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ABSTRACT Behavioral biometrics survey actions rather than the physical traits of the person. Within this
categorization, social behavioral biometrics utilizes an individual’s communications for biometric analysis.
The investigation of the uniqueness of human preferences and their implications to other aspects of an
individual, such as personality or gender, is both a psychological and a biometric problem. An emerging
approach is the usage of an individual’s aesthetic preferences for the purpose of person identification.
Recent research into the identification from visual aesthetics has found that these preferences hold significant
discriminatory value. However, aesthetic identification has only been conducted through a visual medium via
a set of liked images. The contribution of this work is the development of the first audio aesthetic preference
system for person identification. The proposed system extracts descriptive intra-song and inter-song features
from a set of songs favored by users and utilizes an ensemble of classifiers for prediction. The final decision
is optimized by a genetic algorithm. Experimental results demonstrate that the developed audio aesthetic
system achieves 95% user recognition accuracy on both proprietary and public audio datasets.

INDEX TERMS Audio aesthetics, behavioral biometrics, biometric security, human–machine interactions,
pattern recognition.

I. INTRODUCTION
Biometric analysis investigates the physical aspects of a
person. Well researched domains include fingerprint iden-
tification, iris analysis, and facial recognition. Behavioral
biometrics is a subset of biometrics that inspects an indi-
vidual’s actions rather than their physical traits. This form
of biometrics can be used to analyze a person covertly and
remotely. Within the area of behavioral biometrics, social
behavioral biometrics studies the interactions, attitudes, and
communications of a person [1]. Social behavior is espe-
cially prominent in the modern online spheres, where social
networks and platforms allow for widespread public com-
munication. With an individual’s social behavioral features,
inference or identification systems can be implemented that
do not require any physical contact with the user.

A recent direction of social behavioral biometric research
is exploring the use of aesthetic preference as features for
person identification. Aesthetic preference can be described
as an individual’s likeness or fondness of subject material.
The term has been traditionally used in the context of art,
pertaining to one’s judgment or taste in beauty [2]. However,
the concept of aesthetic preference has been broadened to an
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immediate pleasurable experience toward an object [3]. Pref-
erence information is widely available on online platforms
that utilize a subscription or endorsement system.

Research into the identification of users through visual
aesthetic preference is a new domain. Given a set of favorite
images, systems have been developed that can extract dis-
criminatory features from this set to accurately identify
users [4]. From these works, it was determined that there
are unique qualities to a person’s visual aesthetics that can
be used for the problems of person identification and gender
identification [5], [6]. Although the area is still emerging,
the use of human aesthetic information as features shows high
potential. The advantage of aesthetic data is that it is both
retrievable through online systems and does not require active
participation from the user. Such systems can be extended
to understanding consumer behavior, tailoring personal user
experiences, and gaining insights into the unique properties
of human aesthetics.

Over the past two years, there has been an emergence
in research on the analysis of music through advanced
machine learning. This includes recent IEEE access pub-
lications studying the use of deep neural networks in the
surveillance of roads from anomalous sounds [7], the gen-
eration of high-fidelity audio samples through adversar-
ial autoencoders [8], and new approaches of music genre
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classification [9], [10]. Although the audio analysis domain
is well researched, this paper proposes a new topic of audio
aesthetics for identification. The discriminatory value of an
individual’s musical aesthetics has not been explored, while
recent aesthetic research has achieved accurate results using
only visual aesthetics [4].

The fundamental premise is that a person’s audio prefer-
ence is unique and holds discriminatory value. Many factors
can influence an individual’s musical taste, ranging from cul-
tural background to personal experience [11]. Furthermore,
research exists that links musical preference to more physi-
ological aspects of an individual such as cognitive function
and emotion [12]. Exploring the correlations between audio
preference and social behavior, such as personality, is an
emerging research direction [13].

The following research questions are asked:
• Do audio aesthetic features hold discriminatory value
and can audio aesthetics be used for user identification?

