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ABSTRACT Monitoring the safe social distancing then conducting efficient sterilization in potentially
crowded public places are necessary but challenging especially during the COVID-19 pandemic. This work
presents the 3D human space-based surveillance system enabling selective cleaning framework. To this
end, the proposed AI-assisted perception techniques is deployed on Toyota Human Support Robot (HSR)
equipped with autonomous navigation, Lidar, and RGBD vision sensor. The human density mapping repre-
sented as heatmap was constructed to identify areas with the level being likely the risks for interactions. The
surveillance framework adopts the 3D human joints tracking technique and the accumulated asymmetrical
Gaussian distribution scheme modeling the human location, size, and direction to quantify human density.
The HSR generates the human density map as a grid-based heatmap to perform the safe human distance
monitoring task while navigating autonomously inside the pre-built map. Then, the cleaning robot uses the
levels of the generated heatmap to sterilize by the selective scheme. The experiment was tested in public
places, including food court and wet market. The proposed framework performance analyzed with standard
performance metrics in various map sizes spares about 19 % of the disinfection time and 15 % of the
disinfection liquid usage, respectively.

INDEX TERMS COVID-19, human space, social distance, cleaning robotics, human support robot.

I. INTRODUCTION
The recent outbreak of COVID-19 has caused a pandemic
alert around the world. It has now globally affected almost
all the continents, infecting more than 82 million people and
1,79 death reports (30 December 2020). According to World
Health Organisation (2020), physical distancing and routine
sterilizing are the effective ways to slow down the spread of
the virus because when people maintain safe social distancing
and avoid physical contact, the chances of transmitting the
virus from one person to another reduces significantly [1].
The absence of an approved vaccine for this disease urges
the need to minimize the spread of the contagious and lethal
virus. Social distancing measures proved the efficient in
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reducing the risk of the local spread of COVID-19. Tobías
and Saez et al. [2] statistics reports indicate that COVID 19
spread has considerably reduced in Spain and Italy after
implementing safe social distancing measures.

In a safe distancing measure, the physical distancing of at
least 1m is essential in crowded zone [1]. Globally, several
practices are implemented to ensure safe social distancing
and avoid crowd gathering in busy places. For example, sev-
eral countries are deploying Safe Distancing Officers (SDO)
in public places to monitor the people, safe distance sign
mark, limiting the number of people in workplaces, and
restricting to large gathering [1], [3]. However, monitoring
and tracking safe social distancing in potentially crowded
places such as public transit stations and industrial settings
such as factory workplaces, dormitories, schools, and shop-
ping malls are quite challenging. Moreover, monitoring safe
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distance measures is a manual process that can bring the
surveillance staff in close proximity with people affected by
COVID-19.

One significant aspect that has been studied widely in
social safety for spatial interaction is the idea of personal
space, or proxemics [4]–[8]. According to [4], based on
different types of interaction and relationships between peo-
ple, people maintain different culturally defined interpersonal
distances. Hall differentiated four different zones between
the interaction distance as follows: Public interaction: Public
speeches in-crowd, more than 4 m away. Social interac-
tion: business meetings, 1–4 m. Personal interaction: friendly
interaction distance gap of arm’s length, 0.5–1 m. Intimate
interaction: about 0.5 m apart.

In this paper, we specifically focus on the zone of personal
space as it is a culturally defined zone of ‘‘spatial insula-
tion’’ that people maintain around themselves and others [9].
Research work in [10], has described personal space for the
case of both people approaching each other and standing in
line is asymmetric [11]. Also [12] discusses personal space is
not a constant as it is dependent on individual attributes such
as volume, age, gender, and direction of interaction.

