
Received January 8, 2021, accepted January 19, 2021, date of publication January 29, 2021, date of current version February 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3055735

Review of Basic Classes of Dividers
Based on Division Algorithm
UDAYAN S. PATANKAR , (Member, IEEE), AND ANTS KOEL, (Member, IEEE)
Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia

Corresponding author: Udayan S. Patankar (udayan.patankar45@gmail.com)

This work was supported in part by the Estonian Research Council Institutional Research Projects under Grant IUT19-11, Grant PUT1435,
and Grant PRG780, and in part by the European Union’s Horizon 2020 Research and Innovation Program under Grant 668995.

ABSTRACT The electronics world is very well described in two distinct but dependent interdisciplinary
areas, namely hardware and software. Arithmetic operations are very vital building blocks of an electronic
system. An algorithm is a systematic arrangement that helps develop a sophisticated electronic system,
including hardware and software aspects. Addition, subtraction, multiplication, and division are critical
elements of arithmetic implementation in the electronic system, but fewer efforts have been made to
implement division than other arithmetic operations, even though the number of transistors on a chip is
increasing beyond the Moore’s law prediction. It is quite complicated to implement arithmetical operations;
here, a sophisticated algorithm is essential to successful implementation. Technological upgrades are leading
to a new paradigm of applications, where the performance of a division circuit or block is a vital and
critical feature of a successful system. The lexicon of algorithms used in the implementation of the division
operation in electronics systems is discussed in detail in the present article, which indicates the mathematical
formulation, criticality, conversion pattern, hardware requirements, and logic used for conversion. The
current report describes the broad classification of dividers into basic classes named digit recurrence,
high radix, functional iteration, estimation, a look-up table, and variable latency. It also illustrates that,
in practical implementation, many algorithms have been developed that combine one or many classes and
are implemented with different hardware architectures. The study indicated the possibility of improving the
presently available algorithms or creating a new algorithm to enhance practical implementation.

INDEX TERMS Divider, SRT, restoring, non-restoring, digit recurrence, radix-n, FPGA, functional iteration,
look-up table, variable latency.

I. INTRODUCTION
Mathematics is not just a word but has also had a colos-
sal status in the life of human beings from its very begin-
nings. Sometimes it is not only an indicative word but also
acts as a science of numbers and their relations or, eventu-
ally, both. The theoretical study of mathematics is specially
named Theoretical Mathematics, whereas another side of it,
termed Applied Mathematics, is useful in different comput-
ing aspects of daily life [1], [2]. It is no exaggeration to
say that mathematics is everything and that everything is
mathematics. From the very early stages of the human race,
mathematics has been in force. From the beginning of our
evolution, mathematics was involved in counting, time, and
space; later, when humans started to understand more aspects

The associate editor coordinating the review of this manuscript and

approving it for publication was Gian Domenico Licciardo .

of life, it stimulated the study of various fields like astron-
omy, architecture, ratio proportions, navigation, etc., to fulfill
their requirements. This gave a more significant aspect to
the requirement for applied mathematics in human life; until
the industrial revolution, mathematics was extensively used
in chemistry, physics, architecture, metallurgy, and financial
sectors. The initial phases of industrialization were reliant
on the new ways of theoretical mathematics and physics in
the field of industry to develop mass production techniques
that could provide a better solution to economic difficulties
in producing various items or products. These efforts from
applied physics and mathematics gave birth to new possibili-
ties, leading to the newborn field of electronics and integrated
circuits, which has proved very valuable and innovative for
existing applications like communications, transport, and
calculations. In the beginning, communication was fully ana-
log. With technological evolution, it changed to digital, but

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 23035

https://orcid.org/0000-0003-4167-6755
https://orcid.org/0000-0002-1913-4928

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

whether analog or digital, the concept of modern communi-
cation at that time also showed a significant dependence on
mathematics. In current times, the importance of digital com-
munication and computation has reached a different level.
Which in turn allows the evolution of new fields of work
and study in the data protection area, statistical data anal-
ysis, computational processing, signal processing, artificial
intelligence, image processing, complex systems on chips,
central processing unit, graphics processing unit, biomedical
equipment, fuzzy control, space engineering, etc. [3]–[11],
[52]–[56]. Fig. 1 illustrates the different trends of application.
However, addition, subtraction, multiplication, and division
remain vital building blocks in implementingmodern theories
of theoretical and applied mathematics [4], [52], [58], [59]
and represent the mathematical operations’ essential proper-
ties as illustrated in Fig. 2.

FIGURE 1. The trends of application.

FIGURE 2. The properties of various mathematical operators.

Due to the lack of communication and transport means,
there was no such typical period of evolution of mathemat-
ics around the world. In the modern era, mathematicians
have researched old concepts and developed new concepts to
meet today’s computational and technological enhancement
requirements. Although new concepts, operations, logic, and
relations have been developed in mathematics, addition, sub-
traction, multiplication, and division are still the strong foun-
dation of applied mathematics [4], [52]. The addition is a
simple terminology that indicates the action of collecting or
grouping in general. The commutative and associative aspects

of the addition operation have made it easy to perform its
electronic application from the beginning of the new electron-
ics era [12], [13]. Subtraction is a second but very important
operation. It is defined as the act of reduction. Multiplica-
tion is one of the basic operations but a derived function
in mathematics. It also combines multiple quantities into a
single amount like addition. Multiplication is also known as
successive addition. The division operation is also a derived
operation like multiplication; instead of successive addition,
it involves successive subtractions along with some control-
ling conditions. The result of the successive subtractions
must be tested under several controlling conditions before
its finalization. It has a high dependency on the order of two
quantities connected by the division operator. Unlike multi-
plication and addition, the division operation does not possess
commutative and associative properties, making it critical and
challenging to implement in an electronic way [3]–[11].

Fig. 3 (a), (b), and (c) show the fundamental ways of per-
forming division operations using (a) the successive subtrac-
tion method, which is also called a long division algorithm
or paper and pencil algorithm, and (b), (c) the look-up table
method. The successive subtraction method looks very easy
and possesses a simple quotient conversion logic; when it
comes to implementing electronically for critical systems,
it is not suitable to use simple recursive logic for conversion.
Thus, manymethods or algorithms have been researched over
a period to implement an efficient divider for an efficient
system. There exist various algorithms to perform division
in multiple ways. Still, broadly, depending on the logic of the
quotient conversion, they can be summarised into multiple
divider classes, which are discussed and compared in detail
in the next sections of this article. Selection of the appropriate
divider option depends on the criticality of the application,
i.e., time-critical or space-critical. Based on that, one has
to select the perfect alternative for the divider circuit or
block in implementation. In the second section of this article,
we discuss the various ways of stratifying different division
algorithm classes for particular applications, which can be
selected as either stand-alone or in combination with other
classes to achieve the maximum efficiency in implementing
the divider circuit or block. In later parts of an article, section
three to section eight, we discuss the individual divider
classes. Section nine discusses a large range of division algo-
rithm implementations, followed by a comparative study in
section ten.

II. DIVISION ALGORITHM BACKGROUND
All mathematical operations have been implemented using a
digital platform, but it is still critical to implement the divi-
sion operation. Researchers’ unceasing efforts in technolog-
ical development have boosted computational complexities,
which demand high-level systems performance. Nowadays,
computers are ubiquitous in almost every field. A Field Pro-
grammable Gate Array (FPGA) is one of the outcomes of
improved technology. It enables reprogrammable hardware,
which reduces the hardware cost and implementation time.

23036 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

FIGURE 3. (a). The successive subtraction method of the division
operation. (b), (c) The look-up table methods of the division
operation.

FPGA has implemented many critical systems. It gives the
flexibility to implement a system on a chip for different
purposes. In FPGA, the arithmetic and logical module (ALM)
is an essential building block for implementing the desired
logic. FPGA applications are most important and critical for
automotive control, online data processing, and a wide range
of computational tasks, which can be solved by implement-
ing a small complex system like a computer system on a
single chip. All mathematical operations have been imple-
mented electronically, but it is required to focus on improving
dividers because the improved technology has given birth to
new applications that require a faster speed of response and
critical calculation with reduced area requirements; hence
more effort has been put into developing improved adders and
multipliers instead of improving dividers. This is because of
the ease of developing and implementing adder and multipli-
cation logic more effectively than divider logic. The typical
latency performance for addition and multiplication falls in
the range from a couple of clock cycles to less than ten
clock cycles; on the other hand, a division is in the range of
tens of clock cycles [14], [73]–[76]. Computer performance
could be degraded in the long run due to unimproved divider
operation for new computer applications, so better imple-
mentation of the divider operation is required. The best way
of understanding the merits and demerits of dividers is by
classifying division algorithms in different classes. Classes
are no more than the indicative name given to a group of
algorithms that exhibit similarities in their conversion logic.
The hierarchical distribution of various categories of division
algorithm is shown in Fig. 4 and is described as follows:

FIGURE 4. The distribution of different division algorithms.

Based on the method of conversion, we can distinguish
division algorithms in the following classes.

1. Digit recurrence
2. Functional iteration

VOLUME 9, 2021 23037

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

3. Very high radix
4. Look-up table
5. Variable latency

Based on hardware architecture [8], [14], we can classify
types of dividers as:

1. Serial or sequential type
2. Parallel type
3. Pipelined type

Based on performance [15], we can classify types of dividers
as:

1. Slow type
2. Fast type

Based on execution [16], we can classify types of dividers as
1. Iterative subtraction type
2. redictive type

Various attempts have been made to study different division
algorithms to state their quotient conversion logic, purpose,
and design requirements [14], [17], covering some aspects
of comparison. In the next section, we briefly discuss the
comparative study of various classes along with different
advantages and problems associated with them. There are
five general classifications of division algorithms. Depend-
ing on the hardware architecture and accessing techniques,
they can also be further characterized as serial, sequential,
parallel, pipeline, slow, fast, iterative, and predictive classes,
along with digit recurrence, functional iteration, very high
radix, look-up table, and variable latency classes of division
algorithm-based dividers.

III. DIGIT RECURRENCE CLASS (DRC)
The simplest andmost commonly implemented division algo-
rithm class is the digit recurring class due to its simple
conversion logic. It is considered the oldest and pioneer
class amongst all the division algorithms. Many surveys
and research articles have been published based on these
algorithm-based division circuits. At the beginning of the dig-
ital era, it was difficult to implement extensive algorithms due
to the limited capabilities of programmable logic devices like
FPGAs. Thus, the implementation of the DRC algorithm was
preferred for commercial applications. The digit recurrence
algorithm resembles the simple paper and pencil technique
of division, as illustrated in Fig. 3 (a) above, in discussions
on the process of a division operation, which works digit-
by-digit and produces a quotient in sequence. It uses iterative
type subtraction to calculate the quotient. This means the
division is performed by repeated subtraction of the divisor
from the dividend until the resultant quantity of subtraction is
smaller than the divisor quantity. Quotient conversion logic is
an iterative process of subtraction, which generates specific
digits or bits of quotient at each iteration, from 1 to n digits or
bits per iteration. In other words, the quotient is derived from
a number of iterative subtractions that have been performed
and is generated digit-by-digit in sequence, with its most
significant bit first, like a paper and pencil algorithm [4], [5],
[14]–[20]. The key point in using this type of divider is that
it requires a combination of simple operations like addition,

shifting, multiplication, etc., shown in (1), and the remainder
has to fulfill the requirement stated in (2) [4].

Dividend = (Quotient× Divisor)+ Remainder (1)

0 ≤ Remainder ≤ Divisor (2)

This class of division algorithm mainly covers three types of
dividers

1. Restoring
2. Non-restoring
3. SRT (radix n)
Although it is easy and less critical, it has both merits and

demerits. Being an easy and less complex conversion logic
for the quotient is a merit, but it exhibits relatively higher
latencies as a demerit. The long division algorithm is a good
example of this. The speed of SRT-based dividers is mainly
determined by the complexity of the quotient-digit selection
logic. The division algorithm generally does not provide any
finite result. It depends on the accuracy required to decide the
length of quotient digits or bits. It has to use a quotient digit
selection look-up table (QST) to enhance the quotient con-
version time. It requires extra storage space either in ROM,
programmable logic arrays (PAL), or combinational logic.
Distinct sequential streams of digits represent the quotient
and remainder, with theMSB digit or bit generated first in the
quotient and remainder sequence. Many processors like Intel
Pentium, HP PA 8000, and Sun UltraSPARC [20] initially
implemented this concept.

FIGURE 5. Long division algorithm of the digit recurrence class.

A. RESTORING ALGORITHM (RA)
The restoring algorithm has similarities with the long division
method, which is also known as a paper and pencil algorithm
in general, and is described in section I. Fig. 5 illustrates
the long division algorithm of the digit recurrence divider
class. In the case of standard long division, the algorithm’s
single quotient bit is calculated in each iteration by subtract-
ing the divisor from the partial remainder generated in the
previous iteration. In the case of the initial iteration, where
the partial remainder is considered a dividend, the divisor’s

23038 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

initial iteration subtraction is performed from the dividend.
The resultant partial remainder is considered for the next
iteration. In each iteration, its divisor is checked against the
shifted partial remainder of the previous iteration to verify the
quotient bit for that particular iteration. If the divisor is found
to be less than or equal to the shifted partial remainder, then
the quotient bit for that iteration is considered to be one, else
considered to be 0.

qj = 0 if 2Rj−1 < Dr (3)

qj = 1 if 2Rj−1 ≥ Dr (4)

Rj = 2Rj−1 − qj × Dr (5)

Equations (25) to (27) represent conditions for the long
division algorithm Dd to be the dividend, where Dr is the
divisor, qj is the quotient bit from the jth iteration, and Rj is
the partial remainder for the jth iteration. No special case is
required to test the maximum case in any iteration, which
is nothing, but the initial dividend and value is equal to the
divisor. Still, there is the possibility of losing a significant
bit during the shifting process if the dividend is greater than
the divisor, causing output error. Thus, an extra test case is
required for checking the overflow state during the first itera-
tion, and its last remainder is discarded; whereas, in restoring
the algorithm at any moment, if the partial remainder value is
other than positive or zero, then the divisor is restored by the
subtraction result performed in that iteration.

