄, τ̄ , $K (ek, ·)). One can
view the attacks on H ′0 distinguishing H

′

0.Dec(·) and ⊥(·) as
attacks on T̄ with randomly chosen selective queries. There-
fore, the security of T̄ ensures that it is hard for adversaries
to output an accepting decryption query (1,P, c) such that
P = (f , τ1, . . . , τl) and there has been encryption queries
with respect to (1, τi) for all i ∈ [l]. In other words, we have
a form of adaptive security for authenticity, as long as the
‘forgery attempt’ (1, (f , τ1, . . . , τl), c) does not have any
‘empty slot’. However, we need also to take care of the cases
when some slots are empty. One way to do this is to ensure
that there are no empty slots. Wemight use a hash tree for this
purpose, as in [3] and [5], but that technique is not compatible
with multi-dataset. Instead, we will adapt a technique using
an OR-homomorphic authenticator given by Catalano, Fiore,
and Nizzardo [10].

The idea is to modify the plain encrypt-then-authenticate
construction H0 so that for each ciphertext we add an authen-
tication tag of 0. When we perform homomorphic evaluation,
we need also to homomorphically evaluate the authentica-
tion tag as well. When we evaluate a unary gate, we will
homomorphically evaluate the identity gate for the authen-
tication of 0. When we evaluate a binary gate, we will
homomorphically evaluate logical OR of the corresponding

two zeroes. Therefore, for unaltered ciphertexts and their
homomorphic evaluation, the additional tags are all authen-
tication tags of zeroes. During the decryption, we verify the
additional authentication tag as well. The MDHA Ť we use
for the authentication of 0 can be OR-homomorphic, and
since the message 0 is fixed and we may randomize the labels
as in the construction of H0, Ť needs only to be selectively
secure.

Now, suppose that the adversary makes a decryption query
(1,P, c) with P = (f , τ1, . . . , τl). Without loss of generality,
let us assume that P is fully bound. The basic intuition is
that, if any of the labels τi∗ is empty, that is, no message was
encrypted with respect to (1, τi∗ ), then the reduction algo-
rithm may guess the position i∗, and replace the additional
authentication of 0 at (1, τi∗ ) with the authentication of 1.
Since we will always evaluate ORs of inputs, the final value
of this circuit made out of OR gates will be 1. Then, any
such decryption query (with the additional tag for 0 verified)
would produce a forgery of Ť . Hence, if Ť is secure, then
it is infeasible to produce a valid decryption query with an
empty slot.

Our MDFHAE can be instantiated with existing schemes.
For example, some popular FHE schemes like [2], [6]
can be used as K , and the first fully homomorphic sig-
nature [4] can be used as Ť . As for T̄ , since there is no
dedicated MDFHA scheme with exponential message space,
one can follow our generic construction, Construction 3, for
BE-MDHA in Section VII to construct such scheme. Using
the first fully homomorphic signature [4] and Construc-
tion 3, one can construct a secure BE-MDFHA and it can be
used as T̄ .
Before describing the construction, we need a preparation.

Suppose a circuit f :Ml
→M is given. We define the cor-

responding boolean circuit f̌ : {0, 1}l → {0, 1} as the circuit
obtained by replacing each unary gate of f with the identity
gate (sending a bit b to b itself), and each binary gate of f with
the OR gate.

B. GENERIC CONSTRUCTION
Construction 1: Let K be an HE scheme, T̄ be a BE-

MDHA scheme and Ť be an OR-homomorphic MDHA. Let
M, C, F be the message space, the ciphertext space, and the
admissible function space of K , where every element in C is
given as an n bit binary encoding. Similarly, let M̄ := C,
6̄, D̄, T̄ , F̄ be the message space, the tag space, the dataset
identifier space, the data identifier space, and the admissible
(bitwisely described) function space of T̄ . Also, let M̌ :=

{0, 1}, 6̌, Ď, Ť , F̌ be the corresponding ones of Ť . Let
M :=M, C := C × 6̄ × 6̌, D, T , F be the message space,
the ciphertext space, the dataset identifier space, the data
identifier space, and the admissible function space of the
FHAE H below where

F : = {f ∈ F | f̌ ∈ F̌ and f̄ ∈ F̄ where f̄ is the bitwisely

described circuit of K .Eval(ek, f , . . . ) for

any choices of (ek, sk)← K .KeyGen(1λ)}.
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Let F̄ : {0, 1}λ × D → D̄, Ḡ : {0, 1}λ × T → T̄ , F̌ :
{0, 1}λ×D→ Ď and Ǧ : {0, 1}λ×T → Ť be secure PRFs.
Using K, T̄ , Ť , F̄ , Ḡ, F̌ , Ǧ we construct an MDHAE H as

follows.

• H .KeyGen(1λ): let (ek, sk) ← K .KeyGen(1λ),
(ēk, s̄k)← T̄ .KeyGen(1λ), (ěk, šk)← Ť .KeyGen(1λ),
kF̄ , kḠ, kF̌ , kǦ ← {0, 1}λ, and output (ek, sk) :=
(ek‖ēk‖ěk, ek‖sk‖s̄k‖šk‖kF̄‖kḠ‖kF̌‖kǦ).

• H .Enc(sk,1, τ,m): parse given input sk =

ek‖sk‖s̄k‖šk‖kF̄‖kḠ‖kF̌‖kǦ, let c ← K .Enc(sk,m),
1̄ ← F̄(kF̄ ,1), τ̄ ← Ḡ(kḠ, τ ), 1̌ ← F̌(kF̌ ,1),
τ̌ ← Ǧ(kǦ, τ ), σ̄ ← T̄ .Auth(s̄k, 1̄, τ̄ , c), σ̌ ←
Ť .Auth(šk, 1̌, τ̌ , 0). Output c := (c, σ̄ , σ̌ ).

• H .Eval(ek, f , c1, . . . , cl): parse given input ek =

ek‖ēk‖ěk. For i = 1, . . . , l, parse ci = (ci, σ̄i, σ̌i).
Evaluate a ciphertext c ← K .Eval(ek, f , c1, . . . , cl),
and authentication tags σ̄ ← T̄ .Eval(ēk, f̄ , σ̄1, . . . , σ̄l),
σ̌ ← Ť .Eval(ěk, f̌ , σ̌1, . . . , σ̌l) where f̄ is the bit-
wisely described circuit of the deterministic algorithm
K .Eval(ek, f , . . . ). Output c := (c, σ̄ , σ̌ ).

• H .Dec(sk,1,P, c): parse given inputs sk =

ek‖sk‖s̄k‖šk‖kF̄‖kḠ‖kF̌‖kǦ, P = (f , τ1, . . . , τl) and
c = (c, σ̄ , σ̌ ). Let 1̄ ← F̄(kF̄ ,1), 1̌ ← F̌(kF̌ ,1).
For i ∈ [l], let τ̄i ← Ḡ(kḠ, τi), τ̌i ← Ǧ(kǦ, τi). Now, let
P̄ = (f̄ , τ̄1, . . . , τ̄l), P̌ = (f̌ , τ̌1, . . . , τ̌l) where f̄ is the
bitwisely described circuit of the deterministic algorithm
K .Eval(ek, f , . . . ). If 1 ← T̄ .Verify(s̄k, 1̄, P̄, c, σ̄ )
and 1 ← Ť .Verify(šk, 1̌, P̌, 0, σ̌ ), then output m ←
K .Dec(sk, c). Otherwise, output ⊥.

Remark 4: Construction 1 satisfies the correctness prop-
erties of anMDHAE.We can prove the correctness as follows:

• Correctness of the evaluation: From description of
H .Eval and the correctness of K , T̄ and Ť , H satisfies
the correctness of evaluation.

• Projection preservation: From the correctness of K ,
if f is a projection, then f̌ is also a projection and
f̄ is a bitwisely described projection where f̄ is the
bitwisely described circuit of the deterministic algo-
rithm K .Eval(ek, f , . . . ). Then, from the description of
H .Eval and the correctness of T̄ and Ť , H satisfies the
projection preservation.

Remark 5: If T̄ and Ť supports efficient verification,
then Construction 1 supports efficient decryption. We define
H .Prep and H .EffDec as follows:

• H .Prep(sk,P): parse given two inputs sk =

ek‖sk‖s̄k‖šk‖kF̄‖kḠ‖kF̌‖kǦ and P = (f , τ1, . . . , τl).
For i ∈ [l], let τ̄i ← Ḡ(kḠ, τi), τ̌i ← Ǧ(kǦ, τi). Now, let
P̄ = (f̄ , τ̄1, . . . , τ̄l), P̌ = (f̌ , τ̌1, . . . , τ̌l) where f̄ is the
bitwisely described circuit of the deterministic algorithm
K .Eval(ek, f , . . . ). Compute s̄k P̄← T̄ .Prep(s̄k, P̄) and
šk P̌← T̄ .Prep(šk, P̌) and output skP := sk‖s̄k P̄‖šk P̌.

