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ABSTRACT Recently, person re-identification (re-ID) with weakly labeled or unlabeled data has
drawn much attention in open-set and cross-domain re-ID systems especially for the attribute auxiliary
weakly supervised person re-ID. Although state-of-the-art clustering-based methods have achieved good
performance, the pseudo labels generated through clustering are often low-quality and noisy. To address
this problem, we propose a graph neural network based Attribute Auxiliary structured Grouping (A2G) to
improve the confidence of the pseudo labels. Different from the existing clustering-based approaches that
only utilize the similarity in feature space, we learn the feature representation from the similarities in both
attribute space and feature space by graph learning on the pedestrian attribute graph. Specifically, we first
utilize the pair-wise attribute similarity to represent the relation between two pedestrians to construct a
pedestrian attribute graph. Furthermore, we aggregate the features from their neighborhood on a pedestrian
attribute graph by the graph neural network, which would make the attribute similar pairs closer and
simultaneously take the dissimilar pairs further in the feature space. Finally, to avoid the over-confidence
of the hard pseudo labels, we regularize the learning of the embedding model with the smoothed pseudo
label (SPL) in the optimization of the feature embedding network. We conduct extensive experiments on
several person re-ID datasets to validate the efficacy of our proposed method. The results demonstrate that
our technique is effective and promising for person re-ID tasks.

INDEX TERMS Unsupervised person re-identification, attribute-auxiliary structured grouping, graph
neural network.

I. INTRODUCTION

PERSON re-identification (person re-ID) aims at match-
ing the same pedestrian’s image from a database across

different cameras [1]. Learning a discriminative feature em-
bedding network that is invariant to pose, illumination, and
camera style is the key for person re-ID system. In the past
few years, supervised person re-ID approaches based on
deep learning have achieved great success [2]–[5]. However,
the performance drops evidently when we change to a new
camera system, and the recollection of a large-scale anno-
tated pedestrian dataset is time-consuming and expensive.
Hence, unsupervised domain adaptive (UDA) person re-ID
has draw much attention recently, which aims to transfer
the knowledge of labeled source domain to unlabeled target
domain.

Clustering-based self-training UDA approaches [6]–[8]
explore the hidden intra-identity similarity and inter-identity
dissimilarity in feature space through dynamic assigned
pseudo labels. They group the embedding features of un-
labeled target-domain images and assign the cluster ID as
the pseudo labels. Then, the feature embedding network is
optimized in a supervised learning manner. Although the
quality of pseudo labels improves iteratively with the increas-
ing discriminative-ability of feature embedding network, the
low-confidence and noisy pseudos substantially hinder the
learning capacity of the embedding network. In this paper,
we focus on improving the quality of pseudo label and
suppressing the over-confidence of the hard pseudo labels.

We propose a graph neural network based attribute aux-
iliary structured grouping (A2G) algorithm to refine the
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FIGURE 1: The motivation of graph neural network based
Attribute Auxiliary structured Grouping (A2G). (a) The un-
labeled target-domain samples in feature space. Each shape
denotes one identity. The appearance-similar samples are
misclustered into false clusters. (b) We construct pedestrian
attribute graph, where pedestrians are considered as nodes,
attribute similarities as edges. The red line represents the
high attribute-similarity relation, and low similarity pairs
are disconnected. (c) We aggregate the features from their
neighborhood on the pedestrian attribute graph via a graph
neural network and re-cluster the refined features. Therefore,
the former mislabeled samples group correctly with the help
of the similarities in attribute space.

pseudo labels with the consideration of the pedestrian sim-
ilarity in attribute space. Pedestrian attributes are semantic-
level annotations for person re-ID task and have been widely
studied in supervised training setting [9]–[11]. However,
in attribute auxiliary weakly supervised person re-ID, at-
tribute annotations are not been fully explored, especially for
clustering based approach. The proposed A2G is motivated
from graph embedding algorithms on graph data. Graph
embedding algorithm aims at generating similar embeddings
for the inter-connected nodes on the graph [12]. As to at-
tribute auxiliary UDA person re-ID, we hope to propagate
the features of unlabeled pedestrian image from their high
attribute-similarity neighborhood. By conducting attribute
auxiliary feature aggregation on pedestrian attribute graph,
we consider the similarity in attribute space and improve
the quality of pseudo labels. As shown in Figure 1, the
unlabeled target-domain appearance-similar samples cluster
incorrectly and are assigned with false pseudo labels. A2G

constructs pedestrian attribute graph and learns node em-
bedding through graph neural network. By grouping on the
attribute auxiliary refined features, A2G provides more robust
and high-confidence pseudo labels.

The over-confidence of pseudo label assignment also ef-
fects the learning ability of embedding network, we regu-
larize the learning of the embeddig model with smoothed
pseudo label (SPL) in the optimization of embedding net-
work. Label smoothing improves the generalization and
convergence speed of a multi-classes neural network [13].
Although the label smoothing has been successfully used in
many tasks, its efficacy in the optimization of embedding
network with hard pseudo labels for person re-ID is not
been fully explored. In the experiments, the introduce of SPL
boosts the performance evidently, which provides a simple
but effective technique in reducing the over-confidence of
hard pseudo labels in clustering-based approaches. Our con-
tributions can be summarized in four-fold:
• We propose a graph neural network based Attribute

Auxiliary structured Grouping algorithm to improve
the confidence of pseudo labels for attribute auxiliary
weakly supervised person re-ID. By aggregating the
features from the high attribute similarity neighbor-
hoods in the pedestrian attribute graph, our proposed
method could explore the pedestrian similarity in at-
tribute space.

• We formulate the relation between image pairs with the
pair-wise attribute similarity and unify the similarities
in feature space and attribute space into a pedestrian
attribute graph. With the representation learning on the
pedestrian attribute graph, our technique could effec-
tively improve the feature embeddings in the pseudo
label generation stage.