FIGURE 6. The restoring division algorithm of the digit recurrence class.

Fig. 6 illustrates the restoring division algorithm of the
digit recurrence class. A non-redundant number system,
which is also considered as a number system that doesn’t
use multiple bits to represent a single digit, is preferred
to represent the quotient and remainder of the restoring
algorithm-based dividers. To perform the division of the
dividend number by the divisor number using a restoring
algorithm, it is crucial to have a positive dividend and divisor;
this is the essential requirement. Thus, the remainder and
quotient values remain either positive or zero [4]. Its vital
point for implementation is that it requires full-width com-
parisons to glean the new quotient digit. In every iteration of
the algorithm, it performs shift, compare, add, and subtract
operations. The steps to achieve this restoring algorithm are:

1. Select initial values for divisor (Dr), dividend (Dd),
the partial remainder (Rj), and the number of bits (n)
arranged in shift position to left, as indicated by the
arrow sign shown in Fig. 6.

2. Subtract divisor (Dr) from the partial remainder (Rj),
and the result is stored in the partial remainder (Rj).

3. Check for the most significant bit of the partial remain-
der (Rj); if 0, then the least significant bit of Q is set to
1; otherwise, the least significant bit of Q is set to 0, and
the value of the partial remainder (Rj) is restored back
to the value prior to the subtraction.

4. Reduce the value of n by one.
5. Continue iterations until we get a value of n = 0.
6. Lastly, the quotient (qj) is obtained in the quotient div-

idend block.
Consider Dd is the dividend, Dr the divisor, qj the quotient of
the jth iteration, andRj the partial remainder. At the initial iter-
ation, we can consider the dividend as partial remainder R0.
The Rj and qj values can be represented as the following
equations:

R′j = 2Rj−1 − Dr (6)

qj = 0 if R′j < 0 (7)

qj = 1 if R′j ≥ 0 (8)

Rj = 2Rj−1 if qj = 0 (9)

Rj = R′j if qj = 1 (10)

B. NON-RESTORING ALGORITHM
This algorithm is very similar to that of the previously dis-
cussed restoring algorithm. One difference is that in a non-
restoring algorithm, unlike the restoring algorithm, it is not
required to restore the partial remainder if the subtraction
goes negative. Similar to the restoring algorithm, in the non-
restoring algorithm, we shift and subtract the divisor (Dr)
depending on the value we get in the partial remainder, except
that the range of the partial remainder (Rj) in the case of
the non-restoring algorithm is {−Dr, Dr}. In a non-restoring
algorithm, only one decision, either add or subtract, must
be made per quotient bit qn [4], [5], [15], [57]. There is no
restoring step after the addition or subtraction decision is
made to reduce the actions from the previously discussed
restoring algorithm. The steps to perform this non-restoring
algorithm are:

1. At the beginning, reset all values to zero.
2. Allot the corresponding values to the dividend (Dd),

divisor (Dr), and the number of bits in the dividend (n).
3. Check for the sign bit of the partial remainder. For the

first iteration, consider the sign positive, as the partial
remainder value is set to an initial value of zero.

4. For the first iteration, subtract the divisor from the
partial remainder.

5. If the result is negative, then shift the partial remainder
left by one bit.

6. Add the divisor to the partial remainder.

VOLUME 9, 2021 23039

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

7. After shifting the partial remainder one bit left in each
iteration, the divisor is either subtracted from or added
to the partial remainder, depending on the value of the
previous iteration’s sign bit.

It is mandatory to keep the partial remainder between the set
of values {− Dr, +Dr} [4], [5], [15]. Thus, we have to add
or subtract in the next step. This implies testing when to add
and when to subtract the divisor from the partial remainder.
When the dividend is positive, the first iteration is always
subtraction. Thus, the iteration may be set as R0 = 2Dd - Dr;
unlike the restoring algorithm, in the non-restoring algorithm,
qj ranges from −1 to +1 instead of 0 to 1. In a non-restoring
algorithm, it is required to maintain separate hardware for
addition and subtraction for each iteration, causing overhead.
The equations (11) to (14) represent the values of the partial
remainder (Rj) and quotient (qj).

qj = −1 if Rj−1 < 0 (11)

qj = 1 if Rj−1 ≥ 0 (12)

Rj = 2Rj−1 + Dr if qj = −1 (13)

Rj = 2Rj−1 − Dr if qj = +1 (14)

The major drawback of this is that we need to maintain an
extra sign bit to keep track of the sign and decide whether
to perform addition or subtraction, which leads to deciding
whether to perform addition or subtraction, leading to area
and latency limitations when implementing this algorithm.
Another minus point is that we need to maintain separate
hardware to perform addition or subtraction. Thus, it sug-
gests further optimization with 2’s complement, in which
2’s complement of Dr replaces −Dr as (37) to (46) and
Table. 1 summarize the basic points of comparison between
restoring and non-restoring algorithm.

qj = −1 if Rj−1 < 0 (15)

qj = 1 if Rj−1 ≥ 0 (16)

Rj = 2Rj−1 + Dr if qj = −1 (17)

Rj = 2Rj−1 + Dr + 1 if qj = +1 (18)

C. SRT ALGORITHM (RADIX-N)
Digit recurrence algorithms are an enduring favourite for
computer and electronic implementation. The SRT algorithm
is one of the most popular of all the digit recurrence division
algorithms to implement and one of the non-restoring digit
recurrence algorithms. The primary application area of the
SRT algorithm is in general-purpose processors, which are
generally used for personal computers, FPGA systems, and
ASIC processors. The SRT algorithm is named after the three
individual researchers who individually proposed utilizing
the 2’s complement technique of shifting over zeros for the
division to replace the range of the partial remainder in
terms of reducing the resource requirements [15], [21]. As in
the non-restoring algorithm, where the partial remainder is
maintained in the –Dr to +Dr range, it requires an extra set
of hardware to perform addition and subtraction. The SRT

TABLE 1. Comparison between restoring and non-restoring algorithm.

FIGURE 7. The radix-2 SRT algorithm.

algorithm implements 2’s complement value of Dr instead
of –Dr, which indeed provides shifting over zeros to eliminate
the extra adder and subtractor [14], [15], [20], [21]. The
following Fig. 7 and expressions illustrate the SRT algorithm
for radix-2.

qj = 1 if 2Rj−1 < −Dr (19)

qj = 0 if −Dr ≤ 2Rj−1 ≤ Dr (20)

qj = 1 if 2Rj−1 ≥ Dr (21)

In the SRT algorithm, each quotient digit has one of the
values−m,−m+ 1. . .−1, 0,+1. . .m−1, m, where m is an
integer [21], [58] such that (22) comprises k digits of radix-n
as:

1
2
(n− 1) ≤ m ≤ n− 1 (22)

n = 2b and k = x/
b (23)

Q =
∑k

j=1
qjn−j (24)

Quotient q is generated as a division of the dividend by
a divisor of x bits significand, i.e., 4, 8, 16, 32, etc. The
algorithm retires b bits of the quotient in each iteration.
Thus, it is called a radix-n algorithm. Radix-n is typically

23040 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

selected as a power of base 2. Such an algorithm performs
k iterations to get the quotient. Thus, it shows the latency of k
cycles, where the cycle time is considered as the maximum
time to compute one iteration of the algorithm. This may
or may not be the same as the clock time of the processor.
This shows the algorithm’s radix dependency, suggesting the
higher the radix, the lower the latency time. The quotient digit
is preliminarily guessed based on a few MSBs of the divisor
and the partial remainder, rather than by computing. Thus,
it requires a quotient digit selection and partial remainder
generation in one iteration. Here the radix number n repre-
sents the trial subtractions performed while predicting the
quotient [32], [33]. The IEEE has standardized some data for-
mats commonly used for floating-point calculation, mainly
named single and double-precision floating-point format with
a significant 24 bits for single precision format and 53 for
double precision format [5].

FIGURE 8. Block diagram of SRT algorithm.

Fig. 8 illustrates the SRT algorithm’s block diagram per-
formed at every quotient bit generation in every iteration.
At the initial iteration, the partial remainder is considered
as a dividend, and then it is multiplied by radix-n, which
is represented as a shift left by k bits, as shown in Fig. 8.
The resultant product is then given to the quotient selection
table (QST) and the subtractor as one input. The divisor pro-
vides the second input for the quotient selection table. Now,
based on a few MSBs of the product term and the divisor,
it surmises the quotient digit for the next iteration. The second
input to the subtractor is provided by the multiplier output,
which works on the output of the quotient selection table
and divisor to generate the next partial remainder. In the

next iteration, this partial remainder is used instead of the
dividend. This will continue until all the quotient bits are
revealed. In the last iteration, the generated partial remainder
is considered as the final remainder. After the Kth iteration,
the final quotient is achieved in redundant format, which
shows that the resultant quotient can be represented in several
formats, giving an alternative selection for the quotient digit
in each digit position. Thus, it requires an extra subtractor
to represent the final quotient in terms of a non-redundant
number containing no negative digit. To achieve this, it is
necessary to subtract the positionally weighted digit of the
quotient from the positionally weighted positive digits. Carry
out propagation is necessary to perform this subtraction once
after the last iteration. The quotient selection is performed in
the form of a redundant number system, which shows that a
given position of the quotient digit requires the approximation
of the divisor and partial remainder with a few MSB bits
indicating the smaller error.

Meanwhile, the error in the guessed/predicted value of the
quotient and the partial remainder relates directly to the num-
ber of unexamined bits from the divisor and partial remainder.
It is expected that smaller errors possibly be resolved by the
less significant bits of the quotient. Equation (22) suggests the
range of maximum digits to consider, which is represented
by m. If we select a lower range where m is equal to the value
(n-1) / 2, this shows lower redundancy, and m equal to the
value (n-1) shows maximum redundancy. Higher redundancy
eases the quotient selection logic design and requires fewer
bits from the partial remainder to be examined.

On the contrary, this requires more multipliers of the divi-
sor to be formed; this will make it necessary to pre-compute
the values of the multipliers and also requires extra space
to include with the actual algorithm along with the quo-
tient selection table. From this implementation point of view,
the available choices with specific components will con-
tribute to the cost, area, and, ultimately, the algorithm’s
performance. The trade-off between these components will
lead to different application choices, from less critical to
critical, and affect the time-cost requirements. The com-
ponents with choices to be made are mainly the radix,
quotient representation, and partial remainder representation
[14], [23], [58], [79].

1) CHOICE OF RADIX
In general, the radix is termed as a base number, which is
primitive and from which we can produce other numbers in
connection, which can be termed as the number system. It is
also termed as the fundamental number of any system. In the
case of the SRT algorithm, it considers the power of 2 for
selecting different radix types. The main reason to consider
the power of 2 here is that the product of the partial remainder
and radix can be presented as a shifting operation, which
makes for the easier design of the hardware. Here radix-n
indicates how many quotient bits will be revealed and, for
that, howmany subtraction stages are required. Thus, increas-
ing the radix will increase the quotient bits revealed in one

VOLUME 9, 2021 23041

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

iteration, causing a reduction of the total iterations required
to get the ultimate quotient. As radix-2 retires one quotient
bit per iteration and radix-4 retires 2 bits per iteration, this
reduces the latency.

On the contrary, it increases the complexity of the logic for
quotient digit selection. In practice, the iterations are reduced
due to an increase in the radix, but this also increases the crit-
icality in the quotient digit selection logic, requiring a longer
look-up table to be implemented. Thus, the time required
to access the quotient selection table will increase with the
radix increase, possibly increasing the total time required
to compute the quotient bit. So, the total time required to
compute n quotient bits is not reduced as per the calculations.
In general, the radix-n SRT algorithm is implemented serially
so that a single look-up table can be used for all iterations.
Thus, the maximum hardware implementations are restricted
to radix-4 SRT [4]. Along with this, more multipliers need
to be formed for an increased radix, requiring a greater area.
Thus, these two factors adversely affect the advantage of
an increased radix, making lower radix values preferable
for implementation, which also introduces some error in the
predicted value and the exact value of the quotient, which can
be resolved at the least significant bits in the last iteration.