Automate the monitoring of social distancing measures is
a viable solution. Some effort worldwide that were imple-
mented on an ad-hoc framework to enforce social distanc-
ing rules. Some industries recently use lightweight wearable
devices that employ ultra-wideband (UWB) technology to
measure people’s distance automatically. It alerts them imme-
diately if they come closer than the required distance [13].
Some countries have adopted ubiquitous technologies, such
as Wi-fi, cellular, GNSS positioning (localization) systems to
monitor and alert the social distance in public and crowded
areas [1], [14]. Recently, many countries worldwide have
used the drones, IoT, and AI-assisted techniques to monitor
the human density, predict and alert the safe distance breach
in crowded areas in indoor and outdoor [3]. However, these
techniques have numerous limitations and have poor per-
formance in dynamic and complicated indoor environments.
With the advanced high speed and accuacy devices, the cap-
tured 3D object [15] have been applied in suveliance appli-
caitons for quality assessmen. Moreover, the exiting CCTV
system [16]–[18] consisting of monocular RGB cameras is
not cover thewhole theworkspace andCCTV is hard to detect
the 3D human attributes. In the works of [19], the authors
have addressed the distance-time encounter patterns in a
crowd that allows the fixed surveillance system to identify
social groups, such as families, by imposing adaptive thresh-
olds on the distance-time contact patterns. On other hand,
in the works of [20], an artificial intelligence based social
distancing surveillance system is present to detect distances
between human and warning them can slow down the spread
of the deadly disease. The work presented the four essential
ethical factors of surveillance system of: keep the privacy, not
target the particular detected human, no human supervisor,
and open-source. The work of [21] has proposed a deep
learning technique to track the social distance by an fixed

overhead perception system. The system integrated trans-
fer learning of the YOLOv3 an open source deep learning
object detection framework with an overhead human data set
in video sequences. The proposed system simply uses the
Euclidean distance of detected bounding box centroids to
estimate the distances of pairwise people. Then to estimate
social distance violations between people, an approximation
of physical distance to pixel are set as fixed threshold. How-
ever, the quantification in term of 3d interaction between
human space and the utilization of human interaction are not
considered in the mentioned references.

In this context, service robots are a viable candidate for
monitoring safe distance measure. Robotics and several other
autonomous technologies in AGV vehicles have made great
strides in fighting the COVID-19 pandemic [22], [23]. The
service robot uses the AI-assisted technology to deliver the
medicine to covid 19 patients, safe entry check-in body tem-
perature measurement, sanitize the infected area, frequent
cleaning of high touchpoints like hospital walls, floor, and
door handle [16], [24], [25]. Hence, by considering the advan-
tage of service robots and AI-assisted technology, as well
as the flexible navigation in the vast and complex envi-
ronments such as shopping mall, food court, wet market,
resents robot system gradually replace human in the tedious
jobs. In the monitoring, surveillance tasks and cooperate
conveniently through the comment operation system with
another service robot such as cleaning robot are the recent
trends.

In this article, based on the literature survey on the human
space and multi human interaction, we propose a human
safe distance monitoring technique using Toyota Human
Support Robot (HSR) and AI-assisted 3D computer vision
framework. The computer vision framework was built with
a modified Openpose 3D human tracking algorithm, depth
image fusion technique, Gaussian heat map scheme, and uses
the RGBD vision sensor data. The entire framework built
on top of Robot Operating System (ROS) [26] and tested in
real-time with HSR Toyota robot [27] deployed in crowded
public areas of Singapore, including food court and wet
market. The service robot navigates to clear the waypoints
around the mapped indoor area and performs the SDO tasks
that include detecting people’s clusters, space between the
humans, human interaction pose, safe distance measure, and
raising warning alerts commuters when violating the safe
distance rule.

The main contributions of this paper are threefold. (1) the
design and development of safe social distance surveillance
with collaborativemulti-robot cleaning system, (2) to develop
and implement a vision-based AI perception algorithm for the
robot to closely generate a heatmap based on the 3D human
interaction model, (3) to develop and test an adaptive velocity
behaviour model for the multi-robot cleaning systems to
clean the environment efficiently based on the generated heat
map. The efficiency of the proposed selective cleaning system
was assessed with standard performance metrics, and results
are reported.
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FIGURE 1. The framework for human density mapping based on human attributes.