• We regularize the learning of embedding model with
smoothed pseudo label (SPL) in the optimization of
feature embedding network, which would relief the
over-confidence of the hard pseudo labels for learning
discriminative embeddings.

• We conduct extensive experiments on person re-ID
datasets, including Market-1501, DukeMTMC-reID,
and MSMT17, and the encouraging results validate
the efficacy of our proposed method in person re-
identification.

II. RELATED WORK
A. DISCRIMINATIVE LEARNING WITHOUT IDENTITY
LABELS FOR PERSON RE-ID
Discriminative learning without identity labels is a challeng-
ing and practical task because it relieves the heavy cost to ac-
quire manual annotations. Unsupervised learning approaches
have gained popularity and developed rapidly [14]. ENC [15]
explored the target-domain invariance from the following
aspects: exemplar, camera, and neighborhood. SSL [10]
learned the discriminative features from a softened label.
BUC [16] conducted a bottom-up clustering and assigned
pseudo labels for unlabeled images with their cluster center.
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In [10], a clustering approach with camera-level style transfer
was proposed to minimize the cross-camera variance in the
learning process. AE [17] learned a non-parameter classifi-
cation model, where the selection of neighborhoods for each
person image was conducted with an adaptive and balanced
strategy. As to video person re-ID, DGM [18] estimated
the pseudo labels via a dynamic graph co-matching schema,
where the quality of labels was improved with strategies in-
cluding iterative graph structure updating, label re-weighting,
and co-matching. In RACE [19], a robust anchor embedding
approach was proposed to estimate the labels by mining the
underlying similarity between the unlabeled sequences and
anchors with affine hull regularization.

Unsupervised and unsupervised domain adaptive (UDA)
methods relieve the requirement of penalty of annotated
labels by searching transferable knowledge in the labeled
source domain. UDA methods in person re-ID are cate-
gorized into three groups: domain-transfer based methods,
memory-auxiliary contrast learning based methods, and clus-
tering based methods. SPGAN [20] transferred the source-
domain images to target-domain while preserving the identity
similarity. PTGAN [21] preserved the pedestrian-involved
part while transferring the background part. HHL [22] pro-
posed a camera-aware adaptation framework through cam-
era style image generation and domain-separate learning.
However, the quality of generated images highly effect the
retrieval performance of domain-transfer based methods, and
they ignore the relative similarity in the unlabeled target-
domain images. MAR [23] learned a soft multi-label from
an auxiliary domain to learn identity-discriminative features.
MMCL [24] predicted the image label by pair-wise similarity
and conducted multi-label classification for feature learning.
UDAP [25] proposed a self-training framework and provided
a theoretical analysis on UDA re-ID. SSG [7] explored
the local and global similarities simultaneously under self-
training framework. PAST [8] progressively improved the
model performance through triplet-loss-based conservative
stage and classification based promoting stage. MMT [6]
proposed a soft label assignment through mutual teaching to
refine the hard pseudo label.

Weakly supervised approaches also learn a discriminative
model without labels, but they involve auxiliary annotations
of pedestrians, such as attribute annotations and untrimmed
video-level labels. TJ-AIDL [26] jointly learned an attribute-
semantic and identity-discriminative space, which was trans-
ferable to target space. Deep CV-MIML [27] proposed a
multi-instance multi-label learning model for discriminative
learning with video-level annotations.

Our proposed A2G is based on the self-training UDA
framework, where pseudo labels assignment and model train-
ing are conducted alternatively. Different from the above
methods, we propose a graph neural network based attribute
auxiliary feature aggregation algorithm to improve the qual-
ity of pseudo label. Compared with PurifyNet [28] which
handles the label “noise” by regularizing the model’s out-
put logits, A2G explores the similarity in attribute space to

increase the “confidence” of the pseudo labels. As far as we
know, this is an early work on Attribute Auxiliary structured
Grouping for weakly supervised re-ID.

B. ATTRIBUTE AUXILIARY PERSON RE-ID
Learning pedestrian embedding with the auxiliary of attribute
has draw much attention recently. APR [9] proposed a multi-
task learning framework to learn visual representation and
attribute representation separately. APDR [29] detected the
attribute relevant parts with attribute detection network and
extracted the feature of image patch where pedestrian exists.
AANET [11] proposed a “soft” attention module to focus
on the pedestrian-involved region. TJ-AIDL [26] proposed
to transfer the domain knowledge with the domain-shared
attribute for UDA re-ID. Compared with other semantic-
based person retrieval tasks, such as language-query-based
person retrieval [30], A2G has the potential to explore the
similarity in the language queries by formulating them into
word embeddings. Different from above methods, we explore
the similarity in the attribute space to increase the confidence
of pseudo labels in attribute auxiliary weakly supervised re-
ID, which has not been fully explored yet.

C. GRAPH REPRESENTATION LEARNING ON
COMPUTER VISION TASKS
Graph neural network generalizes the input data of neural
network from Euclidean data to graph data (non-Euclidean).
Among all types of graph neural networks, convolutional
graph neural network is becoming popular because of its
computational efficiency and easy adaption with other neu-
ral networks. In 2016, Kipf et al. [31] proposed a first-
order approximation for graph convolutional operator, which
achieved better performance with high computational effi-
ciency in node classification task. Since then, convolutional
graph neural network has developed rapidly. Instead of taking
all neighborhoods of the node in the forward propagation,
GraphSage [12] randomly samples a fixed size of the neigh-
borhood, which is efficient for large-scale graph applications,
such as e-commerce and social network. GAT [32] utilizes
self-attention mechanisms to learn the relative importance of
neighboring nodes to their center node, which is a powerful
and efficient architecture. FastGCN [33] aims at reducing the
sampling variance by importance sampling strategy, which
increases the learning efficiency without accuracy loss.