2) CHOICE OF QUOTIENT DIGIT SET
In digit recurrence algorithms, it is possible to decide digit
ranges; in short, to decide the value of a digit among the
given set of possible values. To improve the algorithm’s speed
and performance, we use symmetric consecutive digits with
signed bits with a maximum possible value of m, and the
number of digit values must contain higher than N consec-
utive integer values, including value zero, i.e. −m, −m +
1. . .−1, 0, +1. . . m−1, m. Digit value must be valid for
m ≥ n

/
2 condition to make the digit range redundant. The

redundancy factor ρ, is responsible for the redundancy of
digit range [69]–[74], [76], which can be express as (25)

ρ = m
/
(n− 1) and ρ > 1

/
2 (25)

When the value of m is n
/
2, digit range is minimal redundant,

and when m is (n-1), the digit range is maximum redundant.
Once the redundancy factor ρ is selected, we can perform
quotient selection logic. Thus, while performing quotient
digit selection from the digit range, we have to consider
the containment condition defined by the sectional inter-
val between two consecutive redundant digit values in the
digit range. We can represent the containment condition as a
region covered by conditions given in (26), where Hk and Lk
stand for higher and lower cut off, which can be represented
as a line with slop ρ + k and −ρ + k [14], [21], [58], [62],
[64]–[68].

Hk = (ρ + k)Dr and Lk = (−ρ + k)Dr (26)

To improve performance, we consider using a redundant digit
set, which allows us to select the quotient digit based on the
partial remainder. This introduces a small error, which can
be rectified in a later iteration: e.g. the radix-2 digit set is

(−1, 0, 1) and for radix-4 there are two possibilities, a min-
imal set having (−2, −1, 0, 1, 2) and a maximum set
(−3, −2, −1, 0, 1, 2, 3) [15], [32], [35], [70], [72]–[76].
A greater possible value for the quotient bit leads to simplify-
ing the logic for quotient digit selection, but at the same time,
it will make a more complex product of the partial remainder
and divisor, which may require more multipliers, causing an
area increase.
The most critical part of divider performance is how effi-

ciently implemented quotient selection logic. If we use redun-
dant digit value representation for remainder digits, then we
will not be able to derive the exact value of partial remainder
or residue, which will cause uncertainty in selecting an exact
value for the next quotient digit. Thus We have to use redun-
dant digit value range representation for selecting quotient
digit.Whenwe use redundant digit value range representation
for selecting quotient digit, it is not important to know the
exact value of partial remainder or residue, but it must be
required to know, as shown in Fig. 9, the exact location in
which sectional interval range of partial remainder - divisor
graph it will fall. The realization of quotient digit selection
logic is performed by approximating partial remainder and
divisor. The quotient selection logic’s complexity depends
upon how many bits of partial remainder and divisor are uti-
lized. A separate look-up table is performed, which contains
all possible values of the selection logic. In the generalized
look-up table method, we utilize selection constants. We per-
form sectionizing the complete divisor range into equal inter-
vals (Drj, Drj+1) expressed as

Dr1 = 1
/
2, Drj+1 = Drj + 2−δ (27)

Two consecutive sections share an overlapping region,
as shown in Fig. 9. Extra attention needed to be given while
deciding logic to select quotient digit in this overlapping
region. The regions are indicated by the most significant bits

FIGURE 9. Partial remainder – Divisor (PD) graph.

23042 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

of the divisor, which are used for selection logic based on the
selection constant Sk (i) is given as

qj+1 = k if sk (i) ≤ nr j ≤ sk+1 (i)− n−r (28)

then the range of selection constant sk (i) for a given value
of k forms a series of steps that connect the overlap region.
Higher redundancy factor cause wider steps and requires
less divisor and partial remainder bits. However, an increase
in the radix directly influences the quotient digit selection
logic’s complexity and, ultimately, the look-up table. The
vital problem associated with the SRT algorithm is predict-
ing quotient digit in the overlapping region caused by the
same region corresponding to different coefficients. Quotient
digit value has to be one which can either be q = qj or
q = qj+1 depending on the selection logic derived by the
divisor and partial remainder [14], [35], [51], [58], [60]–[62],
[64]–[68]. The step function is not constant for all overlap-
ping regions. Depending upon what radix is used, causing
the more divisor-sectional regions, increasing step function
in the higher radix. This small looking problem can cause a
magnificent loss in practical implementation in terms of cost
and time and lead to total system failure. The most famous
example of this problem is Intel’s Pentium processor flaw
in the Floating-point divider, which was design based on the
SRT algorithm [32], [61], [65], [69], [71], [76], [78]. A poten-
tial problem in overlapping regions costs USD 475 million to
Intel to replace the faulty Pentium processor chip [65].

3) CHOICE OF REMAINDER REPRESENTATION
There are two options available with the SRT algorithm
to represent its partial remainder and remainder, which are
the redundant and non-redundant format. The conventional
2’s complement is an example of the non-redundant form,
while the carry-save two’s complement is an example of a
redundant form. When we consider the non-redundant form,
then subtraction is required to find the partial remainder
required to implement the carry propagated full-width adder.
When we use the redundant form, then subtraction can be
performed by carry-save adders, but this complicates the
quotient digit selection logic as it is dependent on the shifted
partial remainder value. A summary of the SRT algorithm is
given in Table 2.

4) SRT ALGORITHM PERFORMANCE IMPROVEMENT
TECHNIQUES
As we have stated earlier, the SRT algorithm has been very
popular from the very beginning. Thus many attempts have
been made to improve the performance of the traditional
SRT algorithm. As we have discussed in earlier sections
on different parameters and how they affect the traditional
SRT algorithm’s performance, many techniques have been
claimed to improve the traditional SRT algorithm’s perfor-
mance, some of which are discussed in [34]–[44]. Some of the
performance-improving techniques like simple staging, over-
lapping execution, overlapping quotient selection, overlap-
ping partial remainder computation, range reduction, operand

TABLE 2. Summary of SRT algorithm.

scaling, and circuit effects are important and discussed in the
later sections.

a: SIMPLE STAGING
Cascading is the method used to connect two blocks of
circuits back-to-back, suggesting that one circuit’s output is
connected to another circuit’s input. In terms of the SRT
algorithm, if we connect two low radix divider circuits back-
to-back in a cascaded fashion, it can work as a higher radix
divider as one unit, as shown in Fig. 10.

VOLUME 9, 2021 23043

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

FIGURE 10. Block diagram of cascaded implementation of SRT algorithm.

Cascading multiple lower-order radix dividers together
will contribute to a higher radix divider, but at the cost of
higher area requirements than the usual one unit of a high
radix divider. The key point in usingmultiple low radix blocks
together is to use them at a much higher clocking frequency
than the system clock frequency; likewise, we are able to
work out multiple blocks in one system clock cycle. It is
possible to arrange multiple low radix dividers to completely
determine all the quotient bits in one system clock cycle. The
major drawback of this may be an enormous amount of area
and having an unacceptably low cycle time. HP PA-7100 and
AMD 29050 microprocessors are examples of two radix-4
clocking faster than the system clock to perform radix-16
work in every machine cycle [14].

b: CIRCUIT FAMILY EFFECT
The study shows that the two circuits built using the same
logic family of digital circuits cause similar delays. If the
same circuits are implemented in the different logic family of
the digital circuit, this shows visible changes in the circuit’s
performance, either worse or better. The study presented
in [32], [34] shows that many circuit-level implementations
of the SRT algorithm yield different performance depend-
ing on the choice of base architecture and the choice of

radix-2 or radix-4. When performed, implementation in
CMOS and dual-rail domino circuits provide a 1.5 to 1.7
times speedup performance.

c: OVERLAPPING / PIPELINE EXECUTION
A divider circuit is a very complex operation formed by
connecting different components sequentially and logically,
which makes it possible to overlap some of the operations of
components to execute them together in the same cycle. This
ultimately leads to a pipeline structure of the components and
reduces the execution cycles [14], [43].

FIGURE 11. The conditions of execution.

Fig. 11 illustrates the three different conditions of execu-
tion of the SRT algorithm. In short, the SRT algorithm has
three components, which execute their work after finishing
the previous component’s execution, as shown in the normal
form of SRT algorithm execution. In the normal form of
execution, the second iteration starts after completion of the
first iteration, indicating that the next stage’s quotient selec-
tion (QS) is dependent on the partial remainder (PR) gener-
ated in the previous iteration. The execution depends on the
partial remainder execution time in the one overlap form, sug-
gesting that overlapping quotient selection execution depends
on the partial remainder execution time. In the case of 2 over-
laps, execution is dependent on the quotient selection exe-
cution time, which indicates a pipelining quotient selection
execution along with the divisor multiplier (DM) and partial
remainder execution time. The partial remainder dependent
pipelined form of execution is performed when a redundant
format is used to represent the partial remainder, whereas the
quotient selection execution dependent pipeline is suitable
when a non-redundant format is used to represent the partial
remainder.

D. SVOBODA ALGORITHM (GSA)
SRT is the most implemented digit recurrence algorithm,
which works on the principle of developing a quotient digit
selection logic based on a few MSB’s of the divisor, and the
partial remainder. SRT does not require prescaled operands,
but it worked on the normalized operands. In 1963, Svoboda
came up with a radix-n digit recurrence division algorithm
based on the only partial remainder. Unlike the SRT digit

23044 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

recurrence algorithm, it considers quotient digit selection
logic based on remainder’sMSBs [10], [59], [80], [95]–[100].
Svoboda division algorithm, also known as generalized Svo-
boda division algorithm or simply GSA. Svoboda division
algorithm requires inputs to be in prescaled form, near to 1.
Thus, it can be represented as (1 + er), where er is a small
positive fractional value er < 1

/
n and n is the radix. We can

describe the Svoboda digit recurrence algorithm in simple
steps [95], [96] as
• In the first stage, consider normalized inputs. If not,
convert it in normalized form and prescale operands to
represent (1+ er), i.e., near to 1.

• In the second stage, the actual iteration process will start.
At each iteration j, the quotient digit of that iteration
qj+1 is multiplied by a small positive fractional value er
and subtracted from the partial quotient qj. The resulting
partial quotient bit is considered for examination.

• If qj results in −ve, it indicates overshooting, to com-
pensate overshooting by adding/subtracting er and per-
forming right shift operation by j-1 places depending on
the last step was subtraction/addition.

• After ith iteration, left ith digits of the partial remainder
are considered as quotient digits, and the rest of the digits
are considered remainder.

Even though the Svoboda digit decurrence algorithm requires
only remainder MSB digits to estimate quotient digits, there
are certain limitations [59], [80], [95], [99] to Svoboda
implementation
• It requires prescaled inputs in a particular range near
to 1, causing additional clock cycles.

• Extra two multiplications are needed if operands are not
in prescaled form.

• Possible overflow due to overcompensation causing to
select quotient digit from out of the remainder digit
range.

• It is applicable above n > radix 4.

E. SVOBODA-TUNG ALGORITHM (STA)
Later Tung [59], [95], [97], [98] investigated the possi-
bility of the Svoboda algorithm implementation with the
signed digit number system, whereas the generalized Svo-
boda division algorithm is implemented on redundant digit
representation. Tung Implementation of Svoboda algorithm
known as Svoboda-Tung (ST) algorithm. Svoboda-Tung
(ST) algorithm also exhibits the same drawbacks as that
of the Svoboda algorithm mentioned above. Along with
that, Tung has exploited the carry propagation free prop-
erty of the signed digit number system and the simplic-
ity of quotient digit selection logic [95]. Later in 1991,
Burgess [95] has implemented Svoboda-Tung (ST) algo-
rithm with a slight change. In Burgess implementation, they
have considered two MSB’s of partial quotient instead of
one MSB to determine quotient digit. Upon the worst con-
dition of overshoot, unlike Svoboda-Tung (ST) algorithm,
here it gives several possibilities which are summarized
as

{
00, 01, 01̄, 10, 11, 11̄, 1̄0,1̄1,1̄1̄

}
to perform different

controlling operations defined for all the alternatives given
in the range, like not operate when MSB value is 00, 01, 01̄,
Subtract er when MSB value is 10, 11, add er when MSB
value is 1̄0,1̄1̄, rewrite 01 when MSB value is 11̄ and rewrite
01̄when the MSB value is 1̄1. Where sign digit range is
given as

Range = {0,±1,,±m} (29)

Boundry limit =
{
n
/
2+ 1 ≤ m ≤ n− 1

}
(30)

In this, m in (29) is considered the maximum digit value in
the balanced signed digit range, which could be selected for
the quotient digit, and n in (30) is the radix of dividers. The
arithmetic limit for the partial remainder is given as (31), and
the valid range of divisor (Dr) is given as (32){

−m
/
n− 1 < Rj < m

/
n− 1

}
(31){

mn
(m+ 1) (n− 1)

< Dr <
m(n− 2)

(n− 1)(m− 1)

}
(32)

F. NEW SVOBODA-TUNG ALGORITHM (NSTA)
To overcome the basic drawbacks of the Svoboda-Tung (ST)
algorithm without losing up any of the benefits is possi-
ble by incorporating the following updates in the actual
Svoboda-Tung (ST) algorithm [59], [97], [98], [100], signed
digit range is given as

Range = {0,±1,,±m} (33)

Boundry limit =
{
n
/
2+ 1 ≤ m ≤ n− 1

}
(34)

In this, m in (33) is considered the maximum digit value in the
balanced signed digit range, which could be selected for the
partial remainder Rj along with the signed binary digit (SBD)
range given in (35) and n in (34) is the radix of dividers. The
valid range of divisor (Dr) is given as (36)

SBD = {−1 ≤ m ≤ 1} (35)

Drrange = {0, 1,, n− 1} (36)

This arrangement allows for addition /subtraction with carry
propagation up to one left position. The second drawback
of ST, i.e., overshoot due to compensation, is avoided by
implementing the alternative method of recoding two MSB’s
of the partial remainder with alternate consecutive positions
causing to follow and keep the partial remainder in bounded
condition