• H .EffDec(skP,1, c): parse skP = sk‖s̄k P̄‖šk P̌ and
c = (c, σ̄ , σ̌ ). Let 1̄ ← F̄(kF̄ ,1) and 1̌ ←

F̌(kF̌ ,1). If 1 ← T̄ .EffVerify(s̄k P̄, 1̄, c, σ̄ ) and

1 ← Ť .EffVerify(šk P̌, 1̌, 0, σ̌ ), then output m ←
K .Dec(sk, c). Otherwise, output ⊥.

ThenH .EffDec(H .Prep(sk,P),1, c) = H .Dec(sk,1,P, c)
where (ek, sk) ← H .KeyGen(1λ). Since the complexity of
H .EffDec is independent of the time complexity of computing
f , the above algorithms satisfy amortized efficiency.

C. SECURITY
Theorem 1: Suppose F̄ , Ḡ, F̌ and Ǧ are pseudorandom

functions such that, D̄, T̄ , Ď and Ť are superpolynomially
large: |D̄|, |T̄ |, |Ď|, |Ť | ≥ 2ω(log λ). If T̄ and Ť are selec-
tively secure and K is secure, then H is a secure MDHAE.

Proof: We use the same notations defined in Construc-
tion 1.

We define AdvF̄ (λ), AdvḠ(λ), AdvF̌ (λ) and AdvǦ(λ) to
be distinguishing advantages of F̄(kF̄ , ·), Ḡ(kḠ, ·), F̌(kF̌ , ·)
and Ǧ(kǦ, ·) from random functions F̄ ′ : D → D̄, Ḡ′ :
T → T̄ , F̌ ′ : D → Ď and Ǧ′ : T → Ť , respectively,

for kF̄ , kḠ, kF̌ , kǦ
$
← {0, 1}λ.

We assume that there is an upper bound l̄ = poly(λ) on the
number of inputs of the admissible function.

LetA be any PPT adversary againstH inGameMDHAE with
at most q queries for at most d different datasets. Then there
are PPT adversaries B, B′, B̄ and B̌ with at most q, q, dl̄q and
dl̄q queries, respectively, such that

AdvMDHAE
H ,$H ,A (λ)

≤ AdvF̄ (λ)+ AdvḠ(λ)+ AdvF̌ (λ)+ AdvǦ(λ)

+
2q2∣∣D̄∣∣ + 2q2∣∣∣Ď∣∣∣ + 2q2 l̄2∣∣T̄ ∣∣ + 2q2 l̄2∣∣∣Ť ∣∣∣ + AdvHEK ,$K ,B(λ)

+ AdvHEK ,$K ,B′ (λ)+ qAdv
MDHA
T̄ ,B̄ (λ)

+ (d + 1)
(
l̄q+ 1

)
AdvMDHA

Ť ,B̌
(λ).

for some algorithms $H and $K .
Suppose $K be an algorithm such that AdvHEK ,$K ,B(λ) is

negligible for any PPT algorithm B. Then, in the rest of the
proof, we specify $H with respect to $K as follows:

• $H (sk,1, τ, ·): parse given secret key sk =

ek‖sk‖s̄k‖šk‖kF̄‖kḠ‖kF̌‖kǦ, let c ← $K (sk, ·),
1̄ ← F̄(kF̄ ,1), τ̄ ← Ḡ(kḠ, τ ), 1̌ ← F̌(kF̌ ,1),
τ̌ ← Ǧ(kǦ, τ ), σ̄ ← T̄ .Auth(s̄k, 1̄, τ̄ , c), σ̌ ←
Ť .Auth(šk, 1̌, τ̌ , 0). Output c := (c, σ̄ , σ̌ ).

In short, $H is the same as H .Enc but instead of K .Enc, $H
uses $K .
Before constructing adversaries B, B, B̄ and B̌, we first

switch PRFs with random functions using the games defined
as follows:

Game 0(λ):
The original security game GameMDHAE

H ,$H ,A (λ).
Game 1(λ):

The security game GameMDHAE
H ′,$′

H ′
,A(λ) where H

′ and

$′H ′ are the same as H and $H , respectively,
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except for the parts that use PRFs. In this game,
H ′.KeyGen(1λ) samples random functions F̄ ′ :
D→ D̄, Ḡ′ : T → T̄ , F̌ ′ : D→ Ď and Ǧ′ : T →
Ť , and lets sk := ek‖sk‖s̄k‖‖šk‖F̄ ′‖Ḡ′‖F̌ ′‖Ǧ′ as a
secret key. Also, H ′,Enc, H ′,Dec and $′H ′ use F̄

′,
Ḡ′, F̌ ′ and Ǧ′ instead of F̄(kF̄ , ·), Ḡ(kḠ, ·), F̌(kF̌ , ·)
and Ǧ(kǦ, ·), respectively.

Using the security of the PRFs, we can bound

AdvGame 0,Game 1
A (λ) ≤ AdvF̄ (λ)+ AdvḠ(λ)

+ AdvF̌ (λ)+ AdvǦ(λ).

To bound AdvGame 1
A (λ), we construct a PPT adversary B

against the challenger of the gameGameHEK ,$K ,B(λ) that runs A
internally as follows (written in A’s perspective):

Initialization
The challenger generates (ek, sk) ←

K .KeyGen(1λ) and send ek to B. The challenger

flips a coin b
$
← {0, 1}. If b = 0, then the challenger

lets EK = K .Enc(sk, ·). Otherwise, the challenger
lets EK = $K (·). Then, B generates (p̄k, s̄k) ←
T̄ .KeyGen(1λ), (p̌k, šk) ← Ť .KeyGen(1λ) and
send ek = ek‖ēk‖ěk to A. B initializes a set S as ∅.

Queries
B responds to the queries of A as follows:

• For every encryption query (1, τ,m) that A
makes, B checks if (1, τ, ·, ·) ∈ S. If
(1, τ, ·, ·) ∈ S, then B rejects the query. Other-
wise, B queries m to the challenger, and gets
c = EK (m) as the response. Then, B lets
1̄ = F̄ ′(1), τ̄ = Ḡ′(τ ), 1̌ = F̌ ′(1), τ̌ =
Ǧ′(τ ), σ̄ ← T̄ .Auth(s̄k, 1̄, τ̄ , c) and σ̌ ←
Ť .Auth(šk, 1̌, τ̌ , 0), and sends c := (c, σ̄ , σ̌ )
to A.

• For every decryption query (1,P, c) that
A makes, B checks if the query is redun-
dant. If the query is redundant, B rejects
the query. If the query is non-redundant, B
checks if H ′.Dec(sk,1,P, c) 6= ⊥ using the
knowledge of F̄ ′, Ḡ′, F̌ ′, Ǧ′ ek , s̄k and šk .
If H ′.Dec(sk,1,P, c) 6= ⊥, then B outputs
‘‘Bad’’ and halts. Otherwise, B sends ⊥ to A.

Finalization
A outputs a bit b′. Receiving b′, B also outputs b′.

Note that B’s responses to A are identical to the responses
of the challenger of Game 1(λ) until A makes a decryption
query (1,P, c) such that B outputs ‘‘Bad’’ and halts (in other
words, H ′.Dec(sk,1,P, c) 6= ⊥). We call such a query as
a bad query. Also, B wins the game GameHEK ,$K ,B(λ) if and
only if A does not make any bad queries on B and outputs the
winning bit b′ = b in the Finalization phase. Now, define
two following events:

• EGame 1
= {A makes a bad query on Game 1(λ)}

• EB = {A makes a bad query on B}

Then we see that

Pr [Game 1(λ) = 1]

≤ Pr
[
EGame 1

]
+ Pr

[(
EGame 1

){]
Pr
[
A outputs b′ = b

∣∣∣∣ (EGame 1
){]

= Pr
[
EB
]

+ Pr
[(

EB
){]

Pr
[
GameHEK ,$K ,B(λ) = 1

∣∣∣∣ (EB){]
≤ Pr

[
EB
]
+ AdvHEK ,$K ,B(λ)

= Pr
[
EGame 1

]
+ AdvHEK ,$K ,B(λ).

Note that

Pr
[
EGame 1

]
= Pr

[
EGame 1

| b = 0
]
Pr[b = 0]

+ Pr
[
EGame 1

| b = 1
]
Pr[b = 1]

≤
1
2

∣∣∣∣Pr [EGame 1
| b = 0

]
− Pr

[
EGame 1

| b = 1
]∣∣∣∣

+ Pr
[
EGame 1

| b = 1
]
.