The paper is organized as follows. The context of the appli-
cation is introduced in Section 2. The methodology of the
proposed robot is detailed in Section 3. In Section 4, the HSR
platform is presented. The optimal human attributes estima-
tion methods and Social Distancing and Density heat map
are validated in Section 5 and Section 6, respectively. The
conclusion, together with potential future works, is explored
in the last Section 7.

II. CONTEXT OF APPLICATION
Figure 1 depicts the workflow used in the proposed frame-
work to map the human density based on detected human
attributes by service robot. The output heatmap generated is
a distribution that highlights the level of interaction between
humans. Based on this heatmap distribution, the system iden-
tifies locations with the level of human interactions in a
pre-built map of the environment. The user can set a threshold
to determine the level of interaction and issue a warning
alert whenever safe distancing measures are violated. More-
over, the system helps deploy area sterilization by cleaning
robot systems that activate adaptive cleaning based on the
area heatmap levels. The interactive monitoring system has
been deployed for trials evaluations at testbed wet-market
in Singapore.

III. METHODOLOGY
This software framework is developed on a Toyota HSR robot
equipped with an onboard AI-embedded perception system.
Unlike traditional approaches that only monitor safe physical
distancing based on a person’s position from a fixed camera
system, this study defines the degree of human-to-human
interaction by quantifying social interaction using an asym-
metrical Gaussian distribution with the shape derived from
human attributes. Note that the theoretical background for
social interaction is based on the survey work of [4], which

state that human interaction tends toward the human direc-
tion, and space occupied. This is fundamental to motivate us
to quaintly the human by human space of 3D location, volume
and facing direction. The perception unit of HSR outputs the
human attributes includes the 3D positioning of human joints
in the map, the volume of space occupied by the detected
person, and the person’s movement direction.

To quantify human-to-human interactions, we propose a
distribution kernel with direction and magnitude proportional
to the detected and tracked a person’s identity and plotted
on the map concerning the person’s position. To this end,
we extract the color image data from the RGB-depth camera,
and human joints are detected and marked by the AI-based
Openpose algorithm [28]. The 3D depth information from the
camera frame is used to estimate the person’s joint positions,
and the position is then converted to the map frame to be
tracked while it is in the field of view of HSR camera.
We divide the pre-built map into grid cells and plot 3D
directional distributions of tracked human positions over the
grid cells.

The asymmetrical Gaussian distribution has its peak value
set at the location where humans are detected and spread
gradually along the human volume and moving direction of
each person. After plotting all the human positions, each cell
value in themap is updated by accumulating the human distri-
bution values during detection. Figure 2 shows the proposed
frameworkmodels in terms of quantity the interaction of three
persons at the same distance but own different attributes then
interaction between them differently.

IV. HSR ROBOT PLATFORM
A. OVERVIEW OF HSR SYSTEM ARCHITECTURE
The Human Support Robot (HSR), as shown in Figure 3,
is the research platform developed by Toyota Ltd. Co.
HSR has been implemented in multiple applications such as
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FIGURE 2. Proof of concept where 3 humans stay same distances and
with difference attributes so that interaction differently represented by
the level of color of areas in constructed heatmap.