With the development of deep learning, graph neural
network has achieved fabulous performance in many tasks.
GCT [34] explored the spatial-temporal structure of historical
target exemplar in visual tracking through graph neural net-
work (GCN). ML-GCN [35] modeled the relation of multiple
labels through GCN for multi-label image classification. ST-
GCN [36] explored both spatial and temporal information via
GCN for skeleton-based action recognition. Compared with
DDAG [37] which utilizes a graph-based attention module to
aggregate the cross-modality part-level feature, A2G refines
the feature representation via a graph neural network on the
pedestrian attribute graph to further explore the similarity
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of attribute space. In this paper, we construct a pedestrian
attribute graph and aggregate the features through graph em-
bedding algorithm, which is a novel approach for attribute-
auxiliary person re-ID.

D. LABEL SMOOTHING ON COMPUTER VISION TASKS
Label smoothing was firstly proposed to boost the perfor-
mance of image classification with cross-entropy loss [38]
in supervised learning setting, which transforms the hard
one-hot label into “soft” label with smoothing regularization.
And it is also widely utilized in speech recognition [39],
and speech recognition [40]. Although label smoothing is
presented in above work, its efficacy on reducing the over-
confidence of pseudo labels is ignored in previous clustering-
based re-ID methods.

III. GRAPH NEURAL NETWORK BASED ATTRIBUTE
AUXILIARY STRUCTURED GROUPING
In this paper, we focus on attribute auxiliary weakly super-
vised person re-ID. We aim to learn the discriminative ability
for unlabeled data by simultaneously exploring the similarity
in feature space and attribute space. In the evaluation stage,
we extract the features of query and gallery datasets with the
learned embedding model. The retrieval results are obtained
by calculating the Euclidean distances between the feature
embeddings of query and gallery images.

Our proposed graph neural network based Attribute Aux-
iliary structured Grouping (A2G) framework aims to address
the problems of low-quality and noisy pseudo labels assign-
ment and the “over-confidence” of the hard pseudo labels
in clustering-based approaches. Our key idea is to formulate
the relation between two images by the pair-wise attribute
similarity in order to construct a pedestrian attribute graph
and propagate the attribute similarity on pedestrian attribute
graph via a graph neural network. Through the representation
learning on pedestrian attribute graph, we refine the feature
embedding with the similarity in attribute space. In addition,
discriminative learning with hard pseudo labels may amplify
the errors in model learning, we smooth the hard labels to
avoid the problem of “over-confidence”. The overall frame-
work of A2G is described in Figure 2. We firstly transform the
images into feature space via a feature embedding network.
Then, we formulate the pair-wise relation in feature space
with attribute similarity and unify the similarity in feature
space and attribute space into a pedestrian attribute graph.
Next, we refine the feature with a graph neural network.
Finally, we conduct discriminative learning for the feature
embedding network.

A. BASELINE: PRE-TRAINING AND SELF-TRAINING
Source domain pre-training: Let Ds = { (xsi , ysi )|

Ns

i=1} be
the source training dataset with Ms pedestrian identities
(classes), where xsi and ysi are the i-th image and its manual
annotation, respectively. For person re-ID task, we aim to
learn a discriminative embedding network E(xi|θ) that is
utilized to generate image feature representation fi ∈ Rm for

the image xi. The parameters θ of the embedding network are
optimized by an identity classification loss Lsid and a triplet
loss Lstri as follows,

Lsid =
1

Ns

Ns∑
i=1

Lce (Cs (E (xsi |θ)) , ysi ) , (1)

Lstri =
1

Ns

Ns∑
i=1

max
(
0, D(xsi , x

s
p)−D(xni , x

s
n) +m)

)
,

(2)
where Cs : Rm → {1, · · · ,Ms} is the identity classifier,
Lce is the cross-entropy loss, D(·, ·) is the distance function
between features, m is the triplet distance margin, and xsp
and xsn denote the hardest positive and negative sample in the
mini-batch, respectively.

Target domain self-training: After the source domain
pre-training, we adapt the learned embedding model to target
domain through a self-training process. Let Dt = {xti|

Nt
i=1}

be the target training dataset, where Nt is the number of
images in target domain. The self-training on target domain
conducts the following procedures alternatively: 1) Dynamic
pseudo label assignment. 2) Model learning with pseudo
label. In the pseudo label assignment stage, we firstly extract
the target-domain feature embeddings {f ti |

Nt
i=1} with feature

extraction neural network E(·|θ). Then, we assign pseudo
labels {ỹti |

Nt
i=1} by clustering the target domain features

{f ti |
Nt
i=1} into Mt classes. In the model learning stage, we

aim at improving the discriminative ability of embedding
model E(·|θ). Let D̃t = {(xti, ỹti) |

Nt
i=1} be the target domain

dataset with pseudo labels. We optimize the parameters θ
of feature embedding network E(·|θ) according to Eq. (1)
and Eq. (2) on this new generated target domain dataset.
This self-training process with dynamic label assignment and
model optimization is conducted alternatively until the model
converges.

B. ATTRIBUTE AUXILIARY STRUCTURED GROUPING
FOR PSEUDO LABEL GENERATION
The performance of clustering-based self-training framework
highly depends on the quality of pseudo labels. Existing
approaches only utilize the similarity in feature space. How-
ever, the domain variances of illumination, pose, and camera
may introduce false positive samples in pseudo labels, which
is harmful to the discriminative learning of the embedding
model. To overcome the above issues, we take the similarity
in attribute space into consideration and propose a graph
neural network based attribute-auxiliary feature aggregation
algorithm to explore the similarity in attribute space.