• Can a system be developed to accurately identify users
only using information from songs in a set related to the
same user?

• How can the relationship between the songs in a set be
modeled for user prediction?

In this paper, we propose and develop the first, to the best
of our knowledge, person identification system using audio
aesthetics. Audio data varies greatly from visual data, and
therefore, different methodologies for observing and process-
ing the signal’s properties along the time domain must be
used. The novel research direction of using a person’s audio
aesthetic preference for identification is a natural progression
of prior research. For this purpose, two new datasets were
collected consisting of songs liked by the users.

The paper makes the following contributions to address the
research questions:
• A system has been developed to address the emerging
problem of person identification from audio aesthetics.
To the best of our knowledge, this is the first work that
established the discriminatory value of audio aesthetic
features.

• A new methodology of combining classical audio fea-
tures (intra-song features) with cross-similarity features
(inter-song features) is proposed. Utilizing the inherent
knowledge that the samples within a given set belong
to the same user, features between each pair of songs are
extracted to quantify the user’s dynamic song preference
range.

• The relationship between songs in a set is modeled
through the segmentation and concatenation of the songs
in the set. Each signal is separated using Harmonic
Percussive Source Separation (HPSS), and further seg-
mented with a time window for feature extraction. The
data is then concatenated to form a 1D representation of
a song set for user prediction.

Two audio aesthetic datasets resembling the structure of
the original visual aesthetic dataset [5] are constructed for
comparison. These two datasets are composed of songs

sampled from the FreeMusic Archive (FMA) and theMillion
Playlist Dataset (MPD), respectively. With the informa-
tion extracted from these song sets, the system can iden-
tify users with 95.74% rank 1 accuracy. Moreover, results
on the proprietary dataset demonstrate that combining a
visual and an audio system using score-level fusion leads
to overall recognition accuracy of 99.41%. The developed
system can find potential applications in recommendation
systems, multi-factor authentication, and consumer behav-
ioral analysis.

II. RELATED WORKS
Aesthetic identification is an emerging research domain.
The first proof of concept research was carried out by
Lovato et al. [5] in 2012. In this work, a dataset consist-
ing of 200 users each with 200 liked images was collected
from the image hosting website Flickr. Various features were
extracted from the images, including color, edges, textures,
regions, objects, faces, and scene features. Sparse regres-
sion using Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regularization was used to determine the feature
weight. The recognition accuracy of the method was inferior
to later works, but this proof of concept concluded that there
was at least some discriminatory value in the images picked
by each user.

In 2014, Segalin et al. [14] proposed a method utilizing a
multi-resolution counting grid to train an ensemble of Sup-
port Vector Machine (SVM) classifiers in a one-versus-all
approach. Bags of Features were used with 111 features and
converted into intensity maps for each user. These maps are
then used as inputs into the multi-resolution counting grid.
A rank 1 accuracy of 73% was found using 100 training
images. The study showed that machine learning approaches
and additional features could improve accuracy significantly.

By introducing new feature categories to the images
and with more sophisticated feature engineering, Azam and
Gavrilova [15] obtained a rank 1 accuracy of 84% on the same
dataset. The features were categorized into four distinctions:
local/global perceptual features, HOG features, and content
features with 861 total features. After applying Principal
Component Analysis (PCA), LASSO regression was used for
identification.

Following this trend of feature engineering, Brandon and
Gavrilova [16] used Gene Expression Programming (GEP)
to construct 150 complex features from an original 924 fea-
tures. The approach utilized evolutionary programming with
the objective of creating dense, discriminatory combinations
within the feature set. An initial population is produced
which is modified through natural selection with classifica-
tion accuracy as the objective function. These final dense fea-
tures decreased the memory requirements for the system and
allowed for more accurate classification. A rank 1 accuracy
of 94.1% was achieved.