Boundry limit =
{
−m

/
n− 1 < Rj+1 < m

/
n− 1

}
(37)

IV. VERY HIGH RADIX CLASS
Very high radix class algorithms are similar to non-restoring
digit recurrence class algorithms. In short, we can differenti-
ate the Simple SRT algorithm and high radix algorithm based
on the number of quotient bits retired in one iteration. Gener-
ally, a divider retiring more than 10 quotient digits in one iter-
ation qualifies as a very high radix algorithm. These very high
radix algorithms show different hardware and logic arrange-
ments for quotient selection and partial remainder generation

VOLUME 9, 2021 23045

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

than SRT-based radix -n algorithms. The main difference
between the SRT and high radix algorithm is that it has amore
complex divisor multiple process and quotient-digit selection
hardware, which increases the cycle time and area. Similar
to the low radix SRT algorithm, a very high radix algorithm
also uses a look-up table, but the size and complexity are
greater. The high radix algorithm proposed by Wong and
Flynn [22] requires hardware with at least one look-up table
of size 2^(m-1) m bits. Three multipliers are required, with a
carrying assimilation multiplier of size (m + 1) × n for the
divisor’s initial multiplications, a carry-savemultiplier of size
(m + 1) × m is used to compute the quotient segments. The
look-up table has m= 11, i.e., 2^(11-1)= 1024 entries, each
11 bits wide, so in total, 11K bits are required in the look-
up table with the slower implementation of the algorithm.
In contrast, the fast implementation of the algorithm requires
a look-up table with 736K bits. The high radix algorithm
proposed by Lang and Nannarelli [45] shows the construction
of a radix-2K divider for implementing a radix-10 divider
whose quotient digit is decomposed into two parts, one in
radix-5 and the other in radix-2. In radix-5, the quotient
digit is represented as values {−2, −1, 0, 1, 2}, requiring
three multipliers. Radix-2 is used to perform division on the
most significant slice. It uses an estimation technique in the
quotient selection component, which requires the use of a
redundant digit format.

The Cyrix 83D87 arithmetic co-processor utilizes a short
reciprocal algorithm similar to the accurate quotient approx-
imation method to obtain a radix-2 17 divider [14]. The
Cyrix divider has a single 18 × 69 rectangular multiplier
with an additional adder port to perform a fused multiply/add.
Therefore, it can also act as a 19× 69multiplier. Although the
high radix division algorithm works with a scaling dividend
and divisor by correct initial approximation of the reciprocal
followed by quotient selection logic with a multiplier and
subtraction, it exhibits the basic SRT properties radix-n algo-
rithm. It uses the reciprocal approximation to investigate the
correct quotient bit based on the formatting scaling factor
based on the look-up table, instead of the look-up table only.
It requires post-correction and rounding off if needed, with
final sign detection. In short, we can say that the high radix
dividers are the same as that of SRT based radix dividers with
a basic difference of increased complexity and criticality in
quotient digit selection techniques. Higher complexity and
criticality in SRT based radix divider is not the only way
to implement high radix dividers, as early we said that a
combination of two or more alternatives together could solve
this problem for high radix implementation. Many research
works are going on all around the world to provide different
aspects for high radix dividers. Use of different look-up tables
along with quotient digit selection logic look-up table [66],
[80], [83], speculating quotient digit and using arithmetic
functions to multiplicative iterations rather than subtractive
iterations [51], prescaling operands [88]–[93], using Fourier
division [86], [87], using alternative digit codes like BCDdig-
its instead of decimal and basic binary digits [81], cascading

multiple stages of lower radix dividers [77], overlapping two
or more stages of low radix [32], [67], a truncated schema of
exact cell binary shifted adder array [68], [82], [85], on-line
serial and pipelined operand division [84], parallel imple-
mentation of the low radix dividers [94], array implementa-
tion [6], these are some of the possible ways applicable for
high radix dividers.

V. LOOK-UP TABLE CLASS
A look-up table class algorithm can be utilized along with
functional iterative class and high radix algorithms. For lower
precision applications like consumer electronics, it can be
used to avoid subsequent use of the algorithm. Look-up tables
can be used to hold the values of pre-computed values for the
quotient bit finalizing technique, standard values, etc. SRT
radix-n is the best example of a look-up table class division
algorithm. The approximation can be achieved by a look-up
table that can provide a faster option at the cost of an increased
area. As the number of bits increases, the look-up table area
requirements also increase. Direct approximation and linear
approximation require the use of the look-up table for the ini-
tial approximation value. In direct approximation processes,
it is expected to prepare a look-up table containing the exact
value of the approximation of the reciprocal function directly
at every stage separately. In this case, the table is formed by
the entries of the reciprocal of the midpoint and successor
in the range 1, b1, b2 bk. The recent upcoming stated
in [46] about the bipartite reciprocal table, which can be used
for approximation in dividers. It uses two separate look-up
tables for positive and negative values. The table forms result
in a redundant format which needs further conversion using
multipliers. In the case of linear approximation, the look-up
table uses some polynomial approximation, which can be
expressed as a truncated series as in (38).

P (a) = X0 + X1a+ X2a2 + X3a3 (38)

The initial order coefficients X0 and X1 are stored in the
look-up table, followed by multiplication and addition. The
absolute error in the final iteration values depends on the ini-
tial approximation. In the case of a linear and direct approxi-
mation look-up table, it depends on the trade-off between the
j number of iterations and the nth number of bits provided to
the look-up table. The look-up table class is hybrid, in which
look-up tables are utilized to improve different classes of
algorithms; e.g., the look-up table can be used in the SRT
algorithm to store the quotient bit selection table and in func-
tional iteration class algorithms to store the elements required
for initial approximation, which ultimately reduces the abso-
lute error. Moreover, one more type of algorithm is discussed
in [16], explaining the use of the look-up table for storing and
utilizing pre-computed values to perform the division opera-
tion. In the algorithm, it first scales down the denominator in
the range of 0.5 to 1; then it refers to the pre-computed value
for the reciprocal of a scaled-down divisor to multiply with
the numerator to get the quotient bit. The drawback of this is
that it generates an absolute error.

23046 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

VI. FUNCTIONAL ITERATION CLASS
Unlike linear convergence algorithms where a single digit of
quotient is calculated in every iteration, a functional iteration
divider computes the quotient of division by estimation; thus,
it can give more than one digit of the quotient in one iteration.
This division method is based on the use of multiplication
instead of subtraction, which ultimately reduces the iterations
and can generate multiple quotient digits in one iteration with
low latency at the cost of the accuracy of the ultimate result.
The implementation of multiplication for conversion requires
a greater area, and for that purpose, it is implemented with
small size multipliers. The use of multiplication for func-
tional iteration dividers makes it more complex than simple
digit recurrence dividers. This type of divider has a major
drawback of the inaccuracy of the quotient result of direct
rounding off approximate solution values rather than infi-
nite precise values. Functional iteration based algorithm per-
forms division effectively but fails to give exact results every
time. They employ rounding off methods while converging
towards quotient, which allows keeping some rounding off
error [110]. The standard of rounding off includes four tech-
niques named RN, RZ, RM, and RP, of which RN is unbiased
rounding to the nearest method, which performs rounding
even if in a Tie case. Functional iteration dividers work on
the series expansion phenomenon, some of which is shown in
the [14], [47]:

1. Newton–Raphson algorithm (NRA)
2. Goldschmidt algorithm (GSA)
3. Series expansion algorithm (SEA)
4. Taylor series algorithm (TSEA)

A. NEWTON–RAPHSON ALGORITHM (NRA)
As shown in (39), it is considered possible to express the
result of the division process as a single term of a product
of the dividend and anti-divisor (reciprocal). To compute the
anti-divisor in the Newton–Raphson algorithm depends on
selecting the priming function, which points out its root at
the anti-divisor [14], which generally has many values. Based
on which root is selected, the quotient convergences accuracy
will vary, causing an error in the division and generating over-
head if the root selected is over the true quotient as indicated
by (43). This indicates that the accuracy can be improved by
first selecting the proper root, which can cause a reduction
of latency. Thus, latency and error in the convergence are
directly dependent on the root selected at the beginning of the
convergence [101]. The same method is used in IBM 360/91
and Astronautics ZS-1 [24], [25].

Q = Dd
/
Dr = p× (q)−1 (39)

f (X) = 1
/
X − q−1 = 0 (40)

Xi+1 = Xi −
f (Xi)
f ′(Xi)

(41)

Xi+1 = Xi −
(1
/
Xi − q−1)

1
/
X2
i

= Xi × (2− q−1 × Xi) (42)

∈i+1 = ∈
2
i (q
−1) (43)

FIGURE 12. The block diagram of Newton–Raphson algorithm
implementation.

Fig. 12 above illustrates the block diagram of the Newton–
Raphson algorithm implementation for the division. After
applying the dividend and divisor, the Newton–Raphson
architecture starts with the first approximation to find the
anti-divisor (x1 = D−1r), i.e., the reciprocal or anti-divisor,
and store it in LUTs. Multiplexers make a choice of selecting
the initial approximation, and then the multiplier is used to
generate product term Dr0,and the Dr1 result is fed to 2’s
complement block for (2-p) calculation, and the result is fed
to the second multiplier, which computes the value of the
new approximation x2 = D−1r (2-p). This new approximation
is utilized to find a new partial remainder, which is required
to calculate the next approximation. After the last iteration
output of the second multiplier is fed to the last multiplier
to find the final value for the final approximation, it shows
that each iteration works on refining the anti-divisor (recip-
rocal), and after n iterations, the quotient approximation is
performed by the last multiplier. Thus, we can divide the
Newton– Raphson algorithm into three parts, namely initial
estimation of the quotient approximation, the iterative process
to approach nearest to the final value, and convergence to
the anti-divisor, i.e., the reciprocal. A major drawback is that
it requires a large gate count, and with an increase in the
iterations, it increases to an enormous amount, which is not
practically possible to implement.

B. SERIES EXPANSION ALGORITHM
Another known method of functional iteration is the series
expansion method, in which the series can represent the root
of the anti-divisor or reciprocal, which can be used in the iter-
ations for rounding off. As per (44), series expansion is equiv-
alent to the Newton–Raphson iteration for value X0 = 1.
Unlike Newton-Raphson iteration, which implements con-
vergence of the anti-divisor followed by multiplication with
the dividend, in series expansion, the iteration performs
pre-scaling of the dividend and divisor by series approxima-
tion or rounding off and then performs series convergence.

VOLUME 9, 2021 23047

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

FIGURE 13. The block diagram of Goldschmidt algorithm implementation.

Thus, it shows the possibility of the use of pipeline or par-
allel hardware architecture. For performing series expansion,
a Taylor series is used for function g(y) at point a, p. Very
often, this series expansionmethod is named the Goldschmidt
algorithm [48].

g (y) = g (p)+ (y− p) g′ (p)+
(y− p)2

2!
g′′ (p)+ . . . (44)

q = a/
b = a× g(y) (45)

Fig. 13 above illustrates the block diagram of Goldschmidt
algorithm implementation. Similar to the Newton–Raphson
algorithm, the Goldschmidt algorithm also uses initial
approximation g1 = D−1r stored in LUTs. The next step
computes quotient approximation q1 = g1 ∗ Dd and error
e1 = g1 ∗ Dr in the initial iteration; parallel multipliers con-
sider the value of q1 and e1 to calculate the value of g2. Later
parallel multipliers calculate the new quotient approximation
and error. This means that this algorithm generates a new
quotient approximation at each iteration, unlike the Newton–
Raphson algorithm.

C. GOLDSCHMIDT DIVISION ALGORITHM (GDA)
Goldschmidt division algorithm (GDA) is one of the
convergence-based algorithms used for performing
division, similar to that of theNewton-Rapson algorithm [53],
[105]–[109]. Like the Newton-Rapson algorithm, GDA also
offers quadratic convergence of quotient, but there is a
difference between them. Unlike the Newton-Rapson algo-
rithm, which first calculates anti-divisor and then multiplies
with dividend, the Goldschmidt division algorithm multi-
plies both dividend and divisor by anti-divisor [53], [109].
Contrary to subtractive iteration based algorithms, conver-
gence basedmultiplicative iteration algorithms perform inter-
action between adder output and control logic only after

multiplication [109]. Goldschmidt division algorithm origi-
nates from the Taylor-Maclaurin series of 1

/
(x + 1) [109].

The basic operation of the Goldschmidt division algorithm
can be expressed as [53], [105], [106], [108]

Dd
/
Dr = N

/
D = A

/
B (46)

xn+1 = xn (2− yn) = xnrn (47)

yn+1 = yn (2− yn) = ynrn (48)

where,

x0 = Dd ∗ LUT
(
1
/
Dr
)

(49)

y0 = Dr ∗ LUT
(
1
/
Dr
)

(50)

LUT
(
1
/
Dr
)
= LUT (f (t)) (51)

Equation (47) and (48) shows that xn, yn are bound to 2,
and the value used for multiplication is always calculated
by subtracting the divisor’s current value from 2. The divi-
sion boundary condition is set to

{
1
/
2 < Dd

/
Dr< 1

}
. This

algorithm’s major drawback is that it does not provide
the remainder, making it useful only for the floating-point
division [109]. First multiplication required for finding out
values of xn, and yn requires full precision. Another draw-
back, 1’s complement can be used instead of (2 - yn) to
avoid carry propagation delay, but it adds a new approxi-
mation error in each iteration. To overcome this problem,
one basic observation comes in handy that when yn reaches
to 1then (2-yn) also reaches to 1, which can be advanta-
geous for implementation by reducing area and performance
at a time [109]. Later Harrison and Markstein found that
the actual Goldschmidt division algorithm can be expressed
as recursive equations that use multiplication and square
operations in each iteration [105], [106], [108]. Such type
of applications of Goldschmidt division algorithm is termed
as modified Goldschmidt division algorithm and useful for
software library implementation [109].