Let Dta = {(xti,ati) |
Nt
i=1} be the target domain pedes-

trian attribute dataset, where ati ∈ RA are the attribute
annotations of the i-th pedestrian and A is the number
of attribute classes. Note that the attribute annotations are
binary vector, where “1” represents the pedestrian has the
corresponding attribute, otherwise has not. To capture the
similarity in attribute space, we formulate the relation be-
tween two pedestrian through pair-wise attribute similarity,
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FIGURE 2: The flowchart of our proposed A2G. A2G consists of three key components including pedestrian attribute
graph construction, attribute-auxiliary feature refinement, and model learning. Pedestrian attribute graph construction aims
to formulate pedestrian relation with attribute similarity and unify the similarity in feature space and attribute space into a
pedestrian attribute graph. Attribute-auxiliary feature refinement propagates the attribute similarity of pedestrians with their
neighborhood in pedestrian attribute graph to generate the refined features. Model learning improves the discriminative ability
of embedding network with the regularization of smoothed pseudo labels (SPL) to relief the “over-confidence” problem of hard
pseudo labels.

so that the image pairs that are highly similar in attribute
space are inter-connected in the pedestrian attribute graph.
According to the pair-wise relations and feature embeddings,
we could construct a pedestrian attribute graph. To propagate
the pair-wise attribute-similarity, we aggregate the features
with their neighborhood on pedestrian attribute graph via a
graph neural network. After the graph representation learning
on pedestrian attribute graph, we obtain the refined features
that unify the similarities in feature space and attribute space.

Pedestrian attribute graph construction. Let G =
(V,E) be the pedestrian attribute graph, where V (|V | = Nt)
and E are the sets of nodes (pedestrian) and edges (pair-
wise attribute similarity), respectively. Let X ∈ RNt×m be
a matrix containing the features of nodes, and its row vector
is initialed as Xi = f ti . We define the adjacency matrix
A ∈ RNt×Nt of G as follow,

Aij =

{
1 sim(ai,aj) > τ
0 otherwise , (3)

where ai and aj are the attributes of the i-th and j-th pedes-
trian respectively, sim(·, ·) is the cosine similarity function,
and τ is the similarity threshold. Note that the attribute
annotations are binary vector, hence the cosine similarity
could properly represent the pair-wise attribute annotations
similarity. Specifically, we present the sim(·, ·) as follow,

sim(ai,aj) =
ai · aj

‖aj‖ · ‖aj‖
, (4)

where ‖ · ‖ is l2 norm. Then, we normalize the adjacency
matrix as, Ã = D−

1
2AD−

1
2 , where D is the degree matrix

(diagonal matrix) of A with Dii =
∑
jAij ,

∑
j is the

column-wise sum.
Attribute auxiliary feature refinement. To propagate the

similarity in attribute space, we conduct feature aggregation
on the pedestrian attribute graph. Recently, Graph Neural
Networks (GNN) have achieved superb performance in learn-
ing representative embedding on graph. GraphSage [12] is
an inductive multi-layer neural network that operates on a
graph, which learns feature representation of nodes based on
a aggregation of their neighborhoods. In this paper, original
target domain features {f ti |

Nt
i=1} are updated from their local

neighborhood by an attribute auxiliary feature aggregation
through an unsupervised node embedding algorithm.

Suppose that the number of layer in graph neural network
is K, for each node (pedestrian) v ∈ V , we have the aggre-
gated hidden feature at k-th layer from its local neighborhood
as follow,

hkN (v) ← fkaggregate
({

hk−1u ,∀u ∈ N (v)
})
, (5)

whereN (·) and fkaggregate(·) are node neighborhood sample
function and feature aggregation function at k-th layer. After
obtain the aggregated features from their neighborhood, we
have the updated hidden feature of v as follows,

hkv ← σ(Wk · (hk−1v ‖hkN (v))), (6)
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where Wk is the trainable parameter at k-th layer of GNN,
σ is the activation function, ‖ is the concatenation operator.
Note that we initialize the node embedding h0

v with the
original target domain feature f ti , as h0

v = Xi = f ti .
After this forward propagation, we obtain the final refined
feature as zv = hKv , and the learning details is presented in
Algorithm 1.

Optimization of the graph neural network. In order to
learn representative embeddings that reveal the similarity in
attribute space, we apply an unsupervised graph-based loss
to optimize the parameters θgnn = {Wi|Ki=1} in neural
network as follows,

Latt = − log
(
σ
(
z>v zu

))
−Q·Eun∼Pn(u) log

(
σ
(
−z>v zun

))
,

(7)
where v and u are co-occurs nodes on fixed-length random
walk, Pn(u) is a negative sample distribution that consists
of the disconnected edges of u, Q is the negative penalty
parameter. Through this learning process, the embeddings of
those pedestrian with high attribute similarity became closer,
which exploits the similarity in attribute space.

After obtaining the attribute auxiliary features {zti|
Nt
i=1},

we calculate the pair-wise distance matrix D, where Dij

denotes the distance between i-th and j-th image embeddings.
To perverse local similarity, we adopt the k-reciprocal dis-
tance [41], which is calculated by the Jaccard distance be-
tween the nearest neighborhood sets. We adopt the a density-
based clustering algorithm DBSCAN [42] to grouping the
images into different clusters, where we assign the pseudo
labels of target-domain images with their cluster IDs. In
addition, we discard the image samples that not belong to
any clusters to reduce the noise in pseudo labels. In the
end, we obtain the new generated target domain dataset
D̃t = {(xti, ỹti) |

Nt
i=1} with pseudo labels {ỹti |

Nt
i=1}.

C. MODEL LEARNING WITH SMOOTHED PSEUDO
LABELS
In model learning stage, we aim at improving the discrim-
inative ability of embedding network E(·|θ) on target do-
main data. Given the target-domain dataset with attribute
auxiliary pseudo labels D̃t = {(xti, ỹti) |

Nt
i=1}, we consider

to optimize the embedding network E(·|θ) with hard pseudo
labels according to Equation (1) and (2). However, dynamic
labels assignment through clustering are often noisy: 1) Lack
of human annotations may introduce more false positive
samples, i.e., same pseudo labels are assigned to the images
with different identity labels, due to the poses and cameras
variances. In addition, appearance similar image pairs may
in-large the false positive samples, since CNN usually gen-
erates similar feature embeddings for visual similar image
pairs. 2) The false positive samples may amplify the errors
in the learning of feature embedding network, which would
increase the noisy in pseudo labels.