Deep learning-based systems have been developed that
range from the detection of contextual situations to the
efficient recognition of faces [17], [18]. Although features
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FIGURE 1. A high-level process diagram of the proposed identification system.

are automatically generated, feature representation learning is
an important process [19]. The most recent work in aesthetic
identification by Bari et al. [4] used a custom CNN archi-
tecture to analyze user images. A pre-trained network using
VGG16 architecture was used for feature extraction and then
applied to PCA, obtaining a low-dimensional feature vector
with high variance. By doing so, a high-level discriminative
feature representation from the images was obtained. Then,
an original residual learning-based CNN was used to test and
train on the feature representation to obtain a rank 1 accuracy
of 97.7%.

Research into audio preferences is a large domain span-
ning multiple fields of expertise. As a psychological-based
concept, some papers explore the properties of musical pref-
erence [12] while others investigate its effects on aspects of an
individual ranging from personality to substance abuse [20],
[21]. The development of music recommendation systems
that train on a user’s song library to recommend new songs
is a well-researched problem in both academia and indus-
try [22]. Kaur, Singh, and Roy published a study on utilizing
a person’s electroencephalography (EEG) signals when lis-
tening to music for the purpose of identification [23]. Using
a Hidden Markov Model (HMM) and a dataset of 2400 EEG
signals from 60 users, an accuracy of 97.5% was obtained.
However, the listening behavior of the users was not restricted
to preference in the music, as all EEG waves emitted during
the experience were analyzed. In a 2020 IEEE access publi-
cation, a Guided Adversarial Autoencoder (GAAE) was used
to produce effective learning sample representations from
limited audio data [8]. The resulting Inception Score (IS) and
Frechet Inception Distance (FID) outperformed other genera-
tive models, reinforcing the importance of data representation
in audio machine learning models.

The prior research in aesthetic identification has proved
that high discriminatory value can be extracted from images

liked by users in the visual domain. Feature engineering,
along with sophisticated machine learning approaches are
both crucial trends in the extraction and usage of these fea-
tures. The features used in the previous works also only
observe the sample level features, but do not consider the
explicit relationships between the samples in the set. In addi-
tion, there have yet to be any studies exploring whether
similar levels of success can be found in the audio domain.
This leads to the motivation for this work, and the proposal
of the content-based person identification system using audio
aesthetics.

III. METHODOLOGY
A. OVERVIEW
The proposed system is an audio aesthetic-based identifica-
tion system that classifies users from a sample containing
audio preferences in music. The samples are sets of songs
that the user likes. Given a set of songs, the feature vector is
extracted from each song’s spectral signal and concatenated
to form an audio preference representation. There are two
categories of features: inter-song features and intra-song fea-
tures. Inter-song features relate to the relationship between
songs, while intra-song features represent properties of the
songs themselves. After extraction, feature selection is used
to determine the most discriminatory features from the con-
catenated original set for identification. The final samples
are further divided into 3-song training and testing sets to
be analyzed by the ensemble classifier. In order to ensure
there are no duplicates and that song order is not learned,
combinations are generated rather than permutations for a
given observation. Fivefold cross-validation using stratified
sampling is used. An abstract view of the procedure is shown
in Figure 1.

Recently developed behavioral biometric systems are
still predominantly based on classical machine learning
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methods [24], [25]. The proposed audio aesthetic system
leverages this approach as it is computationally inexpensive,
highly effective, and generalizable to other domains.

B. BASELINE DATASET
For the purpose of this research, a dataset of 34 users was col-
lected, where each user was asked to choose ten favorite songs
from the set of 224 songs. The 224 songs were sampled from
the publicly available Free Music Archive (FMA) dataset
for music analysis, while retaining a balanced selection of
songs from the genres of Pop, Rock, Folk, Hip-Hop, Jazz,
Country, Classical, and Disco. The original FMA dataset con-
sists of 917 gigabytes of Creative Commons-licensed tracks
and 161 genres [26]. The medium-sized variant of the FMA
dataset was sampled from, which consists of 25,000 tracks
of 30-second length and 16 balanced genres. The song clips
are played for the user through random order in a controlled
environment within a single session.