FIGURE 3. Human Support Robot (HSR).

cleaning and inspection [29]. The HSR platform is equipped
with sensors like 2D Lidar, IMU, ASUS Xtion RGBD cam-
era, stereo vision camera, and embed main processing unit
with dedicated GPU necessary to support the autonomy
AI-based perception of the robot platform. This research uses
the data from the ASUS Xtion RGBD camera that extracts
RGB color and depth information around the robot. The
RGBD camera has a resolution of 1280 × 1024 and runs
at 30 frames per second. Hokuyo URG-04LX 2D LiDAR
installed in the HSR base enables the simultaneous localiza-
tion and mapping to build a map of the environment. Besides,
pneumatic bumpers are installed at the robot base to provide
an emergency stop to avoid any possible collision. A dual sys-
tem including Intel Core i7 CPU (16GB RAM, 256GB SSD)
and NVIDIA Jetson TK1 embedded GPU board are the cen-
tral processing units used alongside the robot. Robot control
and motion planning require proper communication between
software algorithms and hardware modules. This communi-
cation framework is enabled through the ROS environment
by ROS nodes and topics in Linux Ubuntu-based system.

B. HSR COVERS AREA BY DEFINED WAYPOINTS
NAVIGATION
The service robots are the active research and gradually to
be the commercial applications such as building mainte-
nance [30]–[32], road maintenance [33], [34], and path track-
ing [35], [36] and service robot [37], [38]. The HSR robot
the research service platform developed by Toyota [29] is set

up in a public wet-market and food-court in a neighborhood
community area in Tampeniss Town, Singapore. This location
is chosen as it is a highly busy environment with more crowd
gathering. So it is crucial to monitor safe social distancing
and regularly sterilize to avoid the spreading of the virus.

Hector Simultaneous Localization and Mapping (SLAM)
[39] is implemented in HSR to map continuously from
the environment using a Hokuyo laser to locate its correct
position. Within the generated market map, the HSR can
reach to its destination efficiently and quickly. The generated
map is shown in Figure 4(left) and the market is shown in
Figure 4(right).

FIGURE 4. Generated market map & Market environment.

To maximize area coverage, a set of coordinates in the
map environment are generated in a zigzag pattern. These
generated coordinates are given to the robot one by one as
sub-goals for the robot to manoeuvre. The waypoints are
assigned manually to HSR move based after the map is built.
HSR generates a trajectory connecting the coordinates using
a local trajectory planner algorithm and follows the trajec-
tory to generate the heatmap by simultaneously inspecting
the human density in the market environment. Based on the
feedback from laser data and wheel odometry information,
HSR will move to the designated coordinates one by one.
During the movement, HSR can make proper decisions from
collected data for obstacle detection and avoidance.

V. HUMAN ATTRIBUTES ESTIMATION METHODS
A. HUMAN JOINT DETECTION IN 2D COLOR IMAGE
HSR uses an inbuilt Asus Xtion Camera that provides the
RGB and depth data. This data is used as input for Open-
Pose [28] that gives us the skeleton of the detected humans
in every frame, as shown in Figure 5. This dependency gives
us every joint of the human body in a two-dimensional array
of 25 rows and 3 columns where every row is a skeleton’s
joint. Note that we consider the (x,y) plane is the 2d navi-
gation, (x,y) plane is the camera world coordinate, y is the
distance and z direction models the object height. The first
two columns are theX and Z pixel position of the joint in RGB
image, the third column shows the percentage of accuracy.
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FIGURE 5. Human skeleton by Openpose.

By taking the average of accuracy from every joint, we filter
the false detections.

1) 3D LOCATION ESTIMATION
After estimating the 2D pixel coordinates of joints from the
RGB camera frame using the object detection algorithm,
the system will derive the world frame corresponding to the
3D position obtained from depth data. Since the RealSense
D435 of the perception system is a stereo camera with both
an RGB image sensor and depth image sensor, they are of
the same resolution. Since each pixel in the RGB image
corresponds to the pixel in the Depth image, this enables us
even to map noisy objects and localize their pixel coordinates
concerning depth value. When the depth images are sub-
scribed, the image will be filtered via an adaptive directional
filter [33] to remove noise. After filtering the depth image,
the depth value of the noisy human objects, yo, can be derived
by using the Equation 1.