To bound the probability

1
2

∣∣∣∣Pr [EGame 1
| b = 0

]
− Pr

[
EGame 1

| b = 1
]∣∣∣∣ ,

we construct a PPT adversary B′ against the challenger of
the game GameHEK ,$K ,B′ (λ). B

′ is the same as B except for the
Finalization phase and the Queries phase. In the Finaliza-
tion phase, B′ always outputs 0 instead of outputting A’s out-
put b′ asB. InQueries phase, whenAmakes a query (1,P, c)
such that H ′.Dec(sk,1,P, c) 6= ⊥, B′ outputs 1 and halts
instead of outputting ‘‘Bad’’ as B. In A’s perspective, B and
B′ are identical to each other. Therefore, we can write

AdvHEK ,$K ,B′ (λ)

=
1
2

∣∣Pr [B′ outputs 1 | b = 0
]
− Pr

[
B′ outputs 1 | b = 1

]∣∣
=

1
2

∣∣∣Pr [EGame 1
| b = 0

]
− Pr

[
EGame 1

| b = 1
]∣∣∣

Now, we need to bound Pr[EGame 1
| b = 1].

We first define Game 2(λ), which is the same as
Game 1(λ) with slight changes. InGame 2(λ), the challenger
always sets b = 1 instead of choosing b randomly as in
Game 1(λ). Also, if A makes a bad query in the Queries
phase, the challenger returns 1 and the game ends. If A does
not output any bad queries, then the challenger returns 0 and
the game ends. From the definition of Game 2, we see that
Pr[EGame 1

| b = 1] = Pr[Game 2(λ) = 1]. When
A outputs a bad query (1∗,P∗, c∗), from the correctness of
T̄ and Ť , we see that H ′.Dec(sk,1∗,P∗′, c∗) 6= ⊥ where
P∗′ is the fully bound sub-program of P∗. Also, if we let
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P∗′ = (f ∗, τ ∗1 , . . . , τ
∗
l ), then the bad query (1∗,P∗, c∗) falls

into one of the following two case:
Type 1 bad query:

(1∗, τ ∗i , ·, ·) 6∈ S for at least one i ∈ [l].
Type 2 bad query:

For i ∈ [l], (1∗, τ ∗i ,m
∗
i , c
∗
i ) ∈ S for some (unique)

m∗i ∈M, c∗i ∈ C, and c∗ 6= c∗∗

where c∗∗ ← H ′.Eval(ek, f ∗, c∗1, . . . , c
∗
l ). Also, if the bad

query (1∗,P∗, c∗) is of Type 2, then it also falls into one of
the following two cases:

TypeN2 bad query:
(c∗, σ̄ ∗) 6= (c∗∗, σ̄ ∗∗)

TypeL2 bad query:
σ̌ ∗ 6= σ̌ ∗∗

where c∗ = (c∗, σ̄ ∗, σ̌ ∗) and c∗∗ = (c∗∗, σ̄ ∗∗, σ̌ ∗∗). If we let

Ě := {The first bad query of A is of Type 1 in Game 2(λ)} ∪

{The first bad query of A is of Type 2̌ in Game 2(λ)},

Ē := {The first bad query of A is of Type 2̄ in Game 2(λ)},

then we see that

Pr[Game 2(λ) = 1] ≤ Pr[Ě]+ Pr[Ē].

To bound Pr[Ē], we construct a PPT adversary B̄ of the
game GameMDHA

T̄ ,B̄
(λ) as follows:

Initialization
B̄ generates (ek, sk)← K .KeyGen(1λ), (ěk, šk)←
Ť .KeyGen(1λ), and prepares the selective queries
as follows:
1) Sample q∗

$
← [q]

2) Sample 1̄i
$
← D̄, 1̌i

$
← Ď for i ∈ [d] and

τ̄j
$
← T̄ , τ̌j

$
← Ť for j ∈ [l̄q]

3) Compute ci,j← $K (sk, ·) for (i, j) ∈ [d]×[l̄q]
4) Submit

((
1̄i, τ̄j, ci,j

))
(i,j)∈[d]×[l̄q] to the chal-

lenger
If (1̄i, τ̄j) = (1̄i′ , τ̄j′ ) for some (i, j) 6=

(i′, j′), then the challenger rejects the query. Oth-
erwise, the challenger generates (ēk, s̄k) ←

T̄ .KeyGen(1λ), computes σ̄i,j ← T̄ .Auth(s̄k, 1̄i,

τ̄j, ci,j) for (i, j) ∈ [d]× [l̄q] and sends (ēk, ST̄ ) to B
where ST̄ :=

{
(1̄i, τ̄j, ci,j, σ̄i,j)

}
(i,j)∈[d]×[l̄q]. Then,

B̄ sends ek := ek‖ēk‖ěk to A and initializes a set S
as ∅. B̄ also programs F̄ ′ : D → D̄, F̌ ′ : D → Ď,
Ḡ′ : T → T̄ , Ǧ′ : T → Ť to be functions that
output 1̄i, 1̌i, τ̄i, τ̌i, respectively for the ith new
input.

Queries
Among the queries of A, let 1i ∈ D be the ith new
dataset identifier and τj ∈ T be the jth new data
identifier. B̄ handles queries of A as follows:
• For an encryption query (1i, τj,mi,j) that
A makes, B̄ checks if (1i, τj, ·, ·) ∈ S.
If (1i, τj, ·, ·) ∈ S, then B̄ rejects the
query. Otherwise, B̄ responds to the query

(1i, τj,mi,j) with ci,j := (ci,j, σ̄i,j, σ̌i,j) where
σ̌i,j ← Ť .Auth(šk, 1̌i, τ̌j, 0) for 1̌i = F̌ ′(1i)
and τ̌j = Ǧ′(τj) (also, B̄ asks 1i and τj to F̄ ′

and Ḡ′, respectively, to set F̄ ′(1i) = 1̄i and
Ḡ′(τj) = τ̄j). After responding to the encryp-
tion query of A, B̄ updates S with S ← S ∪{
(1i, τj,mi,j, ci,j)

}
.

• For every decryption query (1∗,P∗, c∗) that A
makes, B̄ checks if the query is redundant. If the
query (1∗,P∗, c∗) is redundant, then B̄ rejects
the query. If the query (1∗,P∗, c∗) is non-
redundant decryption query before the q∗th
query, then B̄ gives ⊥ as the response. If the
q∗th query is an encryption query or a rejected
query, then B̄ outputs nothing and halts. If the
q∗th query is the decryption query (1∗,P∗, c∗),
then B̄ parses c∗ = (c∗, σ̄ ∗, σ̌ ∗) and finds
P∗′ := (f ∗, τ ∗1 , . . . , τ

∗
l ), the fully bound sub-

program of P∗. If (1∗, τ ∗i ,m
∗
i , c
∗
i ) ∈ S for

some (unique) m∗i ∈ M and c∗i ∈ C for
all i ∈ [l] and (c∗, σ̄ ∗) 6= (c∗∗, σ̄ ∗∗) where
(c∗∗, σ̄ ∗∗, σ̌ ∗∗) = H ′.Eval(ek, f ∗, c∗1, . . . , c

∗
l ),

then B̄ outputs (1̄∗, P̄∗′, c∗, σ̄ ∗) as a forgery
attempt and halts where 1̄∗ = F̄ ′(1∗),
τ̄ ∗i = Ḡ′(τ ∗i ) for i ∈ [l], f̄ ∗ is the bit-
wisely described circuit of the determinis-
tic algorithm K .Eval(ek, f ∗, . . . ) and P̄∗′ =
(f̄ ∗, τ̄ ∗1 , . . . , τ̄

∗
l ). Otherwise, B̄ outputs nothing

and halts.
Finalization

B̄ does not reach this phase.
Note that If Amakes a Type 2̄ bad query on the q∗th query,

then B̄ wins the game GameMDHA
T̄ ,B̄

(λ).
For simplicity of the definitions below, we first let

prms =
(
coins, (1̄i)i∈[d], (1̌i)i∈[d], (τ̄j)j∈[l̄q], (τ̌j)j∈[l̄q],

rK , rT̄ , rŤ , (ei,j)(i,j)∈[d]×[l̄q], (āi,j)(i,j)∈[d]×[l̄q],

(ǎi,j)(i,j)∈[d]×[l̄q]
)

For ease of comparison, we define the following two
games:
• Game 2(λ; prms): a deterministic Game 2(λ) that sam-
ples PRFs as B̄ with deterministic A using randomness
coins. More precisely, the challenger samples (1̄i)i∈[d],
(1̌i)i∈[d], (τ̄j)j∈[l̄q], (τ̌j)j∈[l̄q] and programs F̄ ′ : D→ D̄,
F̌ ′ : D → Ď, Ḡ′ : T → T̄ , Ǧ′ : T → Ť
to be functions that output 1̄i, 1̌i, τ̄i, τ̌i, respectively,
for the ith new input. To run algorithms K .KeyGen,
T̄ .KeyGen, Ť .KeyGen, $K (sk, ·), T̄ .Auth(s̄k, 1̄i, τ̄j, ·),
Ť .Auth(šk, 1̌i, τ̌j, 0), the challenger uses the random-
ness rK , rT̄ , rŤ , ei,j, āi,j, ǎi,j for (i, j) ∈ [d]× [l̄q].