C. FEATURE EXTRACTION
The features are divided into two categories: intra-song fea-
tures and inter-song features. Intra-song features describe the
individual aspects of each song within the set of liked songs
of a user. This includes the aggregated standard deviation
and mean of the chromagram features, spectral features, and
Mel-Frequency Cepstral Coefficients (MFCC) across frames.
The intra-song features intuitively represent the individual
structure of each song. Inter-song features describe the rela-
tionship between songs within the set. In order to represent
this relationship, an affinity cross-similarity matrix is com-
puted and analyzed for each song pair. The inter-song fea-
tures represent the distance between songs, and in extension,
the range of a user’s aesthetic preference. If the similarity
matrices within the set deviate greatly from the learned matri-
ces, the classifier would be able to distinguish the difference
more prominently.

After the extraction of both the intra-song and inter-song
features, the two feature categories are concatenated to form
the complete feature vector for each sample song set. The
training of these samples forms the basis of a user’s aesthetic
preference template.

1) INTRA-SONG FEATURES
During the feature extraction process, a particular song is sep-
arated into segments of even length seconds, which must be
factors of 30 seconds. Due to the sampling rate of 22050 Hz,
the loaded signal consists of 661500 (22050 x 30) frames.
These signals are further separated into component wave-
forms: the harmonic waveform and the percussive waveform,
as shown in Figure 2. The harmonic waveform captures the
pitched instruments, and the percussive waveform captures
beat/rhythm. Amedian-based separation technique is utilized
that separates the original waveform based on the assumption
that harmonic components typically exhibit horizontal pat-
terns while percussive components exhibit vertical patterns
on the spectrogram of an audio signal [27], [28]. Harmonic

Percussive Source Separation (HPSS) produces more dis-
criminative signals for music classification [29], [30].

Once the song is split into separate waveform segments,
the audio features are extracted for each of these seg-
ments. Each song is additionally divided into 3 temporal
segments, thus reducing the information loss from signal
aggregation. The audio features are then concatenated to form
the base feature representation for the song. Each song in
the 3-song list possesses a feature representation. To form a
representation for a list of songs, the audio features extracted
for all the songs are concatenated horizontally to assemble
the preference sample. A preference sample corresponds to a
set of songs that a particular user likes, which serves as the
input to the training and testing sets during the classification
phase. A figure of the system diagram is shown in Figure 3.

11 distinct audio features are extracted from a particular
segment at a sampling rate of 22050 Hz using the publicly
available Librosa audio analysis library. The spectral audio
features are extracted as an array of values for each sampled
point in time over the audio segment. The mean, standard
deviation, minimum and maximum values of each spectral
feature array are used to aggregate the array, for a total
of 44 features per waveform. The features are common in
music recognition and have been used in previous works for
similar domains. A small description of the features used is
shown in Table 1.

2) INTER-SONG FEATURES
The objective of the inter-song features is to capture the
variance in the similarity between song pairs in the set.
Thus, a similarity matrix is calculated per song pair. This
cross-similarity is a recurrence matrix between two different
songs based on affinity and cosine distance along all frames.
Unlike the intra-song features, the inter-song features are
not segmented by waveform or time windows. In order to
produce a more discriminatory cross-similarity matrix, both
song signals use short-term history embedding, which is a
form of data augmentation that vertically concatenates the
signal with past states of itself. A delay of 3 frames and
10 stack dimensions was empirically found to be effective
without significant signal degradation and computation costs.
The calculated cross-similarity matrices are then saved with
a Dots Per Inch (DPI) of 200 and a resolution of 992 × 739.
Each matrix is approximately 150 KB in size. The higher
resolution and DPI of the image is important to ensure the
image processing of the graph receives as little abstracted data
as necessary.