yo =

∑
� yi
�

(1)

where� represents the sum of pixels within a 10×10window,
and yi represents the value of the depth in the pixel. The
human objects in real-world coordinates will be estimated
by converting the X and Z pixel coordinate system to the x
and z world coordinate system. This is done through camera
calibration techniques to calculate the intrinsic and extrinsic
matrix values of the camera. Camera calibration method esti-
mates the focal length, fx , and fz, of the RealSense RGB-D
sensor and the optical center, cx , and cz, of the RealSense
RGB-D sensor in its respective x and y coordinate to get
the intrinsic camera matrix,I . The RealSense RGB-D sensor
in-built functions also provide us with the translation vector,
K , and a Q rotation vector. The extrinsic matrix, S, can be
derived from S = [QK ]. We can convert from the pixel coor-
dinate system to the world coordinate system as Equation 2.

p = I ∗ [QK ] ∗ P = I ∗ S ∗ P. (2)

where P is the world coordinates, p is the pixel coordinates.

2) 3D JOINT TRACKING
The DeepSORT is an improved version of the Simple Online
and Real-time Tracking (SORT) algorithm. The DeepSORT
tracking framework was build using the hypothesis tracking
technique with Kalman filtering algorithm and DL based
association metric approach (Deep SORT). Further, the Hun-
garian algorithm was utilized to resolve the uncertainty
between the estimated Kalman state and the newly received
measuring value. The tracking algorithm uses the appearance
data to improve the performance of Deepsort [40], [41].

In this work, the 3D joint coordinates of human detection
with the aligned RGB and depth frames are fed into the
modified DeepSORT network for tracking the human move-
ments. Then we retrained by transferred learning technique
the original DeepSORT object tracking algorithm which is
initially designed for 2D object tracking to track the detected
3D joints. According to bounding box coordinates and object
appearance, deep sort assigns an id for each human detection
and performs the tracking in 3D camera frame coordinate.

B. TRANSFORMATION TO MAP FRAME AND HUMAN
VOLUME
When HSR navigates, the SLAM algorithm maintains a rela-
tive position from the map frame to the robot base link frame.
Sine color and depth image is aligned by Realsense camera,
we crop the area of 10×10 at center of the neck’s position of
every detected human in the depth images. By appling the
mean filter for the cropped area, we get the distance with
noise is filtered out from the camera to the human’s neck, thus
avoiding the probability of taking a None value in-depth data
array. The frame transformation operations are done in ROS
to estimate an object’s position in the real world relative to
the sensor component used on the robot. The transformation
is then translated from the sensor frame to the Base Link,
the robot’s centre. The base link frame is the base point of
reference on the robot to locate the humans and link their
position to the Map transform frame that is the origin of
the World Space where we handle on ROS. We estimate the
distance between the shoulders, the height of the human, and
the hips’ distance from the OpenPose output data. Then we
apply Equation 3 for the calculations.

Hs = DS × Hh × Dh (3)

where Hs is human size, Ds is the Distance Shoulders and Hh
is human height and Dh is the Distance Hip.
Base on [4], to tun the parameters the values σh,σs and σr

of asymmetrical Gaussian distribution adaptively, we take the
referenced values as the adult human dimensions: 150cm for
the height, 40 cm as the distance between the two shoulders,
and 30cm as the distance between hips. The values will be
used as a quotient with the actual measures of the detected
human. The results will be multiplied to σh,σs and σr as a
scalar value. Derived parameters give us a variation of size in
the distribution proportional to the current size of the detected
humans.
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FIGURE 6. In the left image a person facing directly the camera with the
nose tracked by OpenPose, in the right a human facing contrary the
camera without nose joint.