To overcome the over-confidence of the hard pseudo la-
bels, we propose to regularize the learning of feature em-
bedding network with the smoothed pseudo labels (SPL). We

denote the cross-entropy loss with hard pseudo labels as Lce
in the form of,

Lce =
Mt∑
k=1

−ỹklog(pk) (8)

where ỹk equals “1” for the pseudo class label and “0” for the
rest, pk is the predicted probability of the k-th class, which
is obtained by applying softmax operation on the output
of classifier. We regularize the optimization of embedding
network via smoothed pseudo label (SPL) with smoothing
parameter α, and the smoothed pseudo label distribution ỹsplk

is presented as follow,

ỹsplk =

{ α
Mt

k 6= ỹ

1− α+ α
Mt

k = ỹ
(9)

We denote the identities classification loss with smoothed
pseudo label (SPL) regularization asLsplce =

∑Mt

k=1−ỹ
spl
k log(pk).

Hence, the overall loss function for optimization feature
embedding network E(·|θ) is presented as follows,

Lall = Lsplce + λLtri (10)

where the λ is the parameter weighting the two losses, Ltri
is the triplet loss presented in Equation (2).

D. ALTERNATIVELY TRAINING
We progressively explore the similarity in feature and at-
tribute space and improve the quality of pseudo labels via
an alternatively training schema. Different from existing
approaches that only consider the similarity in the feature
space, the graph neural network based attribute-auxiliary
feature aggregation algorithm takes the pair-wise similarity
in attribute space into consideration and increases the confi-
dence of pseudo labels. Considering the “over-confidence”
of inaccurate label may be harmful to the discriminative
learning, we regularize the learning of the embeddig model
with smoothed pseudo labels (SPL) when training with cross-
entropy loss for identity classification. With the improve-
ments in pseudo label generation and model learning, we
could reduce the noise in pseudo labels and conduct the
discriminative learning more effectively.

IV. EXPERIMENTS
A. DATASETS AND EVALUATION METRICS
Market-1501 [43] contains 32,668 images of 1,501 identities
captured from 6 cameras. The train set contains 12,936
images with 751 identities. The test set is split into query
and gallery sets. The query and gallery contain 3,368 and
15,913 images, respectively. 27 human-annotated attributes
are presented for each image [9]. We abbreviate Market-1501
as Market in this paper.

DukeMTMC-reID is a subset of the DukeMTMC [44]
dataset. It has 702 identities with 16, 522 images for training
and 702 identities with 19,889 images for testing. Each image
has 23 human annotated attributes [9]. We will abbreviate
DukeMTMC-reID as Duke.
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MSMT17 is the largest person re-ID dataset with 126,441
images of 4,101 identities under 15 cameras [21]. The train-
ing set contains 32,021 images of 1,041 identities. During
testing, it consists of 11,659 and 82,161 images of 3,060
identities for query and gallery set, respectively.

Evaluation Metrics. Following these works [6], [7], [10],
we utilize Cumulative Matching Characteristic (CMC) curve
and the mean average precision (mAP) to evaluate the
person re-ID task. In the comparison with state-of-the-art
approaches, we report Rank@1, Rank@5, and Rank@10
accuracies.

B. IMPLEMENTATION DETAILS
For feature embedding networkE(·|θcnn), we adopt ResNet-
50 [58] and IBN-ResNet-50 [59] as backbone networks in our
experiments. The dimension of feature embedding is 2048.
We normalize all images and resize them into 256 × 128. In
the UDA training setting, we firstly initialize the backbone
network with ImageNet [60] pre-trained weights. Then, we
pre-train the model in source domain with triplet (Eq. (2))
loss and identity-classification loss (Eq. (1)). We take ADAM
as model optimizer with a weight decay of 0.0005. The initial
learning rate is 0.00035 with learning rate decay, which is
decreased to its 1/10 at 40-th and 70-th epoch in the total 80
epochs. In the unsupervised training setting, we directly ini-
tialize the model with ImageNet pre-trained weights without
source-domain pre-training.

For target-domain self-training, we set the learning epochs
to 40 for alternative training. We optimize the embedding
network E(·|θ) with Eq. (10) and keep the learning rate and
optimizer the same with source-domain pre-training stage.
In attribute-auxiliary feature aggregation, we set the number
of layers in graph neural network to 2 and the dimension
of hidden feature to 2048. We optimize the graph neural
network with Eq. (7) by ADAM optimizer. The learning
rate is set to 0.0003. The threshold τ in pedestrian attribute
graph construction is set to 0.95, balance parameter λ in Lall
(Eq. (10)) is set to 1.0, smoothing parameter α in Eq. (9) is
set to 0.1, The aggregation function faggregate (Eq. (5)) is
GCN [31].

C. COMPARISON WITH THE STATE-OF-THE-ARTS
We compare our proposed A2G framework with unsuper-
vised, unsupervised domain adaptation, and attribute auxil-
iary weakly-supervised methods on four cross-dataset per-
son re-ID tasks: Duke-to-Market, Market-to-Duke, MSMT-
to-Duke, and MSMT-to-Market. We compare three types
of approaches, including unsupervised learning methods:
PUAL [45], BUC [16], SSL [10], HCT [46], D-MMD [49],
CSE [10], and TAUDL [47], transfer learning based meth-
ods: SPGAN [20], HHL [22], CFSM [48], ENC [15],
UDATP [25], UCDA-CCE [50], PDA-Net [51], PCB-
PAST [8], SSG [7], MMCL [24], DG-NET++ [52], B-
SNR+GDS-H [53], DGNET [3], OG-Net [54], AE [17], and
AD-Cluster [55], and attribute auxiliary weakly supervised
method: TJ-AIDL [26].