After computing the cross-similarity matrix for each song
pair, the pattern and texture features must be extracted in a
form that can be combined with the intra-song features. To do
this, the Histogram of Oriented Gradients (HOG) and Local
Binary Pattern (LBP) features are computed from the image
of the cross-similarity matrices of the song pairs in each set.
For the HOG features, 9 histogram bins are used, with a 6×6
sliding window across the image and 1 × 1 cell blocks. The
9 histogram bins store the directional pattern information of
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FIGURE 2. A spectrogram comparison for a song. The harmonic spectrogram retains horizontal patterns from the original, while the percussive
spectrogram retains the continual vertical beats of the song.

FIGURE 3. The lower-level system diagram for the intra-song feature extraction module. Each input signal is divided into two waveforms and further
divided into three temporal segments before concatenation.

the pixels, while the sliding window denotes the abstraction
of surrounding aggregated pixels. This extracts a flattened
directional pattern image (or HOG image) from the original
cross-similarity map. The above configuration produces a
histogram of 324 features.

A grid-based LBP approach is used to extract the texture
information from partitions of the cross-similarity matrix.
Intuitively, the algorithm outputs a flattened texture descrip-
tor by comparing local pixel intensities in a designated neigh-
borhood cell. The image is divided into a 3 × 3 grid, with
a uniform and rotation invariant LBP function applied to

each cell. A circle radius of 20-pixel units and 50 circularly
symmetric neighbor set points are used as LBP parameters.
After traversing a cell, 50 bins are produced from each of the
9 cell histograms from the top-left cell to the bottom-right
cell. These cell histograms are then concatenated to form a
total number of 450 LBP features per image.

Once the HOG and LBP features are calculated, they are
concatenated to form the final inter-song feature matrix. This
final inter-song matrix is then concatenated to the intra-song
features, and PCA is used to compute the principal compo-
nents for the final feature vector.
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TABLE 1. Features used per frame of the audio signal, calculated as a
frame-wise array.

D. CLASSIFICATION
An ensemble classifier is used for sample classification that
is composed of Support Vector Machine (SVM), K-Nearest
Neighbor (KNN), Naive-Bayes (NB), and XG Boost (XG)
classifiers. The ensemble uses a soft-voting strategy to deter-
mine the final prediction, which is computed from the
average confidence probabilities from all component clas-
sifiers. Using an ensemble system ensures multiple learners
can contribute to the overall accuracy through diversity when
compared to one classifier [35]. Configurations for the clas-
sifier hyperparameters are found using a grid search.

After the feature vector has been generated for each user,
the testing and training sets are generated for the ensemble
classifier.

(10
3

)
unique 3-song sets are generated from the total

10 liked songs of the user that retain the aesthetic preference
of the user. This ensures that there are no identical sets within

TABLE 2. Hyperparameter configuration for the component classifiers
using grid search.

the population and an identical set with different song orders
is not counted. Each 3-song set composes one sample of the
training or testing process. The mean accuracy of the 5-fold
cross-validation is used, with random splitting and shuffling
of the test and train indices each fold.

As the performance of each individual classifier differs
depending on the distribution, the decision weight of each
classifier can also be tuned to produce a stronger average
ensemble [36]. To tune the decision weights of each com-
ponent classifier, a genetic algorithm is used. A Genetic
Algorithm (GA) is a meta-heuristic optimization technique
that leverages evolutionary programming to search for a solu-
tion within a solution space. Principles of natural selection
and genetic operations are used to maintain a population of
potential solutions at one time. Most notably, the mutation
operation implements randomness into the population per
generation and the crossover operation allows for chromo-
somes in candidates to transfer to their children. In this
problem, the objective function of the genetic algorithm is
to minimize the error rate of the 5-fold cross-validation,
and the chromosomes are the weights of each component
classifier in the ensemble. Each weight is optimized within
the real range of [0,1]. A uniform crossover rate of 0.7 is used,
which uniformly distributes the variables in the parent chro-
mosomes to the offspring. The crossover rate corresponds to
the ratio of offspring in the population which are products of
crossover. Amutation rate of 0.3 is used to introduce random-
ness into the population. Throughout 100 generations with a
population of 30, singular elitism is employed and a parent
ratio of 0.2 is retained across generations. Singular elitism
refers to the retaining of the fittest individual in the population
across each generation, while the parent ratio describes the
portion of the next generation that is composed of candidates
from the previous generation. These hyperparameters were
found empirically.