C. HUMAN DIRECTION AND FACING
The human direction is the vector with the θ direction is set
to orthogonal with the vector linking left and right shoulder
joints. Once we estimate the human left and right shoul-
der joints’ position, we will find the angle of the vectors
formed by those two joints. To deal with the situations of
human facing upward and backward the camera, specifically,
we classify the detected human direction into front and rear
facing cases. Then the formula as in Equation 4 is used to
find the direction for the case of existing the detected human
nose joint and in Equation 5 for the case of non-existing the
detected human nose joint. given the left and right shoudlers
have the tracked codinates xls, yls, zls, xrs, yrs, zrs, the orienta-
tion value gives the angle of the line in a clockwise direction.
Nevertheless, this angle can be wrong sometimes because the
shoulders can only be detected in an interval of 180 degrees.
To enhance the accuracy, with the known camera angle value
concerning the tracked 3D human joints, we can estimate
whether this human is facing the camera.

OpenPose tries to detect every joint in the human body. If it
is impossible to detect the joint by the probability mean lower
than the threshold, it will fill with an empty value such as null
value for every column of the respective joint. This behavior
is essential because if the human face a contrary direction to
the camera, there will not be any joint-related with the face
on the joint’s array. Taking that as a reference, we can know
if the human is facing toward or backward, so we modify
the formula as follows, taking into account that 0 degrees are
facing contrary to the camera:

If Joint 0 (Nose) exist:

θ = (atan2(|yls − yrs|, |xls − xrs|)× 180/π)+ 180 (4)

else:

θ = atan2(|yls − yrs|, |xls − xrs|)× 180/π (5)

VI. SOCIAL DISTANCING AND DENSITY HEAT MAP
A. DISTRIBUTION KERNEL
An asymmetric Gaussian integral function using for social
robot interaction in [42] was deployed to calculate the

distribution of the detected humans. We quantify the shape of
space human occupying by adjusting the sigma parameters
of this function. Equation 6 shows a 1-dimensional Gaussian
distribution with σ :

f (x) = exp−
(x−µ)2

2σ2 (6)

The two dimension Gaussian distribution as shown in 7
is the center at (x0; y0), and the variance are represented by
σx and σy:

f (x, y) = exp
−( (x−x0)

2

2σ2x
+

(y−y0)
2

2σ2y
)

(7)

Typically, a 2-dimensional Gaussian distribution is sym-
metric along the x and y axes. However, to formulate a
distribution function for personal space between people, a
2-dimensional asymmetric Gaussian function is necessary;
this can be done with a shared σx and differing σy values.

ALGORITHM 1: Asymmetric Gaussian Based-
Heatmap Generation
1 : find :α←− atan2(y− yc, x − xc)− θ + π/2
2 : Normalize(α)
3 : a←− (cosθ)2/(2σ 2)+ (sinθ )2/(2σ 2

s )
4 : b←− sin(2θ)/(4σ 2)− sin(2θ)2/(4σ 2

s )
5 : c←− (sinθ )2/(2σ 2)+ (cosθ)2/(2σ 2

s )
6 : return(exp(−(a(x−xc)2+2b(x−xc)(y−yc)+c(y−yc)2))

Algorithm 1 explains the computation of an arbitrarily
rotated asymmetric Gaussian function at a detected human
location (x; y). The following notations are used: θ is the
direction of the distribution taken from the human’s estimated
orientation. σh variance in θ direction. σs variance to the sides
(θ +− π/2 direction). σr variance to the back (-θ direction).
Those parameters σh, σs, σr are set to be proportional with
the detected human volume. Lines 1, 2, and 3 calculate the
normalized angle of the human facing σs direction. This
means α points along the side of the function, and 0 < α < π .
The two 2D Gaussian functions in Line 3 will be used for the
point of interest, (x; y). In the case of α = 0, the point of
interest is located directly to the side of the function center
and depends only on σs. Figure 7 displays some views of
an Asymmetric Gaussian cost function as shown in Equa-
tion 8. This function has a rotation of θ = π/6, is centered
at (0; 0) and has as variances σh = 2:0, σs = 4=3, and
σr = 1. The maximum cost of this function is 1 in the center
of the distribution.

f (x, y) = exp−(a(x−xc)
2
+2b(x−xc)(y−yc)+c(y−yc)2) (8)

The Figure 8 presents the example the human detected at
the origin (0,0) facing upward by θ = π rads, σs = 13.33,
σr = 10.00, σh = 20.00

B. HEAT MAP GENERATION
The heat map generation consists of following steps:

1) OpenPose that detect the humans and give the joints of
the skeleton.