As shown in Table 1, on Duke-to-Market, compared with
the state-of-the-art method DG-NET++ [52], we achieve
9.9% and 5.3% gains on mAP and Rank@1, respectively.
In addition, evident 2.9% and 6.7% gains in mAP (2.5%
and 4.5% in Rank@1) are achieved on MSMT-to-Duke and
MSMT-to-Market, respectively. The above results validate
the effectiveness of our proposed A2G framework. A2G
explores the similarity in attribute space through an effective
attribute auxiliary feature aggregation to improve the quality
of pseudo labels, which is ignored in previous methods. The
experimental results also prove the necessity of regularizing
the learning of the embeddig model with smoothed pseudo
labels (SPL), which has boosted the performances by large
margins.

Our proposed A2G could also be extended to unsupervised
learning, and we compare A2G with state-of-the-art unsu-
pervised approaches. In unsupervised setting, we initialize
the embedding network with ImageNet pre-trained weights
instead of pre-training on source-domain. A2G surpasses all
compared unsupervised approaches by a considerable margin
of 15.2% mAP on and Duke-to-Market tasks. We also ob-
serve a significant gain and 12.1% mAP between the “base-
line” and A2G in unsupervised setting on Duke-to-Market.
The above experimental results validate the effectiveness of
A2G under different training settings.

Compared with attribute auxiliary weakly-supervised ap-
proach TJ-AIDL [26], A2G achieves significant improvement
on retrieval accuracy, which validates the effectiveness of
the graph representation for feature similarity and attribute
similarity. Conducting the graph leaning on the pedestrian
attribute graph would effectively refine the feature represen-
tation with the similarity of attribute space.

D. FURTHER EVALUATIONS
Evaluation of Key Components. We have three key com-
ponents in our A2G framework: attribute auxiliary feature
refinement, model regularization with smoothed pseudo la-
bels (SPL), identity classification loss Lsplce , triplet loss Ltri.
To analysis the effectiveness of these parts, we conduct
component-wise evaluation and present the results in Table 2.

When comparing A2G with “baseline”, we observe the im-
provements of 5.7% and 2.1% mAP respectively on ResNet-
50 and IBN-ResNet-50 backbones. The attribute auxiliary
feature refinement simultaneously explores the similarities
in feature space and attribute space, which removes the
false positive samples caused by the variances of appear-
ance, pose, and illumination in the feature-subspace clusters.
We validate the necessity of regularization with smoothed
pseudo labels (SPL) by removing the smoothing penalty, i.e.,
α = 0 in Eq. (9). Such experiments are represented by
“A2G (w/o SPL)”. 4.4% and 3.6% mAP drops are observed
on these two backbones. Because the hard pseudo labels
are dynamically assigned in each iteration, regularizing the
learning of the embeddig model with SPL could alleviate
the problem of over-confidence. The increases achieved by
the smoothed pseudo labels demonstrate the effectiveness of
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TABLE 1: Comparison of retrieval accuracy with state-of-the-arts on Market-1501 [43], DukeMTMC-reID [44], and
MSMT17 [21]. In the “setting” column, “Unsupervised” denotes training only with the unlabeled target-domain; “UDA”
denotes the unsupervised domain adaptation methods, in which labeled source-domain images are utilized for training.
“Weakly” denotes training with attribute annotations. “Baseline” denotes the clustering-based self-training approach with
DBSCAN [42]. “SPL" denotes the discriminative model learning with smoothed pseudo labels. The “Auxiliary INFO” column
shows the auxiliary information used in model learning.

Methods Setting Auxiliary INFO Market-to-Duke Duke-to-Market
mAP Rank@1 Rank@5 Rank@10 mAP Rank@1 Rank@5 Rank@10

PUL [45] Unsupervised None 16.4 30.0 43.4 48.5 20.5 45.5 60.7 66.7
BUC [16] Unsupervised None 27.5 47.4 62.6 68.4 38.3 66.2 79.6 84.5
SSL [10] Unsupervised Camera ID 28.6 52.5 63.5 68.9 37.8 71.7 83.8 87.4
HCT [46] Unsupervised None 50.7 69.6 83.4 87.4 56.4 80.0 91.6 95.2
TAUDL [47] Unsupervised Camera ID 43.5 61.7 - - 41.2 63.7 - -
CSE [10] Unsupervised Camera ID 30.6 56.1 66.7 71.5 38.0 73.7 84.0 87.9
SPGAN [20] UDA None 22.3 41.1 56.6 63.0 22.8 51.5 70.1 76.8
HHL [22] UDA Camera ID 27.2 46.9 61.0 66.7 31.4 62.2 78.8 84.0
ENC [15] UDA Camera ID 40.4 63.3 75.8 80.4 43.0 75.1 87.6 91.6
CFSM [48] UDA None 27.3 49.8 - - 28.3 61.2 - -
D-MMD [49] UDA None 46.0 63.5 78.8 83.9 48.8 70.6 87.0 91.5
UDATP [25] UDA None 49.0 68.4 80.1 83.5 53.7 75.8 89.5 93.2
UCDA-CCE [50] UDA Camera ID 31.0 47.7 - - 30.9 60.4 - -
PDA-Net [51] UDA None 45.1 63.2 77.0 82.5 47.6 75.2 86.3 90.2
PCB-PAST [8] UDA None 54.3 72.4 - - 54.6 78.4 - -
SSG [7] UDA None 53.4 73.0 80.6 83.2 58.3 80.0 90.0 92.4
MMCL [24] UDA None 51.4 72.4 82.9 85.0 60.4 84.4 92.8 95.0
DG-NET++ [52] UDA None 63.8 78.9 87.8 90.4 61.7 82.1 90.2 92.7
B-SNR+GDS-H [53] UDA None 55.1 73.1 - - 61.2 81.1 - -
OG-Net [54] UDA None 16.3 31.3 - - 17.2 41.4 - -
AE [17] UDA None 46.7 67.9 79.2 83.6 58.0 81.6 91.9 94.6
DGNet [3] UDA None 24.3 42.6 58.6 64.6 26.8 56.1 72.2 78.1
AD-Cluster [55] UDA None 54.1 72.6 82.5 85.5 68.3 86.7 94.4 96.5
TJ-AIDL [26] Weakly Attribute 23.0 44.3 59.6 65.0 26.5 58.2 74.8 81.1
Baseline Unsupervised None 48.6 65.9 79.2 83.8 51.8 73.7 87.6 91.6
A2G Weakly Attribute 51.0 69.0 82.3 86.4 63.9 83.0 92.9 95.4
Baseline UDA None 54.9 70.8 82.5 86.3 65.9 84.5 94.2 95.9
A2G (w/o SPL) Weakly Attribute 58.7 75.9 86.0 89.7 67.2 84.9 94.1 96.6
A2G Weakly Attribute 61.2 77.1 88.2 91.2 71.6 87.4 95.2 97.2