IV. EXPERIMENTAL RESULTS
The performance of the intra-song features and the inter-song
features is shown in Figure 4 and Table 5. As a property of
features, the low performance of an isolated feature is not
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FIGURE 4. A comparison between the different feature sets. B denotes
the intra-song features, L denotes the LBP inter-song features and H
denotes the HOG inter-song features.

TABLE 3. Comparison of rank 1 accuracy between various feature
subsets used in the system.

necessarily indicative of its performance within a pool of fea-
tures. Thus, subsets of the feature pool are tested. B denotes
the base features used commonly in music classification
problems, H denotes the HOG features and L denotes the LBP
features. Results on the dataset show that the B, BL, BH and
BLH features perform with over 90% accuracy in an isolated
environment. The HOG and LBP feature sets exhibit lower
accuracy in isolation, but certain combinations of the features
produce increased accuracy in comparison. The performance
of the LH and BLH sets shows that the combination of both
texture and pattern information leads to higher accuracy. The
different combinations of the 3 feature categories are tested,
with the BLH set producing the highest accuracy of 93.21%.
This can be attributed to the contribution of information
among the inter-song (H, L) and intra-song (B) features. The
inter-song features are shown to capture additional discrim-
inatory information of the relationship between song pairs
that would not be present in only the intra-song features. This
combined BLH feature set is used for the final system and
subsequent experiments.

Dimensionality reduction is applied for the combined fea-
ture set obtained during the previous step. Figure 5 shows
the comparison of varying principal components on rank 1

FIGURE 5. A comparison between different principal components on rank
1 identification rate using the ensemble system.

identification accuracy. From the original 1038 feature set,
770 principal components were found to provide the highest
increase in rank 1 identification rate. An accuracy of 96.05%
is achieved while lowering the feature size by approximately
26%. Less principal components do not possess as much
discriminatory information and more principal components
introduce noise that degrades performance. Starting at a
threshold of 448 principal components, a decrease in princi-
pal components produces a loss in performance for the system
while an increase causes only mild fluctuations in perfor-
mance. At this point, an accuracy of 95.42% is achieved.
Although the accuracy is not at its highest point, there is only
a loss in accuracy of 0.63% while only using 448 principal
components when compared to the 770 principal component
scenario. This can be preferable when performance in a
lightweight system is desired due to a feature size reduction
of approximately 57%. 448 principal components are chosen
for the resulting system to retain the computational efficiency
and scalability of the dataset. The training times of the com-
ponent classifiers and the ensemble is shown in Table 4.

TABLE 4. Comparison of classifier training times in seconds using
448 principal components.

The same experiment is run on the component classifiers in
isolation with optimized grid search configurations, as shown
in Figure 6. Support Vector Machine is denoted by SVM,
K-Nearest-Neighbor by KNN, Naive Bayes by NB, and
XGBoost by XG. The results show that the data is more easily
differentiated by SVM, NB, and XG, with slightly lower
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FIGURE 6. Comparison of rank 1 accuracy between the various
component classifiers used in the ensemble.

TABLE 5. Tabulated rank 1 accuracy classifier comparisons.

FIGURE 7. The rank 1 identification error-rate curve for the first
50 generations of the genetic algorithm.

accuracy for KNN. All component classifiers exhibit accu-
racies above 90%, with an average classifier performance
of 91.39%. Due to the inclusion of both similarly performing
linear and non-linear classifiers, a more diversified decision
boundary can be achieved for the final ensemble system.