• Game B̄(λ; prms): a partially deterministic game
GameMDHA

T̄ ,B̄
(λ) with deterministic A using randomness

coins. More precisely, except for the choice of q∗ ∈ [q],
the other parts of B̄ and the challenger of this game
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are deterministic. In A’s perspective, the simulated chal-
lenger, consisting of B̄ and the challenger of this game,
samples (1̄i)i∈[d], (1̌i)i∈[d], (τ̄j)j∈[l̄q], (τ̌j)j∈[l̄q] and pro-
grams F̄ ′ : D → D̄, F̌ ′ : D → Ď, Ḡ′ : T → T̄ ,
Ǧ′ : T → Ť to be functions that output 1̄i, 1̌i,
τ̄i, τ̌i, respectively for the ith new input. To run algo-
rithms K .KeyGen, T̄ .KeyGen, Ť .KeyGen, $K (sk, ·),
T̄ .Auth(s̄k, 1̄i, τ̄j, ·), Ť .Auth(šk, 1̌i, τ̌j, 0), the simu-
lated challenger uses the randomness rK , rT̄ , rŤ , ei,j, āi,j,
ǎi,j for (i, j) ∈ [d]× [l̄q].

Since Game 2(λ; prms) is Game 2(λ) with certain imple-
mentation of PRFs, Pr[Ē] = Pr[Ē ′] where
Ē ′ :=

{
prms | The first bad query that A outputs is of Type 2̄

in Game 2(λ; prms)
}
.

Let

Coll :=
{
prms | 1̄i = 1̄i′ or 1̌i = 1̌i′ for some i 6= i′

or τ̄j = τ̄j′ or τ̌j = τ̌j′ for some j 6= j′
}
.

Then for any fixed prms ∈ Coll{ ∩ Ē ′, suppose A made
the first bad query on the q∗∗th query in Game 2(λ; prms).
If q∗ = q∗∗, Game 2(λ; prms) becomes the same as
Game B̄(λ; prms) in A’s perspective and B̄ wins the game
GameMDHA

T̄ ,B̄
(λ). Therefore,

1
q
Pr
[
Coll{ ∩ Ē ′

]
≤ Pr

[
GameMDHA

T̄ ,B̄ (λ) = 1
]

= AdvMDHA
T̄ ,B̄ (λ)

and

Pr
[
Ē ′
]
= Pr

[
Coll ∩ Ē ′

]
+ Pr

[
Coll{ ∩ Ē ′

]
≤ Pr [Coll]+ qAdvMDHA

T̄ ,B̄ (λ)

≤
q2∣∣D̄∣∣ + q2∣∣∣Ď∣∣∣ + q2 l̄2∣∣T̄ ∣∣ + q2 l̄2∣∣∣Ť ∣∣∣ + qAdvMDHA

T̄ ,B̄ (λ).

To bound Pr[Ě], we construct a PPT algorithm B̌ of the
game GameMDHA

Ť ,B̌
(λ) as follows:

Initialization
B̌ generates (sk, sk) ← K .KeyGen(λ), (s̄k, s̄k) ←
T̄ .KeyGen(λ) and prepares the selective queries as
follows:
1) Sample q∗

$
← [q], i∗

$
← [d + 1], and j∗

$
←

[l̄q+ 1]

2) Sample 1̄i
$
← D̄, 1̌i

$
← Ď for i ∈ [d] and

τ̄j
$
← T̄ , τ̌j

$
← Ť for j ∈ [l̄q]

3) For i ∈ [d] and j ∈ [l̄q] such that (i, j) 6=
(i∗, j∗), let bi,j = 0. If (i, j) = (i∗, j∗), then let
bi∗,j∗ = bi,j = 1

4) Submit
(
(1̌i, τ̌j, bi,j)

)
(i,j)∈[d]×[l̄q]

to the chal-

lenger
If (1̌i, τ̌j) = (1̌i′ , τ̌j′ ) for some (i, j) 6=

(i′, j′), then the challenger rejects the query.

Otherwise, the challenger generates (ěk, šk) ←
Ť .KeyGen(1λ), computes σ̌i,j ← Ť .Auth(šk, 1̌i,

τ̌j, bi,j) for (i, j) ∈ [d] × [l̄q] and sends (ěk, SŤ )

to B̌ where SŤ :=
{
(1̌i, τ̌j, bi,j, σ̌i,j)

}
(i,j)∈[d]×[l̄q]

. B̌

sends ek := ek‖ēk‖ěk to A and initializes a set S
as ∅. B̄ also programs F̄ ′ : D → D̄, F̌ ′ : D → Ď,
Ḡ′ : T → T̄ , Ǧ′ : T → Ť to be functions that
output 1̄i, 1̌i, τ̄i, τ̌i, respectively for the ith new
input.

Queries
Among the queries of A, let 1i ∈ D be the
ith new dataset identifier and τj ∈ T be the
jth new data identifier. B̌ handles queries of A as
follows:

• For an encryption query (1i, τj,mi,j) that
A makes, B̌ checks if (1i, τj, ·, ·) ∈ S.
If (1i, τj, ·, ·) ∈ S, then B̌ rejects the
encryption query. Otherwise, B̌ responds the
query (1i, τj,mi,j) with ci,j := (ci,j, σ̄i,j, σ̌i,j)
where ci,j ← $K (sk, ·) and σ̄i,j ←

T̄ .Auth(s̄k, 1̄i, τ̄j, ci,j) for 1̄i = F̄ ′(1i), τ̄j =
Ḡ′(τj) (B̌ asks 1i and τj to F̌ ′ and Ǧ′, respec-
tively, to set F̌ ′(1i) = 1̌i and Ǧ′(τj) = τ̌j).
After responding the encryption query of A, B̌
updates S with S ← S ∪

{
(1i, τj,mi,j, ci,j)

}
• For every decryption query (1∗,P∗, c∗) that A
makes, B̌ checks if the query is redundant. If the
query (1∗,P∗, c∗) is redundant, then B̌ rejects
the query. If the query (1∗,P∗, c∗) is non-
redundant decryption query before the q∗th
query, then B̌ returns ⊥ as the response. If the
q∗th query is an encryption query or a rejected
query, then B̌ outputs nothing and halts. If the
q∗th query is the decryption query (1∗,P∗, c∗),
B̌ parses c∗ = (c∗, σ̄ ∗, σ̌ ∗) and computes
P∗′ := (f ∗, τ ∗1 , . . . , τ

∗
l ), the fully bound sub-

program of P∗. If (1∗, τ ∗i ,m
∗
i , c
∗
i ) ∈ S for

some (unique) m∗i ∈ M and c∗i ∈ C for all
i ∈ [l] and σ̌ ∗ 6= σ̌ ∗∗ where (c∗∗, σ̄ ∗∗, σ̌ ∗∗) =
H ′.Eval(ek, f ∗, c∗1, . . . , c

∗
l ), then B̌ outputs

(1̌∗, P̌∗
′
, 0, σ̌ ∗) as a forgery attempt and halts

where P̌∗
′
= (f̌ ∗, τ̌ ∗1 , . . . , τ̌

∗
l ), 1̌

∗
= F̌ ′(1∗),

τ̌ ∗i = Ǧ′(τ ∗i ) for i ∈ [l], f̌ ∗ is the boolean
circuit obtained by replacing each unary gate
of f ∗ with the identity gate, and each binary
gate of f ∗ with the OR gate as defined in the
beginning of the Section VI. If there is at least
one i ∈ [l] such that (1∗, τ ∗i , ·, ·) /∈ S, then
let l∗ be the smallest number in the set {i ∈
[l] | (1∗, τ ∗i , ·, ·) 6∈ S}. If 1

∗
= 1i∗ and τ ∗l∗ =

τj∗ , then B̌ outputs (1̌∗, P̌∗
′
, 0, σ̌ ∗) as a forgery

attempt and halts where 1̌∗ and P̌∗
′
are defined

as above. For other cases, B̌ outputs nothing and
halts.

VOLUME 9, 2021 107291



J. Kim, A. Yun: Secure FHAE

Finalization
B̌ does not reach this phase.

Note that on q∗th query, if A makes a Type 1 bad query
while 1∗ = 1i∗ and τ ∗l∗ = τj∗ , or a Type 2̌ bad query, then B̌
wins the game GameMDHA

Ť ,B̌
(λ).