Methods Setting Auxiliary INFO MSMT17-to-Duke MSMT17-to-Market
mAP Rank@1 Rank@5 Rank@10 mAP Rank@1 Rank@5 Rank@10

D-MMD [49] Unsupervised None 51.6 68.8 82.6 87.3 50.8 72.8 88.1 92.3
MAR UDA None 48.0 67.1 79.8 - 40.0 67.7 81.9 -
PAUL [56] UDA None 53.2 72.0 82.7 86.0 40.1 68.5 82.4 87.4
CASCL [57] UDA Camera ID 37.8 59.3 73.2 77.8 35.5 65.4 86.2 35.5
DG-NET++ [52] UDA None 58.2 75.2 73.6 86.9 64.6 83.1 91.5 94.3
OG-Net [54] UDA None 25.9 44.9 - - 21.4 47.6 - -
Baseline Unsupervised None 51.6 68.5 81.2 86.2 40.5 63.6 79.1 85.2
A2G Weakly Attribute 54.8 71.8 84.2 88.2 61.0 80.4 92.6 95.4
Baseline UDA None 54.2 70.5 82.7 86.9 67.6 85.1 94.6 96.5
A2G (w/o SPL) Weakly Attribute 58.9 74.6 85.3 88.6 71.3 87.0 95.4 97.1
A2G Weakly Attribute 61.1 77.7 87.7 90.8 71.3 87.6 95.2 97.0

label smoothing. We also verify the effectiveness of identity
classification loss by removing the Lsplce in Eq. (10)), and the
experiments are denoted as “A2G (w/o Lsplce )”. We observe
significant decreases of 30.9% and 32.9% mAP on these two
backbones, which validates the effectiveness of learning with
identity classification loss Lsplce . By applying cross-entropy
loss, we simultaneously minimize the distance of intra-class
samples and maximize the inter-class and generate more rep-
resentative feature embeddings. Furthermore, we evaluate the
effectiveness of triplet loss by removing it in train process,
i.e., λ = 0 in Eq. (10), and the experiments are presented as
“A2G (w/o Ltri)”. Considerable decreases of 2.9% and 0.8%
mAP are shown on ResNet-50 and IBN-ResNet-50 backbone
for Duke-to-Market. The introduce of triplet loss captures

the relative similarity in training sample and enhances the
representation ability of embedding network. The increase of
experimental results demonstrate the effectiveness of triplet
loss.

Impact of Aggregation Function in GNN. The aggre-
gation function is the key element of graph neural network
based attribute-auxiliary feature aggregation. To study the
impact of different aggregation function, we present the
performance of three commonly utilized functions proposed
in [12]: “mean”, “pool”, and “GCN [31]”. Briefly speaking,
“mean” and “pool” conduct “average” and “max” operation
before multiplying the weight matrix in graph neural net-
work, respectively. As to “GCN”, it directly multiplies the
weight matrix. More design details are presented in [12].
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(a) The smoothing parameter α. (b) The balance weight λ. (c) The number of layers K in GNN.

FIGURE 3: Retrieval accuracy curves with model parameters on Duke-to-Market. Parameter α is the smoothing penalty of
smoothed pseudo label (SPL) in Equation (9) for Lsplce . Parameter λ is the balance weight in Equation (10) for Lall. GNN is the
model for attribute-auxiliary feature aggregation, and the number of layers in GNN controls the model complexity.

TABLE 2: Component-wise evaluation of A2G with ResNet-
50 and IBN-ResNet-50 backbones on Duke-to-Market. “Di-
rect Transfer” denotes the source pre-trained model. “Base-
line” are the clustering-based self-training model with DB-
SCAN [42]. “SPL” denotes model leaning with smoothed
pseudo labels. “Ltri (Eq. (2))” and Lsplce (Eq. (9)) are the two
terms in Lall (Eq. (10)).

Methods ResNet-50 IBN-ResNet-50
mAP(%) Rank@1(%) mAP(%) Rank@1(%)

Direct Transfer 31.8 61.9 35.6 65.3
Baseline 65.9 85.4 74.7 89.9
A2G (w/o Ltri) 68.7 85.2 76.0 90.4
A2G (w/o Lspl

ce ) 40.7 63.2 43.9 67.2
A2G (w/o SPL) 67.2 87.4 73.2 89.2
A2G 71.6 87.4 76.8 90.6

TABLE 3: The comparison of different aggregation function
faggregate (Eq. (5)) in GNN on Duke-to-Market.