A genetic algorithm is used to select the weights of each
component classifier within the ensemble system, with the
results shown in Figure 7. The convergence of the genetic
algorithm in minimizing rank 1 identification error is primar-
ily evident in the preliminary iterations. As the optimization
solution space is comparatively small with four parameters,

a near-optimal solution can be found quickly. The best candi-
date in the randomly initialized population at generation 1 has
an error rate of 4.43%, but this decreases to 4.26% within
the first 15 generations. Due to the elitism strategy carry-
ing the best-known candidate from the previous generation
to the next, the best solution is always propagated forward.
This results in consistent accuracy after generation 15, as the
solution space is being explored with no significantly better
candidate found for up to 100 generations (only the first
50 generations are shown in the graph). The final accuracy
of the ensemble obtained through weight optimization using
GA is 95.74%. This configuration of optimized weights is
used in the final system and all subsequent experiments.

FIGURE 8. The Cumulative Matching Characteristic (CMC) curve showing
the rank n identification for the first 6 ranks.

The Cumulative Matching Characteristic (CMC) curve is
shown in Figure 8, which displays the proposed classification
system’s accuracy across rank 1 to rank 5 recognition rates.
The CMC curve in a person identification system represents
the system’s reliability in correctly identifying users within a
number of predictions. For example, a rank 1 identification
rate is the rate at which the system correctly predicts the user
in one prediction, while a rank 5 identification rate would be
the rate of a correct prediction within the top five predictions.
The normalized Area-Under-the-Curve (nAUC) of a CMC
curve is a unit of measure for the overall accuracy of the
CMC curve, where a completely accurate system would have
an ideal nAUC of 1. The system achieves a normalized AUC
of 0.9991 among all 34 user classes, with a rank 1 recognition
of 95.74% and a rank 5 recognition of 100%.

The Receiver Operating Characteristic (ROC) curve
in Figure 9 shows the relation between the system’s True Pos-
itive Rate (TPR) over the False-Positive Rate (FPR). A high
TPR followed by a low FPR shows that the system has fewer
verification errors. Similar to the nAUC in the CMC curve,
the area-under-the-curve of the ROC curve also is indicative
of the accuracy of the system and tends to an ideal value of 1.
From this information, the False-Negative-Rate (FNR) and
the False-Positive-Rate (FPR) can be determined.
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FIGURE 9. The Receiver Operating Characteristic (ROC) curve showing the
system’s true positive rate over false positive rate.

FIGURE 10. The error rate curve showing the system’s false positive rate
over false negative rate and Equal Error Rate (EER).

The false-positive/negative graph in Figure 10 shows the
FPR (Type I error) over the FNR (Type II error). The Equal
Error Rate (EER) is the threshold at which the two error rates
are equal. A false positive represents the acceptance of an
incorrect user, and a false negative represents the incorrect
rejection of a correct user. The equal error rate is the point
at which the false positive rate and the false-negative rate
intercept. A low EER is desired for a biometric system, as this
indicates it is less prone to both types of verification error.
In this identification problem, the multiclass micro-mean is
recorded, where the ROC and EERmetrics are the averages of
all the binary class scenarios using a One-Versus-Rest (OVR)
approach. The model exhibits a ROC area-under-the-curve
of 0.9948, with an equal error rate of 0.0101.

To demonstrate the system’s portability, another dataset is
constructed using the Million Playlist Dataset (MPD) from
Spotify [37]. 200 playlists from anonymous Spotify users
are sampled from the first 1000 MPD playlists containing
10 songs each. 30-second clips of each song are downloaded
using the Spotify Web API to allow for content-based feature

TABLE 6. Comparison of rank 1 and 2 accuracies and inference times
between the Free Music Archive (FMA) and Million Playlist Dataset (MPD)
datasets.