Let prms be the tuple of randomness as defined above. For
ease of comparison, we define the following game:
• Game B̌(λ; prms): a partially deterministic game
GameMDHA

Ť ,B̌
(λ) with A using randomness coins. More

precisely, except for the choices of q∗ ∈ [q], i∗ ∈
[d + 1], j∗ ∈ [l̄q + 1], the other parts of B̌ and
the challenger of this game are deterministic. In A’s
perspective, the simulated challenger, consisting of B̌
and the challenger of this game, samples (1̄i)i∈[d],
(1̌i)i∈[d], (τ̄j)j∈[l̄q], (τ̌j)j∈[l̄q] and programs F̄ ′ : D→ D̄,
F̌ ′ : D → Ď, Ḡ′ : T → T̄ , Ǧ′ : T → Ť
to be functions that output 1̄i, 1̌i, τ̄i, τ̌i, respectively
for the ith new input. To run algorithms K .KeyGen,
T̄ .KeyGen, Ť .KeyGen, $K (sk, ·), T̄ .Auth(s̄k, 1̄i, τ̄j, ·),
Ť .Auth(šk, 1̌i, τ̌j, ·), the simulated challenger uses the
randomness rK , rT̄ , rŤ , ei,j, āi,j, ǎi,j for (i, j) ∈ [d]×[l̄q].

If we define events Ě ′, Ě ′1, Ě
′

2 as

Ě ′ =
{
prms | The first bad query that A outputs is of Type 1

or Type 2̌ in Game 2(λ; prms)
}
,

Ě ′1 =
{
prms | The first bad query that A outputs is of Type 1

in Game 2(λ; prms)
}
,

Ě ′2 =
{
prms | The first bad query that A outputs is of Type 2̌

in Game 2(λ; prms)
}
,

then we see that Ě ′ = Ě ′1 ∪ Ě ′2, Ě
′

1 ∩ Ě ′2 = ∅ and Pr[Ě] =
Pr[Ě ′].

For a fixed prms ∈ Coll{ ∩ Ě ′1, suppose A made,
inGame 2(λ; prms), the first bad (Type 1) query (1∗,P∗, c∗)
on the q∗∗th query where P∗′ = (f ∗, τ ∗1 , . . . , τ

∗
l ) is the

fully bound sub-program of P∗. If q∗ = q∗∗, 1∗ = 1i∗

and τ ∗l∗ = τj∗ where l∗ is the smallest integer in the set
{i ∈ [l] | (1∗, τ ∗i , ·, ·) 6∈ S}, then Game 2(λ; prms) becomes
the same as Game B̌(λ; prms) in A’s perspective and B̌ wins
the game Game B̌(λ; prms). On the other hand, for fixed
prms ∈ Coll{ ∩ Ě ′2, suppose A made the first bad (Type 2̌)
query on the q∗∗th query. If q∗ = q∗∗, i∗ = d + 1 and
j∗ = l̄q + 1, then Game 2(λ; prms) becomes the same as
Game B̌(λ; prms) in A’s perspective and B̌ wins the game
Game B̌(λ; prms). In other words, if prms ∈ Coll{ ∩ Ě ′,
then Game 2(λ; prms) and Game B̌(λ; prms) acts the same
in A’s perspective with probability greater than, or equal to

1
(d+1)(l̄q+1)

. Therefore,

1

(d + 1)
(
l̄q+ 1

) Pr [Coll{ ∩ Ě ′]
≤ Pr[GameMDHA

Ť ,B̌
(λ) = 1]

= AdvMDHA
Ť ,B̌

(λ)

and

Pr
[
Ě ′
]
= Pr

[
Coll ∩ Ě ′

]
+ Pr

[
Coll{ ∩ Ě ′

]
≤ Pr [Coll]+ (d + 1)

(
l̄q+ 1

)
AdvMDHA

Ť ,B̌
(λ)

≤
q2∣∣D̄∣∣ + q2∣∣∣Ď∣∣∣ + q2 l̄2∣∣T̄ ∣∣ + q2 l̄2∣∣∣Ť ∣∣∣
+ (d + 1)

(
l̄q+ 1

)
AdvMDHA

Ť ,B̌
(λ).

In conclusion, we can write

AdvMDHAE
H ,$H ,A (λ)

≤ AdvF̄ (λ)+ AdvḠ(λ)+ AdvF̌ (λ)+ AdvǦ(λ)

+
2q2∣∣D̄∣∣ + 2q2∣∣∣Ď∣∣∣ + 2q2 l̄2∣∣T̄ ∣∣ + 2q2 l̄2∣∣∣Ť ∣∣∣ + AdvHEK ,$K ,B(λ)

+ AdvHEK ,$K ,B′ (λ)+ qAdv
MDHA
T̄ ,B̄ (λ)

+ (d + 1)
(
l̄q+ 1

)
AdvMDHA

Ť ,B̌
(λ). �

VII. AN MDHA SCHEME AND A GENERIC CONSTRUCTION
FOR BITWISELY EVALUABLE MDHA
In this section, we propose a selectively secure multi-dataset
(leveled) fully homomorphic authenticator scheme and a
generic construction for a selectively secure BE-MDHA. Our
MDFHA scheme, Construction 2, can be directly used as
Ť in Construction 1. The generic construction we propose,
Construction 3, can be used to construct a selectively secure
BE-MDHA using a selectively secure MDHA such as Con-
struction 2. Also, the result of Construction 3 can be used as
T̄ in Construction 1.

Like other (leveled) fully homomorphic authenticator
schemes, our scheme is based on the first fully homomorphic
signature scheme [4]. Our scheme is a slightly modified
version of the first fully homomorphic signature [4], but
our scheme supports multiple datasets without any additional
transformation.

A. A SELECTIVELY SECURE MULTI-DATASET FULLY
HOMOMORPHIC AUTHENTICATOR SCHEME
Before we introduce our secure MDFHA scheme, we go
through some preliminaries.

1) ENTROPY
The min-entropy of a random variable X is defined as
H∞(X ) := − log(maxx Pr[X = x]). The average conditional
min-entropy of X conditioned on Y is defined as

H∞(X | Y ) := − log
(

E
y←Y

[
max
x

Pr[X = x | Y = y]
])
.

Lemma 1: Let X and Y be random variables defined on X
and Y , respectively. Then H∞(X | Y ) ≥ H∞(X )− log(|Y|).
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2) THE SHORT INTEGER SOLUTION PROBLEM
For a security parameter λ, suppose n = poly(λ), k =
poly(λ), q = 2poly(λ), β = 2poly(λ) (β ≤ q) are given, then
the SISn,k,q,β hardness assumption means the following: For

any PPT algorithm A thatA
$
← Zn×kq is given, the probability

that A outputs u ∈ Zkq such that ‖u‖∞ ≤ β and Au = 0 is
negligible. If A outputs u such that Au = 0, then we say that
A solved SISn,k,q,β problem.
Remark 6: There are several versions of SIS hardness

assumptions and the assumption above is believed to be true
for some parameters [13]–[16].

3) LATTICE TRAPDOORS
We can construct a matrix with a trapdoor using the following
lemma.
Lemma 2 ([17]–[21]): For integers n and q, let k1 =

ndlog qe, k0 = O(n log q) ≥ n log q + ω(log n), k =
k0 + k1, βsam = O(n

√
log q), G0 = In ⊗ gT ∈ Zn×nk1q

where In is the n-dimensional identity matrix and gT =
(1, 2, 22, . . . , 2dlog qe−1). Then for all k̄ = k̄(n) = poly(n),
there are efficient algorithms (halts within polynomial time
with respect to their inputs) Sam, TrapGen, SamPre, Halg
satisfying the following:

1) U← Sam(1k , 1k̄ , q) samples a matrix U ∈ Zk×k̄q such
that ‖U‖∞ ≤ βsam.

2) For A0
$
← Zn×k0q and an invertible matrix H ∈ Zn×nq ,

(A,R) ← TrapGen(A0,H) generates a random R ←
DR for certain distribution DR over Zk0×k1q and defines
A as A = [A0|HG0−A0R]. Moreover, (A,R) and the
algorithm SamPre satisfies the following:

• For A′
$
← Zn×kq , A

stat
≈ A′.

• For R ← DR, max‖u‖=1 ‖Ru‖∞ ≤ O(n log q)
except for negligible probability.

• For U ← Sam(1k , 1k̄ , q), V = AU, V′
$
← Zn×k̄q ,

U′ ← SamPre(A0,R,H,V′), (A,R,U,V)
stat
≈

(A,R,U′,V′). Also, U′ ← SamPre(A0,R,H,V′)
always satisfies AU′ = V′ and ‖U′‖∞ ≤ βsam.

• For any non-zero (u0,u1) ∈ Zk0 × Zk1 , when A0
and A0R are given, the average min-entropy of
Ru1 is at least �(n).

3) Let G = [G0|0] ∈ Zn×kq , then there exists a deter-

ministic algorithm G-1 such that for any V ∈ Zn×k̄q ,

B← G-1(V) such that B ∈ {0, 1}k×k̄ and GB = V.
4) There is a deterministic algorithm H′alg : Fqn → Zn×nq

such that for any distinct x, y ∈ Fqn , H′alg(x)−H′alg(y)
is an invertible matrix [21]. Therefore, there is a deter-
ministic algorithm Halg : Fqn \ {0} → Zn×nq such that
for any1 ∈ Fqn \{0},Halg(1) := H′alg(1)−H′alg(0) ∈
Zn×nq is an invertible matrix.