D. TAYLOR SERIES ALGORITHM (TSA)
Extended latency in dividers is seen because of the use
of the 1st order Newton-Rapson algorithm and binomial
expansion based Goldschmidt algorithm because of the major
issue regarding reusing multiplier in between two subsequent
operations [102], [104]. The next operations have to wait
in subsequent operations until the preoccupied multiplier
gets free from the previous operation. Taylor series expan-
sion is also a multiplicative iteration division algorithm like
Newton-Rapson and Goldschmidt algorithm. As we previ-
ously discussed in multiplicative algorithms, the precision
depends upon the closeness with anti-divisor (reciprocal)
estimation. Thus Taylor series expansion is used to calcu-
late accurate anti-divisor (reciprocal) to reduce the error in
the least important bits of quotient precision. Taylor series
expansion dividers work in two stages [53], [102], [103]
• In the first stage, after providing both operands, it per-
forms an estimation of anti-divisor (reciprocal).

23048 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

• In the second stage, partial remainder and quotient are
reformed duringmultiplicative iterations of Taylor series
expansion until expected precision is achieved.

q = Dd
/
Dr and X0 = 1/

Dr (52)

q = DdX0

{
1+ (1− DrX0)+ (1− DrX0)2

+ (1− DrX0)3

}
(53)

FIGURE 14. Operational block diagram of Taylor series algorithm.

Taylor series expansion implementation provides a parallel
powering section that computes high order terms faster with
minimal extension to hardware overhead. An operational dia-
gram is shown in Fig. 14. It is used in IBMRS/6000 andAMD
K7 processors [30], [104]. Even though the Taylor series
expansion gives a better anti-divisor value, the huge amount
of operational multiplication load, causing more power and
area utilization [30]. Later, Liu et al. [30] presented a hybrid
algorithm formed by combining prescaling, series expansion,
and Taylor series expansion for a different purpose in dividers
implementation. In their proposed structure, in the first stage,
prescaling is used to prescale input operands to keep the
divisor in the proper range. In the second stage, the series
expansion algorithm performs an accurate anti-divisor pre-
diction, which can later use in multiplicative iterations. In the
third stage, multiplicative iterations were performed to cal-
culate partial remainder and quotient until achieved required
precision level using the Taylor series expansion algorithm.

VII. VARIABLE LATENCY CLASS
Till now, we have seen that division algorithms depend on
retiring a fixed amount of quotient bits at the end of every
iteration. In the case of the digit recurrence algorithms class,
like restoring and non-restoring algorithm retiring single bit

in every iteration, the radix-based SRT algorithm hasmultiple
possibilities, from one quotient bit to several quotient bits
in one iteration, depending on the radix used to design the
divider, e.g., radix-2 retires one quotient bit and radix-4 retires
two quotient bits. High radix and look-up table class algo-
rithms are also similar to the digit recurrence class. It shows
the linear convergence towards its quotient detection, which
suggests a fixed number of cycles until it reaches the quo-
tient’s final bit. In the case of the functional iterations class,
the number of quotient bits retired in one iteration is greater in
every iteration, but the number of cycles is fixed. As we have
discussed, it is possible to reduce these dependencies and pro-
vide a solution with variable conversion time or latency time.
Variable latency class algorithms are similar to the previous
algorithms but with the possibility of a variable quotient bit
retiring rate in different iterations or some iterations requiring
less execution time, resulting in different conversion times in
different sets of dividends and divisors.

The DEC Alpha 21164 is one of the best examples of vari-
able latency class algorithm implementation and is based on
the concepts of the simple normalizing non-restoring division
algorithm. InDECAlpha 2164 implementation, whenever the
partial remainder is generating zeros or ones consecutively
in the partial remainder, then similar weight quotient bits are
also set to the sequence of 0’s or 1’s detected in the partial
remainder [49]. It is found that the average number of quo-
tient bits retired in one iteration varies from 2 to 3 depending
on the stream of bits in the partial remainder. There are certain
ways to provide a variable conversion time due to variable
execution time in a particular iteration, given the fact that the
execution of a particular combination of divisor and dividend
in a particular iteration can be completed in a short time and
normal execution time. It is possible to do so by saving very
common bit combinations that result in early iterations and
reusing that result in the next particular iteration. Ways to do
so include

1. Self-timing
2. Result cache
3. Speculation of quotient digit

A. SELF-TIMING
In the self-timing technique, multiple stages are cascaded
together with a self-timing partial remainder, suggesting no
shift register is required to store the partial remainder in two
cascaded stages. To match the timing of execution of the two
cascaded stages, it has to self-time the partial remainder of
the previous stage with the next stage, and thus the execution
of the next stage with the generation of the partial remainder
in the previous stage of the cascaded connection, providing
overlapping of execution. It improves the latency by provid-
ing the average cycle time instead of the combined cycle time
in cascaded stages. In [44], details have reported the imple-
mentation of a variable latency SRT algorithm-based divider.
It uses five stages of cascaded radix-2 with the self-timing
partial remainder, meaning no delay in transmitting the partial
remainder to the next stage. Thus, in the next stage, execution

VOLUME 9, 2021 23049

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

starts before the previous stage’s quotient reaches the next
stage. Hal SPARCV9 processor and Sparc64 are examples of
practical implementation of the variable latency self-timing
division algorithm.

B. RESULT CACHE
In typical division applications like an inversion of thematrix,
square root, etc., it must perform repeated operations. In an
inversion of the matrix, each and every term of the matrix is
divided by the determinant, and in such cases, the possibility
of repeating the same operands for operation is likely to be
very high. Thus it is preferable to store the result of the
operands in cache memory so that the next time the same
operands perform a division; then this will just be copied
from the cache. By recognizing such redundant behaviours or
operations, or applications, it is possible to develop a variable
latency divider. In [50], Richardson presents a result caching
technique to implement along with the divider, resulting in a
reduction of the conversion time. It allows a trade-off between
the execution time and memory area. It provides a variable
execution time on account of the large memory area. This
caching results concept uses two stages: one is cache training,
in which standard operation is executed depending on the
reputability of the operands, and the result is stored in the
cache memory. So, when a required operation is executed
at that time, two events have started: one is the execution
of operands, and the second is cache access. Suppose cache
access results in the presence of a combination of operands.
In that case, the result of that combination stored in the
cache memory is transmitted and used further by terminating
actual execution. In contrast, if there is a mismatch, then the
operand’s execution continues to get the result, and this result
is stored in the cache memory. Thus, if the same operand
combination arises in the next iterations, it does not need to
be computed. Then it will take the result directly from cache
memory, resulting in a reduction of conversion time. Using
the cache to improve latency will affect the area efficiency;
e.g., in radix-4, it needs to store 160 bits per cache entry.

C. SPECULATION OF QUOTIENT DIGIT
In [51], Cortadella mentioned implementing the SRT divider
with variable latency, which detects a variable number of
quotient bits in each iteration. This technique’s main concept
is to utilize fewer bits from the divisor and partial remain-
der than the normal radix-n divider utilizes. In this case,
the accuracy of getting the correct quotient bit at the end of an
iteration is uncertain. One extra iteration is required to rectify
the incorrect conjecture in iteration due to too few bits for
quotient bit selection. An increase in the number of iterations
depends upon the degree of closeness when a correct quotient
bit is detected in an iteration.

VIII. DIVISION HARDWARE ARCHITECTURE
To improve the electronic implementation efficiency of math-
ematical operators has two possibilities. The first one relates
to improving algorithms that can be responsible for logical

data flow and conversion process in hardware. Simultane-
ously, the second one deals with improving hardware archi-
tectures, which are nothing but hardware interconnection and
implementation for performing a mathematical computation.
The first form of improvement is mostly considered because
it takes less cost and time than a hardware change, which
can cause 100 times costlier than soft changes like algorithm
improvement. Even thoughwe have to consider a better trade-
off between soft changes and hardware changes for better
improvement, because of the interdependency of software
changes and hardware changes, better algorithms can be
developed based on the best hardware, and the best hardware
can be developed based on algorithmic needs. New algo-
rithms are developing alongside old algorithms to efficiently
perform the same operation, depending on new technological
developments. The development of hardware and algorithm
sometimes depends on the available situations required for
a particular application. Depending on application require-
ments, old algorithms can be upgraded, or a new algorithm
can be designed, or new hardware architecture can be devel-
oped. The timeline required to develop hardware is much
longer and costlier than that of algorithm development. Thus
it is preferred in most applications. At the beginning of the
electronic era, things were analog, which took over decades
to switch over digital, but algorithms are the same ormodified
more or less. Initially, after developing digital circuits and
integrated circuits, hardware architecture classification falls
into two broad areas; one is sequential or serial, and the
other is parallel or concurrent hardware. Over a period, new
hardware developed along with new and modified algorithms
gives a different dimension to it, and we can have sequential-
parallel, i.e., pipelined hardware architecture. It supports
modification in the sequential algorithm, which could per-
form some operations parallel to improve efficiency. Sequen-
tial implementation requires less area and requires more time
for conversion, whereas parallel architectures required a large
area but very fast in conversion, and pipeline architecture is
the best amalgamation of both.

In general-purpose applications, central processing units
(CPU/processor) performs division with several iterations,
even for a small number of bits. This problem goes critical,
along with an increase in bit count [52]. Such problems are
even more serious in the graphics processing unit (GPU)
and Intel’s many integrated core (MIC) architecture, which
provides parallel architecture. The basic hierarchy of archi-
tectures goes from CPU, MIC to GPU. CPU works on the
architecture consist of a single core, MIC works on mul-
tiple cores, whereas GPU works on several cores. Both
GPU and MIC doesn’t have any dedicated dividers unit or
direct instruction to perform division [77]. Floating-point
implementations performed on GPU and MIC with higher
precision. The floating-point divider is implemented on the
NVIDIA K20 GPU card with CUDA programming support
that includes 30 different basic instructions and memory
access. CPU’s working frequency increased up to the 3GHz
overtime period, and on the other hand, it increases the

23050 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

power dissipation. An alternative to this is to use several
CPU cores in parallel, which gives GPU or MIC exposure
in general-purpose processing [54].

Each of the algorithm classes, which we have discussed in
the previous sections, can be categorized into three categories
based on the hardware architecture used for implementation.
Serial hardware architecture consists of the sequential imple-
mentation of the algorithm’s components required for algo-
rithm implementation, basically used for general purpose.
Processing in CPU or FPGAs; the best example of serial
dividers is the simple restoring non-restoring digit recurrence
algorithm. Simple architecture and ease of understanding are
the main plus points of this technique, but it lacks latency,
as the second iteration depends on the completion of the
first iteration. The second technique used is parallel archi-
tecture. Multiple sets of hardware units are executed simulta-
neously to get the result in fewer iterations, basically used for
graphical processing unit (GPU) or Intel’s many integrated
cores (MIC) processors. It is latency-efficient but lacks area
efficiency. A third technique is a hybrid technique that essen-
tializes the parallel execution to get the average area and
latency efficiency. It performs certain operations in sequence
and some in parallel, causing an average latency cycle instead
of a combined latency cycle. The iterative divider structure
shows the serial implementation of the division algorithm,
whereas the array base implementation structure of the divi-
sion algorithm represents a parallel and pipelined architecture
for the implementation of the division algorithm, depend-
ing on the execution sequence. In the parallel architecture,
the array starts execution of all array stages together, whereas
in a pipelined architecture, the next stage’s execution starts
after a particular level of the previous stage is achieved.