41412 VOLUME 9, 2021



A. V. Le et al.: Social Density Monitoring Toward Selective Cleaning by HSR With 3D-Based Perception System

FIGURE 7. Asymmetric Gaussian Distribution views located at (0, 0),
oriented by θ = π/6 rad, and with variances σh = 2, σs = 4, and σr = 1.

FIGURE 8. Output of the Aasymmetric Gaussian integral function for one
detected human at origin and facing upward.

2) The Detection node that will take OpenPose output and
calculate location, volume, and orientation

3) The Distribution Kernel and plotter Node that calculates
the intensity of distribution using the asymmetric Gaussian
formula and displays the results as a 2D heatmap.

Specifically, the map is divided into a grid base workspace
with each cell equals 0.1 × 0.1 m. Once the distribution’s
raw data is calculated, we take it and plot it in a color mesh
plot. For this process, we need to set up an interval as a
reference, so the intensity of distribution is represented as
a variation of color. The interval is chosen between the min
value of intensity currently registered and the max value by
default. This scale is updated every frame, so if there is an
increment in the intensity, it will update the scale in real-
time. An interval can be set up as an argument of the Heatmap
generator node in ROS.

When two points overlap in the calculation of the two
detected persons, the algorithm adds the intensity values of
all asymmetric Gaussian distributions for to form the level of
human interaction in the considered cell of the grid map. The
detected human’s id with the grid cell within the map frame
where the human presents is tracked by HSR. During the
robot navigation, if the detected person has the same id and
staying in the same grid cell, the distribution of this human

FIGURE 9. Two persons facing opposite directions & Two persons facing
each other.

FIGURE 10. Four persons detected by system.

FIGURE 11. tracking group of humans and remove the outliner. (a) three
detected humans and one outliner, (b) tracking the humans’ location on
ROS Rviz, (c) heatmap of three humans.

will not be re-plotted. the new distribution is plotted if the
new id is detected or the tracked id moves to a different cell.

VII. EXPERIMENTAL RESULTS IN REAL ROBOT
To evaluate the proposed software algorithm’s performance
to monitor social safe distancing measures in public places,
we implemented the software packages on HSR through the
ROS framework. Principally, HSR runs through the ROS
interface, and ROS architecture is flexible to implement dif-
ferent tools or dependencies in the form of packages and
model utilities. OpenPose uses the RGB-D input to detect
every human; this happens in the Detection node. Once we
detect a human, we publish all the joints of every detected
human, the location and orientation, and volume. To this
end, we use a costumed Message on ROS that we publish
under the topic. In parallel with the generated distribution
kernels during robot flows the trajectory, the plotter Node will
accumulate all values belonged to each cell of the grid map
to generate the final heatmap.

In the first experimental section, we experimented with
the proposed framework by considering several different
interaction scenarios. Figure 9 demonstrates the interaction
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FIGURE 12. Robot navigation with real-time density mapping.

FIGURE 13. Heat map for Testbed Market environment.

scenarios between two persons maintaining a distance
of 1.5 meters. Figure 9 shows a scenario where two persons
face in different directions. Figure 9 b shows the scenario
where two standing persons face opposite directions. One
can observe from the distribution plot, two persons facing
opposite directions generate the least risk area. On the other
hand, the second scenario demonstrates a high risk in the
distribution plot when two persons face each other.