Construction 2: For a security parameter λ, we first
choose a parameter d = d(λ) = poly(λ) which is
related to the depth of the admissible functions and let
βmax = 2ω(log λ)d , βSIS = 2ω(log λ)βmax . Then, we choose

n = poly(λ) = ω(log λ), a prime q = 2poly(λ) so
that SISn,k,q,βSIS hardness assumption holds, where k0 =
2(n log q), k1 = ndlog qe and k = k0 + k1. Let DR be the
distribution given in Lemma 2, DU be the distribution of the
output of Sam(1k , 1k , q), and βinit = βsam = poly(λ). Let
M = {0, 1}, 6 = D × {U ∈ Zk×kq | ‖U‖∞ ≤ βmax},
D = Fqn \ {0}, T be any set and

F = {f :Ml
→M | l = poly(λ) ∈ Z, and (1,U)←

T .Eval(ek, f , (m1, (1,U1)), . . . , (ml, (1,Ul)))

satisfies ‖U‖∞ ≤ βmax for any choices of

1 ∈ D, (ek, sk)← T .KeyGen(1λ) and Ui← DU ,

for all i ∈ [l], such that for some τi ∈ T and mi ∈M,

1← T .Verify(sk,1, (id, τi),mi, (1,Ui))}

where id is the identity function and T .Eval is defined below.
Let F : {0, 1}λ × T → Zn×kq be a secure PRF.
We define a leveled fully homomorphic MDHA T as

follows:

• T .KeyGen(1λ): sample A0
$
← Zn×k0q , R← DR, kF

$
←

{0, 1}λ and let A := [A0|A1] = [A0| −A0R]. Let ek :=
A and sk := (A,R, kF ), and output (ek, sk).

• T .Auth(sk,1, τ,m): parse sk = (A,R, kF ) and let
A1 := [A0|Halg(1)G − A0R] = [A0|Halg(1)G +
A1] and V := F(kF , τ ). Compute U ←

SamPre(A0,R,Halg(1),V), and output σ = (1,U).
• T .Eval(ek, f , (m1, σ1), . . . , (ml, σl)): parse ek =

[A0|A1], σi = (1i,Ui) for i ∈ [l]. Let 1 = 11,
A1 := [A0|Halg(1)G + A1], Vi := A1Ui + miG for
i ∈ [l]. Evaluate U and V by following each gate of the
circuit f where each gates are evaluated as follows:
1) When f (m1,m2) = m1 + m2 is an addition gate,

U = U1 + U2, V = V1 + V2

2) When f (m1,m2) = m1 ·m2 is a multiplication gate,

U = m2U1 + U2G-1(V1), V = V2G-1(V1)

3) When f (m1) = m1+a is an addition with constant
gate for some constant a ∈ Zq,

U = U1, V = V1 + aG

4) When f (m1) = a · m1 is a multiplication with
constant gate for some constant a ∈ Zq,

U = aU1, V = aV1

Finally, output σ = (1,U).
• T .Verify(sk,1,P,m, σ ): parse sk = ([A0|A1],R, kF ),
P = (f , τ1, . . . , τl) and σ = (1′,U). If 1 6= 1′, then
output 0. Otherwise, let A1 := [A0|Halg(1)G + A1],
V := A1U + mG, Vi := F(kF , τi) for i ∈ [l]. From
V1, . . . ,Vl , evaluate V′ by following each gates of f as
T .Eval. If V = V′, then output 1. Otherwise, output 0.

Remark 7: Construction 2 satisfies the correctness prop-
erty of an MDHA. We can prove the correctness as follows:
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• Correctness of evaluation: Since T .Verify accepts the
output of T .Eval when its inputs are also accepted by
T .Verify, we see that T satisfies the correctness of
evaluation.

• Projection preservation: As

σi = T .Eval(ek, πi, (m1, σ1), . . . , (ml, σl))

for (ek, sk) ← T .KeyGen(1λ) and the ith projection
function πi over Ml , we can say that T satisfies pro-
jection preservation.

Remark 8: Construction 2 supports efficient verification if
we define T .Prep and T .EffVerify as follows:
• T .Prep(sk,P): parse sk = (A = [A0|A1],R, kF ), P =
(f , τ1, . . . , τl). Let Vi := F(kF , τi) for i ∈ [l]. From
V1, . . . ,Vl , evaluate V′ by following each gates of f as
T .Eval. Output skP = A‖V′.

• T .EffVerify(skP,1,m, σ ): parse skP = A‖V′, A =
[A0|A1] and σ = (1′,U). If 1 6= 1′, then output
0. Otherwise, let A1 := [A0|Halg(1)G + A1] and
V := A1U+ mG. If V = V′, then output 1. Otherwise,
output 0.

Note that T .EffVerify (T .Prep (sk,P) ,1,m, σ ) =

T .Verify (sk,P,1,m, σ ) where (ek, sk)← T .KeyGen(1λ).
Also, from the definition of T .EffVerify, the complexity of
T .EffVerify is independent of the time complexity of comput-
ing input P.
Remark 9: Construction 2 is (leveled) fully homomorphic

from the following reasons. First, let f (x1, x2) = 1−x1 ·x2 be
a NAND gate. Consider two signatures σ1 = (1,U1), σ2 =
(1,U2) such that 1 ← T .Verify(sk,1,P1,m1, σ1), 1 ←
T .Verify(sk,1,P2,m2, σ1), ‖U1‖∞ ≤ β and ‖U2‖∞ ≤ β

for some admissible programs P1,P2, messages m1,m2 ∈

{0, 1} and (ek, sk)← T .KeyGen(1λ). By following the defi-
nition of T .Eval, we see that ‖U‖∞ ≤ (k + 1)β when U←
T .Eval(ek, f , (m1, σ1), (m2, σ2)). Therefore, for any freshly
generated message-signature tuples (m′1, σ

′

1), . . . , (m
′
l, σ
′
l )

and any depth d circuit g with arity l that consists of NAND
gates, ‖U∗‖∞ ≤ (k + 1)dβinit ≤ 2ω(log λ)d ≤ βmax when
U∗← T .Eval(ek, g, (m′1, σ

′

1), . . . , (m
′
l, σ
′
l )). In other words,

any depth d circuit that consists of NAND gates is an admis-
sible function of T .
Theorem 2: T on Construction 2 is selectively secure

under the SISn,k,q,βSIS hardness assumption.
Proof: We define AdvF (λ) to be the distinguishing

advantage of F(kF , ·) from random function F ′ : T → Zn×kq

for kF
$
← {0, 1}λ.

Let A be any PPT adversary of T in GameMDHA
T ,A that

makes at most q queries. Then there is a PPT algorithm B,
running A internally, which solves SISn,k,q,βSIS problem with
probability AdvSIS

B (λ) such that

AdvMDHA
T ,A (λ) ≤ AdvSIS

B (λ)+ AdvF (λ)+ negl(λ)

Before constructing B, we define some games as follows:
Game 0(λ):

The original security game GameMDHA
T ,A (λ)

Game 1(λ):
The security game GameMDHA

T ′,A (λ) where T ′ is the
same as T except for the parts that use PRFF . In this
game, T ′.KeyGen(1λ) samples a random function
F ′ : T → Zn×kq , and lets sk := (A,R,F ′) as
a secret key. Also, T ′.Auth and T ′.Verify uses F ′

instead of F(kF , ·).
Using the security of the PRF F , we can bound

AdvGame 0,Game 1
A (λ) ≤ AdvF (λ).

To bound AdvGame 1
A (λ), we construct a PPT algorithm B

that solves the SIS problem for A0
$
← Zn×k0q by running A

internally as follows (written in A’s perspective):
Selective Queries

A makes selective queries ((1i, τi,mi))i∈[q].
Initializatoin and Response

B samples i∗
$
← [q], R ← DR and let A =

[A0|A1] = [A0|−Halg(1i∗ )G−A0R] andA1i∗ :=

[A0| − A0R]. B samples Ui ← DU and program
a random function F ′ : T → Zn×kq to satisfy
F ′(τi) = Vi := A1i∗Ui + miG for i ∈ Ind∗ :=
{i ∈ [q] | 1i = 1i∗}. For i ∈ [q] \ Ind∗, B samples
Ui ← SamPre(A0,R,Halg(1i) − Halg(1i∗ ),Vi)
where A1i := [A0|Halg(1i)G + A1] and Vi :=

F ′(τi). Then, B lets ek = A, σi := (1i,Ui) for
all i ∈ [q], and sends (ek, S) to A where S =
{(1i, τi,mi, σi)}i∈[q].

Finalization
A outputs a forgery attempt (1∗,P∗,m∗, σ ∗).