A. SERIAL/SEQUENTIAL DIVIDER
Subtractive iteration based digit recurrence division algo-
rithms is the best example of a serial divider, where iterations
are interdependent to perform its operation. Hardware divi-
sion by small integers occurs decimal to binary conversion,
memory access. Online division, as Fig. 15, is also the best
example of serial implementation of division. When are con-
sider serial dividers, then there come two possibilities. When
the input operands are provided sequentially like on-line
dividers and others, the input operands are provided, but
the iterative conversion process works serially to converge
quotient linearly [17], [69], [84], [111]. The long division,
which resembles the theoretical paper-n-pencil algorithm,
is also a sequential subtractive algorithm. The basic idea of
a radix-n algorithm also performs sequential iterations based
on radix number n [69]. Many efforts have been made to
make the sequential process faster, and the most efficient
and successfully implemented method is the SRT algorithm.
Many processors like Pentium has implemented this division
algorithm. As discussed in the previous section, this method’s
major drawback is it needs a careful design of quotient digit
selection logic in the overlapped region. General-purpose
processing applications demand improvement in simple and

FIGURE 15. Operational block diagram of the online division algorithm.

easied algorithms. One of them is data-dependent dividers,
which work to avoid redundant operations and perform only
shift over zeros operation used in the SRT algorithm to nor-
malize the remainder. They can introduce higher throughput
than radix-2 dividers, so it is useful to use them in small
architectures [69], but the conversion speed is currently not
implemented in other architectures. SRT algorithm can be
implemented on different architectures [17]. As we have
discussed, the division’s serial operation, in on-line division
prescaled operands are provided serially. Thus the quotient
generation rate depends on the rate at which input operands
are provided [84]. The output generates upon completion of
δ clock cycles after the first digit from the first operand is
supplied to dividers. This on-line delay conversion time varies
from conversion to conversion depending on the size of the
input operand, number system, and radix used. The on-line
division [84] is represented as

S [j] = rS (j− 1)+ Ddj+δ−1r−δ+1 − rqj−1Dr (j− 1)

−Drj+δ−1Q (j− 1) r−δ+1 (54)

where,

Dd [j] =
∑j+δ−1

i=0
Ddir−1 (55)

Dr [j] =
∑j+δ−1

i=0
Drir−1 (56)

S [j] =
∑j

i=0
Sir−1 (57)

Q [j] =
∑j

i=0
qir−1 (58)

S [j] = r j (Dd [j]− Dr [j]Q [j]) (59)

It indicates that S is a scalable residual value defined as (59).
Quotient digit is selected based upon quotient digit selection
logic similar to that used in SRT algorithms. Higher radix in
on-line serial dividers yields fewer iterations and potentially
better performance on account of a large area and longer cycle
time.

VOLUME 9, 2021 23051

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

B. PIPELINED DIVIDER
Pipelined architecture is one of the distinctive outcomes of
performance enhancive efforts. As dividers applications are
increasing, the need for high performance (area, time, power)
dividers is increasing. Clock cycles required for integer divi-
sion is unexpectedly long and uncertain [6]. A pipeline
architecture is one of the keys to improving overall computa-
tional performance. This architecture allows performing sev-
eral instructions of the computation process simultaneously
to achieve some degree of parallelism. Pipeline architecture
provides parallel processing by performing the instruction-
level overlapping of a computational process [6], [11], [17],
[61], [84]. The execution of pipelined architecture is very
similar to that of the production-line workflow. Every work-
ing point worked on a specific task and passed on the task
to the next level. Likewise, when the task is in the second
level, the first level can start a new task; thus, it looks like a
parallel working. Pipeline work structure can be achieved by
designing a computational logic that will provide functional
overlap in the execution stage and by arranging pipelined
hardware like a fully pipelined array structure [6], [11].
In short maximum serial computational algorithms can be
performed using pipeline architecture.

SRT division algorithm is the best example of this imple-
mentation. Functional iterative division algorithms are based
on multiplicative iteration, which almost required no extra
hardware to work on pipelined architecture whereas, in the
case of digit recurrence algorithms like SRT algorithm, which
works on subtractive iteration. The subtractive iteration algo-
rithm requires separate hardware at each stage; thus, the SRT
algorithm needs to use separate addition, subtraction, and
shifting in each computational cycle, causing increased com-
plexity and the size of the quotient digit selection logic
look-up table [6], [11], [61]. As we discussed, the imple-
mentation of on-line serial dividers in the previous section
requires a different clock cycle depending on the operand
digit count. To use pipelined architecture in on-line dividers,
we need to have a two-stage pipelined implementation of
on-line dividers, as shown in Fig. 16. The first stage will com-
pute the remainder’s partial value and append the new divisor
to the vector value of the divisor. In the second remainder,
and the next quotient digit is calculated. Working of 2 stage
pipelined on-line dividers can be expressed as (60)

S [j] = rS [j− 1]+ Ddj+δ−1r−δ+1 − rqj−1Dr [j]

−Dj+δ−1Q [j− 2] r−δ+1 (60)

The critical path is reduced in the second stage of dividers
as compared to normal implementation. Block-level imple-
mentation of two-stage pipelined on-line dividers is shown
in Fig. 16.

C. PARALLEL DIVIDER
As we previously stated, the division requires larger latency
as compared to other operators.Even though it rarely occurs in
general-purpose computing, it is the most necessary operator

FIGURE 16. Block-level implementation of 2-stage pipelined online
divider.

in applications like vector calculation, complex number
calculation, artificial intelligence, graphics processing unit,
etc. [8]. Sequential / serial implementation could be tricky
to achieve high speed and accuracy. Thus these applications
require a high degree of parallelism in architecture [8]. The
basic idea of parallelism indicates simultaneous working or
computing of the same operation. In a basic way, there are
possibly two ways to achieve this parallelism. One is to
optimize implemented hardware architecture, and the second
is to optimize soft processes or algorithms [8], [52], [55],
[112], [113]. Considering the optimization of hardware
means to redesign the hardware would cost most and time
consuming, which means to upgrade integrated circuit chips
used in processors. On the other hand, optimizing soft pro-
cess means upgrading computational algorithms in soft-
ware to make optimal use of existing hardware [52], [55].
Graphics Processing Unit (GPU) and Intel’s Many Integrated
Cores (MIC) hardware are the best examples of parallel
architecture used for computation. Intel’s MIC architecture
consists of a few cores parallel with no direct hardware to
compute division. Whereas, in the case of GPUs, it considers
several cores in parallel [8], [52], [55], [112], [113]. Such
parallel architecture is best suited for the systems that work
on the bits n pieces of data, i.e., data packets like digital
signal processing in which parallel architecture gives multi-
thread computation possibilities. GPU and MIC work on a
large number of the multidimensional array data structure for
numerical computing techniques. It generates an opportunity
to explore the use of single instruction multiple data paral-
lelism (SIMD) techniques, which exhibits property conver-
gence through iteration of several stages to achieve a certain
condition.

23052 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

1) SMALLER DIVIDEND DIVISION ALGORITHM
It is the simplest algorithm in terms of complexity when we
come to parallel computing.Whenwe are implying high radix
dividers, it is one option to use multiple small radix dividers
in the pipelined or cascaded form to achieve the required
solution. As the use of small radix dividers for implementing
high radix yields the desired solution but on the other hand,
it increases the complexity, area, and performance ratio to
cost factor [8]. The basic phenomenon behind this algorithm
explained in [8], [31] is to consider division as a fraction.
Thus by applying properties of fractions, it can reduce the
complexity associated with the parallel division. Consider
two unsigned numbers for dividend and divisor. Consider
dividend bit count as 4n and divisor bit count as n. We can
represent dividends in terms of partitions based on associated
weights. Then we can represent the dividend as the addition
of number partition as (61-64).

N1 =
∑2n−1

i=0
x2n+i22n+i (61)

N2 =
∑2n−1

i=0
xi2i (62)

Dd = N1 + N2 (63)

Dd
/
Dr = (N1 + N2)

/
Dr = N1

/
Dr + N2

/
Dr (64)

Fig. 17 shows the basic implementation of the algorithm.
Thus by calculating the total of fractions, we can derive an
actual solution for the division. The algorithm consists of
three stages as

FIGURE 17. Block-level implementation of small dividend division
algorithm.

• In the first stage, a preprocessing stage here performs
dividend partitioning depending on the radix.

• In the second stage, the iteration stage performs itera-
tions to compute a division of partitions and generate
partial quotient and partial remainder.

• In the third stage, the combining stage operates to obtain
the final quotient and remainder.

For a better understanding of the algorithm, steps involved
in radix-2 division using a smaller dividend algorithm is
gives as
• In stage one, based on radix-2, make two partitions of 4n
bit size dividend.

• In stage two, perform iterations in N1 and N2, partitions
of 2n bits, forming q1,q2, r1,r2 as partial quotient and
partial remainder.

• In stage 3, combine the partial remainder and partial
quotient to receive the final quotient and remainder.

The simplicity of conversion logic is an advantage and
reduces the latency on account of increased hardware require-
ments as it requires separate dividers equals to the number
of partitions performed with a dividend. It also exhibits some
limitations like the need for a higher dividend than the divisor,
synchronization between parallel units, a special focus on
recombining logic for partial quotient, and the partial remain-
der to generate the final quotient and remainder. This algo-
rithm’s major benefit is that it can use any existing method
to compute partial division in the iteration stage. It gives
a better tread between area and time to choose the desired
combination as per the application needs.

2) JEBELEAN EXACT DIVISION ALGORITHM
We perform complete division on long integer operands in
digital computations even after knowing that the remainder
will be zero. It causes unnecessary computation time. In such
cases, Tudor Jebelean proposed an algorithm in 1992 to use
the advantage of division being exact. It proposes to work
starting from the least significant digit of operand [114].
Implementation of this algorithm works remarkably well
only when radix is prime or power of 2. The algorithm
uses the least significant digits operand first to generate the
least significant bits of the quotient, making it significant
for pipeline or parallel implementation. Pompeiu introduced
the basic idea of the algorithm in 1959 that uses only the
least significant digit of operands to find the least significant
digit of the quotient as operands and quotient are represented
multi-precision positive integers expressed as radix –n. As the
division is considered as exact thus, it can show Dd = d ∗ Q.
We can Express the algorithm [112]–[114] as

Dd =
∑m

i=1
Ddini−1 (65)

Q =
∑m

i=1
qini−1 (66)

Ddi and qi are the least significant digits of dividend and
quotient stored in the least significant digit first format. Thus
after kth iterations, we get

Ddk =
∑k

i=1
Ddini−1 (67)

VOLUME 9, 2021 23053

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

Ddupk =
∑m

i=k+1
Ddini−1−k (68)

Qk =
∑k

i=1
qini−1 (69)

Dd = Ddupknk + Dk (70)

where Ddk ,Ddupk ,Qk and bk as a state of the Jebelean
algorithm Ddk is a multi-precision number formed by
Dd1,Dd2,Dd3.Ddk . Ddupk is the upper part of the
dividend Ddk+1,Ddk+2,Ddm. The actual dividend
can be represented as the (70), and the quotient is the
multiple-precision quotient after the kth iteration. To imple-
ment the Jebelean algorithm parallelly, it needs to borrow bk
calculation in parallel, which is quite challenging. Parallel
computation of borrow bk is expressed as

bk =
(
−n−kDdk

)
mod d

(71)

bk =
(
−n−kmod dDdk

)
mod d

(72)

Assuming we have n processors, we can assign kth pro-
cessors to perform a calculation to find out bk value and
then qk value. Each processor will compute Ddknk−1, then
run a parallel prefix sum and then multiply by n−k. Exe-
cution is performed by modulo d. Takahashi’s algorithm
uses a slightly different approach to derive left to right
Jebelean algorithm. In Takahashi, the remainder is executed
sequentially, and if the remainder could get parallelly, then
the final quotient could get parallelized. Recurrence for the
remainder [112], [113] is given as

rk = (nrk+1 + Ddk)mod d (73)

rk =
(
Ddk+nDdk+1+n2Ddk+2 ++ n2n−kDdkm

)
mod d
(74)

Takahashi uses a parallel cyclic reduction method to solve the
remainder recurrence. The general form of ith iteration

r (i)k =
(
r (i−1)k + nd(i)r (i−1)k+d(i)

)
mod d

(75)

where look ahead distance is d(i), it gets doubled at each
step; thus, d(i) = 2i. It is also called a short division or exact
division.

IX. IMPLEMENTATION STATISTICS
A variety of applications has implemented many division
algorithms. One has to select an appropriate algorithm that
can cater to the cost, area, time, and complexity requirements
of applications and technology to manufacture. This section
presents a study of different division algorithm implementa-
tions, which gives a broad insight into the different implemen-
tations. Upon this, one can understand the necessity to choose
a proper trade-off between time, cost, area, and complexity
while selecting the proper algorithm that can be suitable for
fulfilling an application’s requirements. Considering the sim-
plicity and vast variety of implementation possibilities had
before and would come in future digit recurrence algorithm
is mostly the choice of interest for many applications, but it is

very experimental to visualize the different implementation
aspects of various algorithm which could lead towards new
ideas to improve some old implementations or to develop a
new one.

TABLE 3. Summary of Handel-C implementation comparison.

Restoring and non-restoring algorithms are very broad
concepts. The restoring algorithm resembles the actual
long division algorithm or, never the less with theoretical
paper n pencil algorithm, and a non-restoring algorithm is
similar to restoring except restoring stage. These are the
basic algorithms of the digit recurrence class of dividers.
Many algorithms come later, which are fully or partially
derived based upon non-restoring algorithms ideology. Many
researchers [4], [5], [15], [18] have explained the complex-
ity, timing, area, and other features related to the imple-
mentations of basic restoring and non-restoring algorithms.
D. G. Bailey [4] presented an article about the statistical
implementation data for restoring and non-restoring algo-
rithm in 2006. In this article, he presented a comparative
analysis of FPGA and Handel-C implementation of restoring
and non-restoring algorithm. Algorithms were implemented
on RC-100, RC-300 development boards produced by Celox-
ica using Xilinx’s Spartan-II and Virtex-II FPGA. Restoring
and non-restoring dividers were built as macro expressions
with Handel-C language and compiled to generate EDIF
file within Celoxica DK4.0 environment further EDIF file is
mapped with respective FPGA of RC-100 and RC-300 board
using Xilinx ISE version 6.1.03 [4]. Handel-C is very similar
to that of the C programming language with the additional
benefit of inherent parallelism property [115], [116]. A sta-
tistical comparison is presented between algorithms imple-
mented as macro expressions with Handel-C built-in integer
divider. It is to be considered that, for comparison, only
restoring and no restoring algorithms based on basic equa-
tions expressed in the earlier section are used without imple-
menting the radix SRT algorithm. The comparison presented
in table 3 concludes that Handel-C built-in divider is the
slowest as it can work on frequencies near 10 MHz. The chip
area required in FPGA is approximately more than double
the chip area required by designed algorithms. In Handel-C
implementations, it indicates that the use of subtraction for
performing a comparison and reusing it as an input to a multi-
plexer and using separate LUTs for addition and multiplexing

23054 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

requires extra hardware limiting speed improvement. Imple-
mentation of the basic idea of restoring and non restoring
division algorithm could implement in a sufficiently low chip
area, but themaximumworking frequency is low. The number
of LUT’s may vary based on considering HDL languages to
implement the above algorithms. Many non-restoring algo-
rithms were designed and implemented, but the SRT algo-
rithm is the most implemented. The basic SRT algorithm was
implemented in [7], [11], [17], [51], [57], [63], [64], [67],
[69], [71], [32], [74], [76], [78], [81] for different applications
utilizing different aspects of algorithm.