The third scenarios consider a group of persons with dif-
ferent attributes and locations. The output results are shown
in Figure 10 and Figure 11, where we can observe that the
pedestrians maintaining a safe distance between each other
have their distribution spread in the green region. On the other
hand, when people come closer and face each other, their
distribution changes gradually from blue to red spectrum.
Meaning that they are interacting with other people and are
not maintaining a safe distance. One can observe from the
results that four persons with different attributes and loca-
tions. The persons who stay far away have the distribution
with greener color. On the other hand, the persons who stay
in themiddle of two big volume persons and face toward them
have the redder color; this indicates that these persons have a
greater chance of interacting with other persons.

Based on the distribution’s value, we can select the prede-
fined threshold value to identify the area in the map with the
higher risk of human interaction, as shown in Figure 12 and
Fugue 13. Depending on this input threshold value, the HSR
robot can trigger the alarm warning when it patrols around
the working environments.

In the second experimental section, we validated the effi-
ciency and performance of proposed heatmap in terms of
selective disinfection efficiency by deploying the robot sys-
tem at a public food court in Tampines, Singapore. Firstly,
we mapped the environment using occupancy grid-based
mapping. Depending on the human interaction activity in the
environment, a heat map is constructed on the grid cells by
the proposed framework, as shown in section 4. The heatmap

FIGURE 14. The sterilization robot in tested foodcourt.

TABLE 1. Numerical spent time and liquid of regular and selective
cleaning schemes.

distribution result is used as input to a disinfection robot to
decide disinfecting areas having level distributions on the
map need to be cleaned.

The selective disinfection algorithm estimates the time to
sterilize the environment in proportion to the heatmap distri-
bution values. Specifically, the higher the heatmap’s intensity,
the longer the time will be taken to disinfect the region. In the
case of a conventional disinfection robot, the main focus
would only be on maximizing the area coverage. So dur-
ing the cleaning process, the conventional disinfection robot
spends equal time in all the map regions. Thus, the disin-
fection amount savings between the proposed method and
conventional robotic disinfection will become a criterion for
evaluation.

To conduct the comparison evaluation between regular
uniform cleaning and selective cleaning, one conventional
sterilization robot as shown in Figure 14 is first deployed
to pray the cleaning liquid while following a defined zigzag
trajectory, and the times it takes to cover the sub-maps of the
wet market as of Figure 4(left) are recorded for all trials. This
robot with a liquid sterilization system is deployed to cover
the 100, 150, and 200 sqm areas with humans’ presenting.
Then, the total time to cover each testbed submap is divided
by its size to find the time interval the robot has stayed at
each grid cell. The found time is set to the time that the
sterilization robot with selective cleaning methods remains
at the highest heat cell (the cell with the reddest color inside
the build heatmap). The retention time of cells will decrease
gradually with the degrees of the cell heat maps.
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Travel time and disinfection liquid spent were recorded
during the 5 trials for each tesbed map. Table 1 describes the
experiment’s comparison averaged results on testbed layouts
during the trials. The average per-time disinfectant solution
offered by the selective method with heatmap can save about
19 %, 20%, and 16% the spent time and 15%, 19%, and 12%
of disinfection liquid, respectively.

VIII. CONCLUSION
COVID-19 is the third pandemic of the 21st century.
COVID-19 pandemic is easily spread by people in close prox-
imity, especially in crowds withmobile individuals (e.g., food
court, wet market). The proposed social distant monitoring
and selective sterilization strategy have validated efficiency in
the real public environment. The proposed system is the initial
works to deploy an adaptive multi-robot cleaning strategy
based on coverage path planning that works in synergy with
the human interaction heat map generated by safe social
distance monitoring systems

Our future works will focus on: redesigning the long-term
autonomy framework intensity, implement the autonomous
path generation to re-clean the part of the surface concerning
the generated heatmap, working on the optimization algo-
rithm to control the generated heatmap to reduce the running
time usage.Since the deploying the system at a public food
court in Tampines, Singapore requires the particular setups
so that the comparisons between the surveillance systemswill
be also considered as the future works.
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