In A’s perspective, B’s simulation above is indistinguish-
able to the original challenger of GameMDHA

T ,A (λ) except for
negligible probability from Lemma 2. Also, regardless of
the choice of i∗, B acts almost the same in A’s perspective
from Lemma 2. Therefore, when A outputs a forgery attempt
(1∗,P∗,m∗, σ ∗ = (1∗,U∗)), the probability that 1∗ = 1i∗

is at least 1
q except for negligible probability.

If (1∗,P∗,m∗, σ ∗) is a forgery, then for the fully
bound sub-program P∗′ = (f ∗, τ1, . . . , τ ∗l ) of P∗,
there is (1∗, τ ∗i ,m

∗
i , σ
∗
i ) ∈ S for some (unique)

m∗i ∈ M, σ ∗i ∈ 6 for i ∈ [l]. Also, A1∗U∗ +
m∗G = V∗ where V∗ is evaluated as T ′.Eval using
(V∗1, . . . ,V

∗
l ) = (F ′(τ ∗1 ), . . . ,F

′(τ ∗l )). If we let σ ∗∗ =
(1∗∗,U∗∗) ← T ′.Eval

(
ek, f ∗, (m∗1, σ

∗

1 ), . . . , (m
∗
l , σ
∗
l )
)
and

m∗∗ = f ∗(m∗1, . . . ,m
∗
l ), then (m∗, σ ∗) 6= (m∗∗, σ ∗∗) also

holds (1∗ = 1∗∗). In other words, If we let m× := m∗∗−m∗

and U× := [Ik0 | − R](U∗ − U∗∗), then

A1i∗ (U
∗
− U∗∗) = A0U× = m×G.

Moreover, we have ‖U∗ − U∗∗‖∞ ≤ 2βmax from
(1∗,U∗), (1∗∗,U∗∗) ∈ 6 and max‖u‖=1 ‖Ru‖∞ ≤

O(n log q) from Lemma 2. Thus, we can write ‖U×‖∞ ≤
2βmax(O(n log q)+ 1) ≤ βSIS .
To solve the SISn,k,q,βSIS problem, we consider the follow-

ing cases:
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• m× = 0: It is enough to show that U× 6= 0 except for

negligible probability. Let U∗ − U∗∗ =
[
U∗0
U∗1

]
such that

U× = U∗0 − RU∗1. If U
∗

1 = 0, then U∗0 6= 0 from U∗ −
U∗∗ 6= 0. Therefore, U× 6= 0. If U∗1 6= 0, then from
Lemma 2, we know that the min-entropy of RU∗1 is at
least�(n) when A0 andAR are given. Therefore,U× 6=
0 except for negligible probability.

• m× 6= 0: B first samples t
$
← {0, 1}k0 and computes

t′ = G−1(A0t/m×) ∈ {0, 1}k . Then we see that

A0((U∗ − U∗∗)t′ − t) = A0(U∗ − U∗∗)t′ − A0t

= m×Gt′ − A0t

= 0

If we let u = (U∗ − U∗∗)t′ − t, then we have ‖u‖∞ ≤
2kβmax + 1 ≤ βSIS and A0u = 0. All we need to prove
is that u 6= 0 except for negligible probability. From the
fact that t′ is deterministic when A0t is given, we have

H∞(t|t′) ≥ H∞(t|A0t)

≥ H∞(t)− n log q

= k0 − n log q

= O(n)

from Lemma 1. In other words, u = (U∗−U∗∗)t′−t 6= 0
except for negligible probability.

In conclusion, if A makes a forgery, then B can solve
the SISn,k,q,βSIS problem except for negligible probability.
Therefore, we may write

AdvMDHA
T ,A (λ)

= AdvGame 0
A (λ)

≤ AdvGame 0,Game 1
A (λ)+ AdvGame 1

A (λ)

≤ AdvF (λ)+ AdvSIS
B (λ)+ negl(λ). �

B. GENERIC CONSTRUCTION OF BITWISELY EVALUABLE
MULTI-DATASET HOMOMORPHIC AUTHENTICATOR
Here, we give a generic construction of a selectively secure
BE-MDHA.
Construction 3: Let T be an MDHA. Let M := {0, 1},

6, D, T , F be the message space, the tag space, the dataset
identifier space, the data identifier space, and the admissible
function space of T . Similarly, let M̄, 6̄, D̄, T̄ , F̄ be the
corresponding ones of T̄ where every element in M̄ is given
as an n-bit binary encoding and F̄ is defined as

F̄ :=
{
f̄ = (f1, . . . , fn) ∈ Fn

| f̄ is a bitwisely described

circuit onMl for some l = poly(λ)
}
.

Without loss of generality, we let T = T̄ × [n]. Using T ,
we construct a BE-MDHA T̄ as follows.

• T̄ .KeyGen(1λ): let (ek, sk)← T .KeyGen(1λ) and out-
puts (ēk, s̄k) := (ek, sk).

• T̄ .Auth
(
s̄k,1, τ, m̄

)
: parse m̄ = 〈m1, . . . ,mn〉 and let

sk = s̄k, σi ← T .Auth(sk,1, (τ, i),mi) for i ∈ [n].
Output σ̄ := σ1‖ . . . ‖σn.

• T̄ .Eval
(
ēk, f̄ , (m̄, σ̄1), . . . , (m̄l, σ̄l)

)
: parse f̄ =

(f1, . . . , fn), m̄i =
〈
mi,1, . . . ,mi,n

〉
, σ̄i = σi,1‖ . . . , ‖σi,n

for i ∈ [n]. For all i ∈ [n], compute σi ←
T .Eval

(
ek, fi, (mi′,j′ , σi′,j′ )(i′,j′)∈[l]×[n]

)
. Output σ̄ =

σ1‖ . . . ‖σn.
• T̄ .Verify

(
s̄k,1, P̄, m̄, σ̄

)
: parse P̄ =

(
f̄ , τ1, . . . , τl

)
,

f̄ = (f1, . . . , fn), m̄ = 〈m1, . . . ,mn〉 and σ̄ =

(σ1, . . . , σn). Let Pi :=
(
fi, ((τs, t))(s,t)∈[l]×[n]

)
for i ∈

[n]. If 1← T .Verify (sk,1,Pi,mi, σi) for i ∈ [n], then
output 1. Otherwise, output 0.

Remark 10: Construction 3 satisfies the correctness prop-
erty of a BE-MDHA. We can prove the correctness as follows:
• Correctness of the evaluation: From descriptions of
T̄ .Eval, T̄ .Verify and the correctness of T , T̄ satisfies
the correctness of evaluation.

• Projection preservation: Let (ek, sk)← T .KeyGen(1λ),
ēk = ek, s̄k = sk and π̄i = (πi,1, . . . , πi,n)
be a bitwisely described projection on ith coordi-
nate on Ml for some l = poly(λ). If (m̄j′ , σ̄j′ ) =
(
〈
mj′,1, . . . ,mj′,n

〉
, σj′,1‖ . . . ‖σj′,n) satisfies 1 ←

T̄ .Verify
(
s̄k,1, P̄j′ , m̄j′ , σ̄j′

)
for some admissible bit-

wisely described program P̄j′ for all j′ ∈ [n], then
since πi,1, . . . , πi,n are projection circuits such that
πi,j

(
(bi′,j′ )(i′,j′)∈[l]×[n]

)
= bi,j for j ∈ [n], we see that

T̄ .Eval (ek,1, π̄i, (m̄1, σ̄1), . . . , (m̄l, σ̄l)) = σ̄i from the
projection preservation of T .

Remark 11: If T supports efficient verification, then Con-
struction 3 also supports efficient verification with following
T̄ .Prep and T̄ .EffVerify.
• T̄ .Prep

(
s̄k, P̄

)
: parse P̄ =

(
f̄ , τ1, . . . , τl

)
and f̄ =

(f1, . . . , fn). Let Pi :=
(
fi, ((τs, t))(s,t)∈[l]×[n]

)
for i ∈ [n].

Compute skPi ← T .Prep(sk,Pi) for i ∈ [n]. Output
s̄k P̄ := skP1‖ . . . ‖skPn .

• T̄ .EffVerify
(
s̄k P̄,1, m̄, σ̄

)
: parse given inputs s̄k P̄ :=

skP1‖ . . . ‖skPn , m̄ = 〈m1, . . . ,mn〉 and σ̄ =

σ1‖ . . . ‖σn. If 1← T .EffVerify
(
skPi ,1,mi, σi

)
for all

i ∈ [n], then output 1. Otherwise, output 0.
Note that T̄ .EffVerify

(
T .Prep

(
s̄k, P̄

)
,1, m̄, σ̄

)
=

T̄ .Verify
(
s̄k, P̄,1, m̄, σ̄

)
where

(
ēk, s̄k

)
← T̄ .KeyGen(1λ).