In [4], E. Matthews, A. Lu, Z. Fang, and L. Shannon
discussed integer divider designs for FPGA based soft-
processors ascendancy over patronage of adaptation of vari-
able latency execution unit in their instruction pipeline.
Implementation efforts were focused on the Quick-Div
divider, which shows data-dependency and variable-latency
in integer division. It integrated into the FPGA-based Taiga
RISC-V pipelined soft-processor. Comprehensive results
compared with fixed latency radix-2/4/8/16 dividers. It has
been mentioned that dividers also are classified into two
types. One as fractional dividers (floating point) and the sec-
ond as integer dividers. Integer dividers also have several
applications in today’s digital world, from simple pseu-
dorandom number generators to complex applications like
image processing, signal processing, etc. [7], over decades.
It has been followed to use floating-point/fixed-point divider
with a sufficient degree of numerical precision for work-
ing on integer division, sometimes on FPGAs, but hardware
constraints are always there indicating the use of floating-
point/fixed-point divider for integer division cause wasting of
resources. It points out that a 64-bit floating-point/fixed-point
divider requires almost ten times more resources than a
radix-2 divider [7], [26]. FPGA soft-core processor, Micro
Blaze [27], NIOS II [28], and the LEON3 processor [29]
implemented fixed-latency radix- 2 dividers with 32 cycles
of latency for performing division operation. In general
basic arithmetic operations required two to three cycles,
whereas radix−2 requires 32 cycles, making it comparatively
slower with respect to others. Experimental implementations
have been performed over the Xilinx Virtex UltraScale+
VCU118 board (XCVU9P-L2FLGA2104E) using Vivado
2018.3 synthesis. In this article, they have given a compar-
ison of different radix – n and Quick-Div dividers. Table 4
compares different dividers based on working frequency,
LUTs, FFs, etc., when implemented stand-alone. With ascen-
dancy over the variable latency execution unit’s patronage
in the Taiga soft-processor instruction pipeline, all dividers
are realized with the RISC-V Taiga soft-processor. A com-
parative statistic is derived between the implementation of
data dependant variable-latency Quick-Div dividers and fixed
latency radix-n (n= 2, 4, 8, 16) dividers with and without the
RISC-V soft-processor Taiga. Taiga is RISC-V open-source
soft processor. Quick-Div dividers are unsigned processes,
so that sign conversion before and after completing con-
version is required depending on the instruction operands

TABLE 4. Summary of comparison between stand alone implementation
based on LUTs, cycle and frequency.

TABLE 5. Summary of comparison between taiga soft processor
implementation based on LUTs, cycle and frequency.

and type. Due to this, Quick-Div requires additional 3 cycles
for sign conversion, as mentioned in Table 5.

In [11], N. Sorokin discussed the implementation of
fixed-point dividers based on different algorithms on Xilinx
FPGA’s common platform. Different divider modules have
been compared with Xilinx’s 32-bit IP core pipelined divider.
It indicates that the non-restoring algorithm based fixed-point
divider module is particularly faster than 32-bit Xilinx’s IP
core pipelined divider. In this article, it is pointed out that,
in practical division operation results are more of approxi-
mated values than exact values in digital operations. These
approximated values can make some trouble in more critical
applications, like biomedical applications, sensors signal pro-
cessing, coordinate computation for an item, etc. [11]. As we
have discussed earlier, even for integer division, we have
to use the fractional divider, which includes a fixed point
or floating-point divider; thus, floating-point implementation
is critical and complex, making it sometimes impracticable.
Out of many theoretical concepts, one practicable solution
was provided by Xilinx’s IP core pipelined divider. Still,
32-bit input operands cause to produce 32-bit remainders in
many cases, which is impossible to implement in applications

VOLUME 9, 2021 23055

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

TABLE 6. Comparison based on conversion time of Xilinx IP core and
other divider module.

TABLE 7. Properties of 32-bit IP core pipelined divider.

TABLE 8. Comparison with restoring and non-restoring dividers.

where high precision in calculations is required. Another
implementation problem-focused in this article is about the
chip area requirements of this solution. The fixed-point algo-
rithm follows the basic principles like simple paper n pencil
division algorithm. A fixed bit length quotient is generated
in every iteration of fixed-point divider like digit recurrence
type of dividers. A major focus was given on improving addi-
tion and multiplication operations, as speeding up addition
operations reduces computational time in the actual division
process. Replacement of divisor by its inverse value can allow
multiplying by anti-divider to obtain division result. Speeding
up dividers has been achieved by developing fast adders, carry
look-ahead adders, matrix or array type adders, etc. Xilinx’s
Ip core divider has certain properties:
• It is available in drop-in modules for all Virtex, Virtex-II,
Virtex-II Pro, Virtex-4, Spartan-3, etc.

• The dividend can be up to 32 bits.
• Full pipelined architecture.

Table 6 - Table 9 shows the implementation properties
and comparison of the 32-bit IP core pipelined divider by

TABLE 9. Other comparison with restoring and non-restoring dividers.

Xilinx. The comparison is made with 8-bit, 16-bit, and 32-bit
operands, which generate similar bit remainders. Even though
the IP core divider gives an improved calculation speed, it still
requires a large area and storage to store look-up tables for its
performance. Fixed-point division core from Xilinx results
in difficulty implementing it universally in every applica-
tion due to some restrictions imposed by its implementation
requirements as
• A large area occupied by the design and the limited
widths of the operands, and the division’s fixed-point
result.

• If there is a need to increase the result’s precision, one
must find some ways to apply different operands’ scal-
ing techniques.

In [16], Md. F. Kasim, T. Adiono, Md. Fahreza and
Md. F. Zakiy discussed a divider block with pre-computed
values stored in read-only memory in terms of a look-up
table. This divider working is similar to that of dividers based
on functional iteration type of algorithms like Goldschmidt’s
algorithm and Newton’s method [16]. Thus, the result of this
divider is also approximate value, unlike iterative subtraction
class-based dividers. Table 10 gives a comparative analysis of
the pre-computed divider concerning other implementations.
In this case, they consider the same bit size numerator (N) and
denominators (D), assuming N, D > 0 and N < D < 1.

Steps of algorithms are given as
• Scaling N and D so that D has a value between 0.5 and 1.
• After scaling the denominator, find the value of x= 1/D
from pre-computed values stored in the look-up table.

• Then multiply the value of x with the numerator,
which is similar to optimizing the division algorithm to
speedup division operation [11].

• Suppose we take p most significant bits out of n bits of
D and reserve 2p items of pre-computed values, which
cause an error. Thus Y=N/ (DK+DL). DK is the pmost
significant bits of D and DL remaining, i.e., n-p bits.

• Perform Taylor expansion to the above point, and
we will get Y = N/DK (1-DL/DK + D2

L/D
2
K −

D3
L/D

3
K+. . . .).

• 2p memory is utilized to save pre-computed values
if we consider p bits, and the possible error can
be 2-p. It makes it critical to select the value of p to opti-
mize performance and control the memory utilization

23056 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

in storing look-up tables and maintaining error con-
ditions within acceptable limits. The maximum error
of 0.187595 can occur when p= 1, which gets improved
with an increasing number of p’s, so the maximum error
of 0.000051 will come for p = 15 at the same time
memory requirement will increase from 21 to 215.

In [8], K. Tatas, D. J. Soudris, D. Siomos, M. Dasygenis,
and A. Thanailakis discussed the different concept of parti-
tioning the main dividend in segments so that it represents
an actual division of the numerator by denominator as a
series of smaller division. By considering the weight of the
dividend bits, all intermediate operations are performed. This
concept of a series of divisions showcases a smaller dividend
division algorithm, where we have to perform shifting, partial
division, and accumulation operations. Any existing division
algorithms can be utilized for the partial division process; the
best-suited optionmust be selected depending on the trade-off
between cost and area. Implementation of this algorithm is
possible in both series and parallel ways [8]. A higher radix
system is critical and difficult to implement, and its perfor-
mance is not very high. In digital signal processing, field data
is available in a series of bursts like packets, making through-
put requirements more critical over latency. The concept is
to divide a large numerator into multiple smaller parts, i.e.,
partitioning into fixed numbers with its associated weight,
then divide this small numerator by a denominator. At last,
to add all small divisions to give a result.

N
D
=
N1
D
+
N2
D
+
N3
D
+
N4
D
+ (76)

The partitioned numerator’s partial division process can be
performed either serially or parallel due to the tread between
cost and time. This algorithm is implemented with a length
of N = 32-bit dividend and parallel array divider, sequen-
tial divider with two partitions, or parallel divider with two
partitions in the partial division stage. Its respective imple-
mentation required 4316, 2136, and 3050 slices on Xilinx
Virtex-E 1000. From the above data, it is clear that sequential
implementation of this algorithm is more area efficient and
moderate in time delay. If any corrective stage is required
in sequential dividers, it will degrade the efficiency of serial
dividers. In contrast, parallel implementation produces a
slight reduction in delay but not a sufficient decrease in area
and latency. Array Implementation of this algorithm is not at
all efficient as it increases chip area four times on doubling
word length.

In [30], J. Liu, M. Chang, and C-K. Cheng discussed
an algorithm that utilizes prescaling, series expansion, and
Taylor series expansion together; hence it is sometimes called
a PST algorithm. At the starting, both operands are prescaled
up to it reached to the suitable starting level. Operand prescal-
ing is performed based on the scaling factor E0, which is
stored in the look-up table. In the second stage of the PST
algorithm, series expansion is applied on scaled operands to
obtain an accurate anti-divisor approximation. To calculate
the partial quotient and the next remainder in the iteration

TABLE 10. Comparison of 32 bit pre computed divider along with other
dividers.

TABLE 11. Implementation statistics of PST divider.

stage, it utilizes 0-order Taylor series expansion. Iterations
have to continue until getting the quotient with a required
precision range of error. Three Taylor expansion iterations
and a look-up table are needed to finish one operation. As per
the performance comparison with the IP core and DSP and
non-DSP structure of this algorithm shown in Table 11, the
divider shows significant delay and doesn’t save sufficient
area than Xilinx IP core and some other divider design.
PST divider is FPGA feasible, and new placing routing and
packaging techniques may generate an improved version of
the PST divider.

In [81], A. Vazquez, E. Antelo, and P. Montuschi presented
the SRT algorithm base radix-10 architecture to work as a
floating-point divider. It works on the basics of the SRT algo-
rithm like sign digit (SD) redundant digit range for quotient
and digit selection logic design on constant comparison of
carry-save estimation of the partial remainder. These show-
case the alternate use of the BCD number range for repre-
senting decimal operands instead of regular weighted binary
arrangement. Basic SRT implementations show the genera-
tion of odd multiples of divisors in the radix-2k high radix
system, which could degrade the implementation. It could be
resolved using simple overlapping of two recurrences of low
radix-n systems, but in this system implementation, it shows
that oddmultiples of divisor can be generated by simply using
decimal carry propagated adders and resue further. To repre-
sent operands in signed digit range, it uses 10’s complement
representation of bit length 4. Table 12 gives details about
implementing the BCD system for the floating-point divider.
A delay is represented as a delay term of multiple of an

VOLUME 9, 2021 23057

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

TABLE 12. Implementation statistics of BCD floating-point divider.

inverter with a fanout of 4. The rough estimation of hardware
size and complexity is given in multiples of the minimum
equivalent area of a two-input NAND gate.

Many different applications are possible for radix-n base
non-restoring digit recurrence algorithm. In [86], [87], M. D.
Ercegovac and R. McIlhenny present the implementation of
radix-10 with limited precision primitives, which uses mod-
ules of 1to 3 or 1 to 4 decimal digits. The proposed method
is based on the use of limited precision multipliers, adders,
and look-up tables. Minor changes have been suggested at
the initial stages to work with limited precision, such as
using the Fourier series to achieve the desired recurrence
for limited precision primitives. It produces one quotient
digit per iteration using shifted short partial remainder and
short anti-divisor or reciprocal. Implementation is performed
using Xilinx’s d10.1 and 12.1 design suit tool and mapped
to Xilinx’s vertex-5 and vertex-6 FPGA. Total delay can
occur due to a short reciprocal look-up table (Trec), selec-
tion function (SEL), a digit by digit multiplier along with
compensation factor (C-net), auxiliary residue (V-net), Next
residue(W-net), and on-the-fly conversion for signed digit
conversion to conventional decimal representation. The
implementation of 1 to 3 decimal digit short reciprocal for
significant size n= 7 and 14 respectively requires 782 LUTs,
105 ns approx delay, and 1263 LUTs, 197 ns approx delay.
Implementing 1 to 4 decimal digit short reciprocal for sig-
nificant size n = 7 and 14 respectively requires 1384 LUTs,
102 ns approx delay, and 2047 LUTs, 204 ns approx delay.
The main lacking of routing delay indicated in implementa-
tion is very high.