FIGURE 11. CMC curve for song sets containing 2 to 5 user songs for both
the FMA and MPD datasets.

extraction, mirroring the dataset collected in this work. Due
to the unavailability of certain song clips or insufficient
playlist lengths, unviable samples are discarded. An identical
procedure of pre-processing and sampling is used as the
collected FMA dataset. A comparison of the inference time
taken per user and rank 1/2 accuracies of the system are
shown in Table 6. Despite the higher user count, the system
still performs with high accuracy by exhibiting above 95%
rank 1 accuracy. Songs in the FMA dataset are sampled from
a reduced pool of 224 songs, while the songs in the MPD
dataset have no limitation. Thus, the increase in accuracy
for the MPD dataset over the FMA dataset can be attributed
to a larger song diversity, resulting in more discriminative
extracted features. The difference in inference time of the two
datasets is anticipated due to the disparity in user count.

Using these hyperparameters, the performance of the sys-
tem under varying song set sizes is compared in Figure 11.
In a practical implementation, aspects including data quality,
availability, and integrity can produce sparse samples, which
can affect the performance of a system. Intuitively, the perfor-
mance of the system can be expected to decrease as less viable
information is made available. Insufficient data can lead to a
classifier’s incorrect learning and ultimately, prediction [38].
This is shown primarily in the 2-song set experiments, which
exhibit lower rank 1 accuracies in comparison to higher song
set counts. At a baseline of 3-song set size, rank 1 accuracy
is shown to increase dramatically until consecutive increases
in set size plateau at approximately 100%. A 3-song set
size maintains significant accuracy over a 2-song set and
requires less information from the user than a 4-song set. This
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TABLE 7. Rank 1 accuracy and inference time for visual, audio and
combined aesthetic identification systems.

lowered requirement allows for more flexibility when data
is limited, while also reducing feature processing time and
storage needed.

Through the series of experiments, the discriminatory
value of the base, LBP, and HOG features are shown.
448 principal components of the base, LBP and HOG feature
sets are then found to produce a high accuracy of 93.21%.
The final system proves to be accurate with a CMC nAUC
of 0.9991 and robust to error with a ROC AUC of 0.9948.
The system is then experimented on two constructed datasets,
both with comparatively high performance. As this is the
first proof-of-concept work that establishes the possibility of
user identification using audio aesthetic preferences, no prior
research in the audio aesthetics domain can be compared
to the reported performance. However, Table 7 lists the
inference time and the recognition accuracy of a visual
aesthetic-based system for the same set of users for which
the audio set was collected. The visual aesthetic system was
tested on images taken from Flickr, while the audio aesthetic
system was tested on the FMA dataset.

V. CONCLUSION AND FUTURE WORK
This paper introduces the first system for person identifica-
tion using audio aesthetics. This system has been developed
and tested on two newly constructed audio aesthetic datasets.
The research establishes that audio features possess unique
characteristics that allow for accurate user recognition. The
system achieves a rank 1 accuracy of 95.74% with 448 prin-
cipal components by utilizing both inter-song and intra-song
features. The feature combinations are tested, with a com-
bination of base song, LBP, and HOG features yielding the
highest accuracy. Within a pool of users, it is possible for
a system to accurately differentiate specific users given the
appropriate features. This shows that audio aesthetic features
hold discriminatory value similar to the visual counterpart.
Furthermore, a score-level fusion of the proposed audio sys-
tem and the visual system achieves 99.41% rank 1 accuracy.
As person identification using audio aesthetic features is a
new domain, these results serve as a proof-of-concept for
audio aesthetic features, with the constructed datasets facil-
itating further research.

In the future, the exploration of deep learning approaches
may prove insightful, especially due to the recent success of
convolutional neural networks in visual aesthetic identifica-
tion. In addition to exploring deep learning methods for the
audio-based aesthetic system, another potential direction is

to investigate the correlation between audio and image-based
aesthetic choices of the users. The investigation of the effect
of various fusion methodologies on the overall performance
of the combined audio and visual system is a promising
avenue as well.
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