Also, from the amortized efficiency of T , the complexity of
T̄ .EffVerify is independent of the time complexity of comput-
ing input P̄. In other words, T̄ supports efficient verification
if T supports efficient verification.
Theorem 3: If T is a selectively secure MDHA, then T̄ is

a selectively secure BE-MDHA.
Proof: Let A be any PPT adversary of T̄ in GameMDHA

T̄ ,A
that makes at most q queries. Then there is a PPT algorithm
B that makes nq queries such that

AdvMDHA
T̄ ,A (λ) ≤ AdvMDHA

T ,B (λ)

We construct such algorithm B that runs A internally as
follows (written in A’s perspective):
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Selective Queries
A makes selective queries ((1i, τi, m̄i))i∈[q]. If
(1i, τi) = (1i′ , τi′ ) for distinct i, i′ ∈ [q],
then B rejects the queries. Otherwise, B parses
m̄i =

〈
mi,1, . . . ,mi,n

〉
for i ∈ [q] and makes

selective queries
(
(1i, (τi, j),mi,j)

)
(i,j)∈[q]×[n] to the

challenger.
Initialization and Response

The challenger generates a key pair (ek, sk) ←
T .KeyGen(1λ), computes authentication tags
σi,j ← T .Auth(sk,1i, (τi, j),mi,j) for all (i, j) ∈
[q] × [n] and sends (ek, ST ) to B where ST :={
(1i, (τi, j),mi,j, σi,j)

}
(i,j)∈[q]×[n]. Then, B lets

ēk := ek , σ̄i := (σi,1, . . . , σi,n) for i ∈ [q] and
sends (ēk, S) to A where S := {(1i, τi, m̄i, σ̄i)}i∈[q].

Finalization
A outputs a forgery attempt

(
1∗, P̄∗, m̄∗, σ̄ ∗

)
such

that m̄∗ =
〈
m∗1, . . . ,m

∗
n
〉
, σ̄ ∗ = (σ ∗1 , . . . , σ

∗
n )

and for the fully bound bitwisely described sub-
program P̄∗′ =

(
f̄ ∗ = (f ∗1 , . . . , f

∗
n ), τ

∗

1 , . . . , τ
∗
l

)
of P̄∗, there is

(
1∗, τ ∗i , m̄

∗
i , σ̄
∗
i

)
∈ S for some

(unique) m̄∗i ∈ M̄ and σ̄ ∗i ∈ 6̄ for all i ∈
[l]. B then computes m̄∗∗ :=

〈
m∗∗1 , . . . ,m

∗∗
n
〉
=

P̄∗′(m̄∗1, . . . , m̄
∗
l ) and σ̄

∗∗
:= (σ ∗∗1 , . . . , σ

∗∗
n ) ←

T̄ .Eval
(
ēk, f̄ ∗,

(
m̄∗1, σ̄

∗

1

)
, . . . ,

(
m̄∗l , σ̄

∗
l

))
. If the

calculated message-tag pair is different from the
forgery attempt, (m̄∗, σ̄ ∗) 6= (m̄∗∗, σ̄ ∗∗), then B
outputs(

1∗,
(
f ∗i∗ , ((τs, t))(s,t)∈[l]×[n]

)
,m∗i∗ , σ

∗
i∗
)

as a forgery attempt where i∗ is the smallest number
of the nonempty set {j | (m∗j , σ

∗
j ) 6= (m∗∗j , σ

∗∗
j )}.

Otherwise, B outputs nothing and halts.
Note that in A’s perspective, B acts exactly the same

as the adversary of GameMDHA
T̄ ,A

(λ). Also, if the forgery
attempt

(
1∗, P̄∗, m̄∗, σ̄ ∗

)
that A made is a forgery, then

since 1 ← T̄ .Verify(s̄k,1∗, P̄∗, m̄∗, σ̄ ∗), we have
1 ← T .Verify(sk,1∗,P∗i∗ ,m

∗
i∗ , σ

∗
i∗ ) where P∗i∗ :=(

f ∗i∗ , ((τs, t))(s,t)∈[l]×[n]
)
for i∗ defined as above. Therefore,(

1∗,P∗i∗ ,m
∗
i∗ , σ

∗
i∗
)
becomes a forgery of T . In other words, B

wins if A outputs a forgery, and we may write

AdvMDHA
T̄ ,A (λ) ≤ AdvMDHA

T ,B (λ). �

VIII. CONCLUSION
In this work, we have proposed a new security notion for
HAEs that implies privacy and authenticity at the same time.
Our new security notion satisfies all the previous security
notions for HAEs. To make an FHAE that satisfies the new
security notion, we have designed a generic construction that
combines FHE and MDFHA.

Our construction is essentially an homomorphic version of
the encrypt-then-authenticate construction, while we added
another authentication independent of the message for our
stronger security definition.

Fully homomorphic encryptions and fully homomorphic
authenticators typically have very large ciphertext expansion,
and their real-life, practical performance is sometimes not so
satisfactory. Since our construction follows the ‘encrypt-then-
authenticate’ paradigm, our construction has large ciphertext
expansion and less-than-ideal performances, while it is true
that existing FHA schemes supporting amortized efficiency
and satisfying adaptive security have similar imperfections.
Our FHAE gives extra data privacy for free, with asymptoti-
cally comparable performance as those FHA schemes.

It would be a very interesting open problem to con-
struct more efficient FHAE schemes than our current generic
composition.

APPENDIX A
VARIOUS SECURITY NOTIONS FOR HAE
Here we describe security notions for HAEs given by Joo and
Yun [5]. In contrast to our all-in-one definition, their security
definition comes in two parts; privacy and authenticity. In
fact, we present a slightly modified formalism for ease of
comparison, but the definitions given here are somewhat
stronger than the original definitions.

A. PRIVACY
We define a privacy notion of an MDHAE H using the
security gameGameMDHAE,Priv below. Mostly, we follow the
definitions given by Joo andYun [5], but instead of their Find-
Then-Guess formalism, we are going to give Real-or-Ideal
formulations as our new definition above. It can be proven
that our formalism is stronger than the original definition.

Let $ be an algorithm defined as our new security
notion on Section III-B. Also, the adversary of the game
GameMDHAE,Priv is allowed tomake encryption or decryption
queries adaptively.

The security gameGameMDHAE,Priv
H ,$,A (λ) is defined the same

asGameMDHAE
H ,$,A (λ) except for the Initialization phase, which

is given below.

Initialization
A key pair (ek, sk) ← H .KeyGen(1λ) is gener-
ated, and ek is given to A. The challenger defines
an oracle D as D = H .Dec(sk, ·, ·, ·), initializes

a set S with ∅, and flips a coin b
$
← {0, 1}.

If b = 0, then the challenger defines an oracles E
as E = H .Enc(sk, ·, ·, ·). Otherwise, the challenger
lets E = $(sk, ·, ·, ·).

The advantage of the adversary A in the game
GameMDHAE,Priv for the scheme H with respect to the algo-
rithm $ is defined as

AdvMDHAE,Priv
H ,$,A (λ) :=

∣∣∣∣Pr [GameMDHAE,Priv
H ,$,A (λ) = 1

]
−

1
2

∣∣∣∣ .
We say that an MDHAE H has privacy if there exists

an algorithm $ such that the advantage AdvMDHAE,Priv
H ,$,A (λ) is

negligible for any PPT adversary A.
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B. AUTHENTICITY
Following Joo and Yun [5], we also define an authentic-
ity notion for MDHAE schemes using the security game
GameMDHAE,Auth below. But instead of considering adver-
saries that outputs a forgery of an MDHAE, we consider
adversaries that distinguishes the decryption oracle from
algorithm ⊥. It can be proven that our formalism is stronger
than the original definition.

Let ⊥(·, ·, ·) be an algorithm that outputs ⊥ for any
inputs as our new security notion on Section III-B. Also,
the adversary of the game GameMDHAE,Auth is allowed to
make encryption or decryption queries adaptively.

The security game GameMDHAE,Auth
H ,A (λ) is defined the

same as GameMDHAE
H ,$,A (λ) except for the Initialization phase,

which is given below.
Initialization

A key pair (ek, sk) ← H .KeyGen(1λ) is gener-
ated, and ek is given to A. The challenger defines
an oracle E as E = H .Enc(sk, ·, ·, ·), initializes

a set S with ∅, and flips a coin b
$
← {0, 1}.

If b = 0, then the challenger defines an oracles D
asD = H .Dec(sk, ·, ·, ·). Otherwise, the challenger
lets D = ⊥(·, ·, ·).

The advantage of the adversary A in the game
GameMDHAE,Auth for the scheme H is defined as

AdvMDHAE,Auth
H ,A (λ) :=

∣∣∣∣Pr [GameMDHAE,Auth
H ,A (λ) = 1

]
−

1
2

∣∣∣∣ .
We say that an MDHAE H has authenticity the advantage

AdvMDHAE,Auth
H ,A (λ) is negligible for any PPT adversary A.
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