Aggregation mAP Rank@1 Rank@5 Rank@10
pool 67.4 84.5 93.8 96.1
mean 69.6 87.3 94.9 97.0
GCN 71.6 87.5 95.9 97.3

As shown in Table 3, we obtain the best result with
mAP = 71.6% when using GCN as aggregation function.
With “mean” and “pool” aggregation function, we obtain
slightly inferior mAP accuracies of 69.6% and 67.4%, re-
spectively. From the above observations, we may conclude
that aggregation function with addition sampling operation,
such as “mean” and “pool”, corrupts the representation of
individual image and the structure of original cluster. As to
GCN, which consists of graph convolution operator without
sampling, we could preserve the independence of cluster and
explore the similarity in attribute space.

Impact of the Threshold τ . The parameter τ controls
whether the image pairs are connected in the pedestrian
attribute graph or not. As shown in Table 4, the retrieval
accuracy reaches a plateau when τ is larger than 0.85 and less
than 1.0, which indicates that the parameter τ is not sensitive
in this range. From the above experiments, we may conclude
that the value of τ in the range (0.85 ≤ τ ≤ 1.0) would be

TABLE 4: Retrieval accuracy with different values of the
threshold τ (Eq. (3)) in pedestrian attribute graph construc-
tion. We also present the number of edges under different
thresholds.

Threshold # of edges mAP(%) Rank@1(%)
0.8 6,792,452 69.8 85.7
0.85 3,054,744 71.2 87.4
0.9 1,605,246 71.3 87.3
0.95 602,100 71.6 87.5

(a) Duke-to-Market.

Threshold # of edges mAP(%) Rank@1(%)
0.8 9,053,746 59.8 75.2
0.85 7,084,622 60.8 76.6
0.9 3,670,594 61.2 77.1
0.95 3,127,828 60.9 76.8

(b) Market-to-Duke.

general to other datasets.

E. PARAMETER ANALYSIS
Effect of the Label Smoothing Parameter α. Parameter
α controls the confidence of pseudo labels in discriminative
learning with cross-entropy loss. We vary α from 0 to 0.4 and
present the mAP and Rank@1 accuracies on Duke-to-Market
in Figure 3(a). As α increases from 0 to 0.1, the improvement
is increasingly significant, which validates the necessity of
smoothing the label to avoid the over-confidence of hard
pseudo labels. If we set α to be larger than 0.1, the over-
smoothing of pseudo label leads to ineffective discriminative
learning for embedding network.

Effect of Weight Balance Parameter λ. Parameter λ is
the balance weight of Ltri and effects the hardest triplet
relative learning for embedding features. We vary λ from
0 to 2.0 and present retrieval accuracies in Figure 3(b). As
λ increases for 0 to 1.0, the retrieval accuracies increase
steadily, which When λ goes large, Ltri dominates Lall, so
that the discriminative learning with cross-entropy loss is
weakened and cannot provide enough supervision for feature
representation learning.

Effect of the Number of Layers K. Parameter K is the
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number of layers in graph neural network and effects the
model capacity in learning attribute-auxiliary feature embed-
ding. We varyK from 1 to 4 and show the mAP and Rank@1
accuracies in Figure 3(c). The performances of model are
improved when K increases from 1 to 2. The increase of
K improves the model capacity of graph neural network
based attribute auxiliary feature aggregation, which boosts
the retrieval accuracy. When K is larger than 2, the retrieval
accuracy drops significantly because of model overfitting.

F. QUALITATIVE ANALYSIS
To further demonstrate the improvements of A2G in feature
representation, we visualize the feature embeddings with and
without attribute-auxiliary feature aggregation. As shown in
Figure 4, the embeddings of the same identity with attribute-
auxiliary feature aggregation gather tighter than the orig-
inal features, which demonstrates that A2G increases the
similarity of the intra-identity. We also observe that A2G
removes the false positive samples and increases the distance
of inter-identity in the red circle of Figure 4(a). From the
above observations, we conclude that A2G could improve the
feature representation of images and the quality of the pseudo
labels.

Furthermore, we present the retrieval results of direct
transfer model, baseline model, and our proposed A2G, as
shown in Figure 5. We observe that A2G is robust to the
variance of illumination (first retrieval sample), the existence
of occlusion (second retrieval sample), and the distraction of
visual similar pedestrian (third retrieval sample). The above
results validate that our proposed A2G could improve the
feature representation of images through generating high-
quality pseudo label with the consideration of similarities in
attribute space and feature space.

V. CONCLUSIONS
In this paper, we study the attribute auxiliary weakly su-
pervised person re-ID and focus on improving the quality
of pseudo labels and reducing the over-confidence of the
pseudo label in discriminative learning for embedding net-
work. Clustering-based UDA approaches in person re-ID
highly rely on the quality of pseudo labels. Due to the ex-
istence of domain variances, such as illuminations, cameras,
and viewpoints, assigning pseudo labels according to the
cluster in the feature space may generate more false-positive
samples during training. Besides, learning with these inac-
curate hard labels may damage the discriminative learning
for embedding networks. To address the above problems,
we propose a graph neural network based attribute auxiliary
structured grouping to explore the similarity in attribute
space. Different from existing clustering-based approaches
that only utilize the similarity in the feature space, we also
consider pedestrian attributes. A graph neural network based
attribute auxiliary feature aggregation is presented to refine
the embedding features with the similarity in attribute space.
Besides, we regularize the learning of the embeddig model
with smoothed pseudo labels to avoid the “over-confidence”

(a) Feature embeddings without attribute-auxiliary feature ag-
gregation.

(b) Feature embeddings with attribute-auxiliary feature aggre-
gation.

FIGURE 4: T-SNE visualization of the features embeddings
with and without attribute-auxiliary feature aggregation on a
part of Market-1501 training set (50 identities). Points with
the same color represent the images of the same identities.

in discriminative learning. By comparing various state-of-
the-art algorithms, the encouraging results demonstrate that
the proposed A2G is effective and promising for person re-
identification.
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