In [90], M. Baesler, S.O. Voigt, and T. Teufel presented
the implementation data for shift and subtract algorithm, digit
recurrence algorithm with signed redundant quotient, and
carry-save representation. The second representation uses
ROM to calculate the quotient digit, whereas, in the third rep-
resentation, the quotient is derived from digit decomposition
without ROM. Type 1 uses a simple shift and subtract algo-
rithm for the fixed-point divider, which indicated unsigned
and non-redundant quotient digit calculation. Type 2 uses
signed digit calculation for quotient digit with redundancy
factor 8/9 with operand scaling to get divisor in range in

between 0.4 to 1.0. Type 3 uses divider scaling to calculate
quotient digit, where the divisor is prescaled in between 0.4 to
0.8 with redundancy factor 8/9. For normalized decimal fixed
point divider, type 1 divider requires 3868 LUTs and FF
in combine total latency of 154 ns and maximum working
frequency of 123MHz. Type 2 requires 2210 LUTs and FF in
total and can work up to 118MHzmax frequency and provide
a latency of 162 ns. Type 3 requires 2203 LUTs and FF in
total and can work up to 88 MHz max frequency and provide
a latency of 230 ns.

In [91], M. D. Ercegovac, and J-M. Muller proposed a
digit-recurrence algorithm for real and complex number divi-
sion. The concept presented in this article indicates the use of
a variable radix divider as a key element along with prescaled
operands by using sufficiently low radix. It elaborates the
method of using a low radix conversion to high radix during
iterations post initial estimation in the first iteration. Imple-
mentation parameters are given in comparison with the area
and delay of the full adder. Thus, the total delay is counted
as the overall delay that occurred in all building blocks like
registers, adders, multipliers selection logic, multiplexers,
etc. It estimates the proposed scheme’s area requirements
up to radix-256 with internal precision of 64 bits in total
1750 to 1880 times the full adder area. In [61], B. Mehta,
J. Talukdar, and S. Gajjar present high-speed SRT dividers
based on a highly parallel pipelined structure with fuzzy
logic quotient digit selection proposed a high level of par-
allel performance of execution steps. It represents design
implementation based on parallel SRT radix-4 module algo-
rithm, which initiates prediction based on dividend and later
correction made by fuzzy logic to reduce Q selection logic
look-up table size. For 64-bit double-precision floating-point
number required 1879 LUTs,283 Registers with a lowest
critical conversion time came out to be 210 ns. In [110],
B. Pasca presented a piece-wise polynomial approximation
and Newton-Rapson algorithm for the division for DSP sup-
portive families of FPGA from Altera. As a basic prob-
lem of the Newton-Rapsom algorithm, it contains some
rounding errors. Thus to overcome this problem associ-
ated with the Newton-Rapson method, it proposes using
highly tuned piece-wise polynomial approximation, which
provides faithful rounded implementation with one extra bit
of precision. This method is similar to dewpoint rounding.
Synthesis results for floating-point implementation of the
proposed method required 274-426 ALUT, 291-408 Regis-
ters, 3-4 DSPs for a polynomial approximation of d = 2. For
a polynomial approximation of d = 4 required 1113 ALUT,
1825 Registers, and 9 DSPs. For a polynomial approxima-
tion, d = 2, 4 and Newton-Rapson required 887-947 ALUT,
823-1296 Register, and 9 DSPs.

In [52], K. Huang, and Y. Chen proposed a fast approx-
imation algorithm to estimate the floating-point numbers in
IEEE 754 format. It consists of two parts one is the prediction
stage, and another is the iteration stage. The floating-point
division is normally required several cycles to complete its
execution onCPUbase architectures where serial or pipelined

23058 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

implementation is used, whereas in the case of GPU andMIC
architectures where they don’t have any direct instruction to
perform division, this situation is more critical and required
more cycles to complete the division operation. In this pro-
posed method, improvement of time performance is the prior
focus to achieve than the area requirements. In the iteration
stage, the Goldschmidt algorithm with the binomial theorem
is used as it indicates a fast convergence rate and ease in
implementation using fussedmultiplication and adder (FMA)
construction on MIC and GPUs. The iteration step improves
the precision of result approximation based on an initial esti-
mation of anti-divisor or reciprocal. In this implementation,
lower degree polynomial approximation cannot reach the
required level of precision, and a higher degree of polyno-
mial approximation increases the complexity of calculation.
A technique is applied to overcome the problem by con-
sidering floating-point numbers as a fixed point integer and
perform simple integer subtraction to generate the required
accuracy in estimating anti-divisor or reciprocal. Prediction
stage maximum allowed error has no value more than 0.06.

Implementation results were generated on NVIDIAs
K20GPU having 2469 cores with CUDA 5.0 compiler and
0.71GHz working frequency. The implementation was com-
pared with Intel’s Xeon Phi 5100 Series MIC having 60 cores
with Intel composer XE 2013.2.146. It indicates that the
initial prediction stage error up 0.0508 to 0.0614. It took
117.7 GFlops on MIC K20, while built-in implementation
of CUDA takes only 46.6 GFlops, and on MIC, it requires
3736 GFlops. In [113], N.Emmart, and C.Weems presented a
multi-precision integer division algorithm by single-precision
value using GPU. The proposed algorithm is based on the
parallel version of Jebelean’s exact division algorithm with
left-to-right borrow chain computation. Further improvement
in precision is achieved by implementing Takahashi’s cyclic
reduction technique. Results show that the proposed parallel
algorithm worked 20% slow in a 1024 bit size of dividend but
shows 40% faster performance for 2048 bit size of dividend
than Takahashi’s algorithm.

X. COMPARISON
Even though the division operation looks simple, it is very dif-
ficult to implement due to strict conversion rules, and an effi-
cient system needs to implement an efficient divider. Many
algorithms were discussed in the previous sections, stating
different logical concepts of achieving the division operation.
It is very complex to differentiate all the implementable
algorithms into independent classes, but there are broadly
four. The first uses digit recurrence, which is also an iterative
type of division. The best examples of this class are the
restoring, non-restoring, and radix-n based SRT algorithms,
in which a specific number of quotient bits are discovered
in each iteration. The restoring and non-restoring algorithms
work on iterative subtraction, whereas the radix-n based SRT
algorithm works on predicting the quotient bit depending
on a few MSB bits of the divisor and partial remainder
followed by subtraction. The second functional iteration is

an approximation type of division. The best examples of
this class are the Newton–Raphson algorithm and the series
expansion algorithm. In the third, the look-up table stores a
logic of quotient bit selection or pre-computed values that
can be used in each iteration to detect the quotient bits in
that particular iteration. This can be used along with digit
recurrence or functional iterative algorithms. The fourth class
is variable latency, which has a basic requirement of variable
conversion time. One can design a division algorithm based
on the nature of any one of these classes or an interdepen-
dent nature for better efficiency in implementation. The area,
latency, and criticality of the quotient bit selection logic are
the main trade-off points.

Given the continued industrial growth and technological
improvement, there is a demand for achieving an efficient
trade-off between the area, latency time, and criticality of
the conversion logic. Operand pre-scaling and a high degree
of redundant sets in quotient bits are two techniques com-
monly used for reducing the latency time. In the case of a
radix-4 divider operand, pre-scaling can reduce the number
of bits selected from the partial remainder and divisor for
the quotient bit selection logic, which can improve the con-
version speed by reducing the latency time. Simple staging
(cascading), overlapping execution like overlapping quotient
selection, or overlapping partial remainder computation in
the execution of the SRT algorithm are also methods used
to reduce the latency time on account of the extra area
due to the extra hardware required for the implementation
of performance-improving techniques along with the SRT
algorithm. These requirements increase with the increase
of the radix-n number; thus, SRT algorithm implementation
is restricted to fewer than ten numbers. A very high radix
generally refers to an SRT algorithm that retires more than
10 bits in one iteration. The basic difference between the SRT
and high radix algorithm is the different logic of quotient bit
selection and multipliers’ number and width. An increase in
radix causes the use of a quotient bit selection logic table
that is impracticable in size, which ultimately affects the
cycle time. Approximation and pre-scaling techniques do not
require an extra multiplier.

Unlike the SRT algorithm, Svoboda gave an alternative
possibility to generate quotient bit selection logic based on
only a partial remainder. Thus the criticality of the quotient
bit selection logic gets reduced as compared to the SRT
algorithm.Although the generalized Svoboda algorithm gives
shorter quotient bit selection logic, it required normalized
and pre-scaled operands; otherwise, it utilizes extra two
multipliers causing more area and time. Later in the new
Svoboda-Tung algorithm developed with a signed digit num-
ber system which avoids overshoot due to compensation, by
implementing the alternative method of recoding two MSB’s
of the partial remainder with alternate consecutive positions
causing to follow and keep the partial remainder in bounded
condition. Svoboda –Tung algorithm is valid for radix more
than two, whereas the new Svoboda-Tung algorithm is valid
for generalized radix range. In the case of the functional

VOLUME 9, 2021 23059

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

TABLE 13. (a) Summary of different division algorithms.

23060 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

TABLE 13. (Continued.)(b) Summary of different division algorithms.

VOLUME 9, 2021 23061

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

TABLE 13. (Continued.) (c) Summary of different division algorithms.

23062 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

TABLE 14. (a) Comparison table.

VOLUME 9, 2021 23063

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

TABLE 14. (Continued.) (b) and (c) Comparison table.

iteration algorithm, the quotient convergence is quadratic,
which works on the initial approximation. In the Newton–
Raphson algorithm, which shows the result in the product
term of dividend and reciprocal, the reciprocal depends on the
selection of the priming function, which points out its root
at the reciprocal or anti-divisor, which generally has many
values.

Based on which root is selected, quotient convergence
accuracy will vary, causing an error in the division and gen-
erating overhead if the root selected is over the true quotient.
It means that the multiplication is dependent and must be per-
formed sequentially. In series expansion, iteration performs
pre-scaling of the dividend and divisor by series approxima-
tion or rounding off and then performs series convergence;
thus, the multiplication can be implemented in parallel. The
functional iteration algorithm does not provide the final
remainder at the last iteration. In the variable latency class,
self-timing, result cache, and quotient digit speculation tech-
niques have been used to provide reduced average latency.
A reciprocal cache can be utilized effectively along with a
functional iterative algorithm to reduce the time required for
initial approximation. An additional area will be required for
implementing a reciprocal cache, but it will be less than that

required for the initial approximation look-up table. The self-
timing technique requires the use of switching techniques,
which can clock the circuit synchronously with the other
components of the algorithm along with test checking to con-
firm correct operation. The division algorithm can be imple-
mented in three hardware architectures: serial, pipelined, and
parallel. Serial and pipelined architecture implementation of
the division algorithm is comparatively slower than parallel
implementation but more area efficient than parallel imple-
mentation. Synchronization of various divider units is the
main problem associatedwith parallel architecture, which can
be critical due to the sluggish behavior of hardware compo-
nents used in a parallel architecture over time. The general-
ized application like CPU, FPGA, ASIC serial, and pipeline
dividers are prone to be used due to their less area and control-
ling requirements, whereas critical applications like Graphics
Processing Unit (GPU) and Many Integrated Cores (MIC)
require the fastest implementation of dividers, so parallel
dividers are preferred over serial and pipelined dividers.
Table 13 (A), Table 13 (B), and Table 13 (C) give a sum-
mary of the different division algorithms. Table 14 (A) and
Table 14 (B) illustrates a summary of the comparative study
considering the approximate iteration time, latency, and area.

23064 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

XI. CONCLUSION
The division is the most complex basic arithmetic operation,
and efforts have been made to improve its implementation
in digital circuits, computer systems, and embedded sys-
tems by optimizing the area, hardware resources needed,
or latency cycles. Generally, improvement in one of those
aspects worsens the others; thus, one must select a particular
technique based on the specific application requirements,
which gives room for continuing research on developing an
algorithm for division operations suitable for new generation
application requirements. For the implementation of division
operations in the area concerning portable programmable
devices, FPGAs are vital because of the emerging applica-
tions in which these devices are used to implement some
critical system-on-chip application or improve the existing
application, and the results of indirect division operation
are not sufficient. As explained in the article, restoring and
some non-restoring algorithms implement simple conversion
logic but require a long time and large area. Although the
conversion logic is simple, it does not suit high-frequency
applications due to latency problems. Also, in the case of
sensor nodes, portable devices of the IoT, where the area is
of major concern, it fails due to the large area requirements
for implementing these algorithms. However, restoring and
non-restoring algorithms are the main point of study for
developing new algorithms to perform division operations
theoretically and electronically. The radix-based SRT divi-
sion algorithm is one of the most implemented non-restoring
algorithms. Although the SRT algorithm was the first choice
for commercial implementation in the majority of soft and
modern processors like Intel’s Pentium processor, FPGAs
controllers, and ALU units of complex hardware, it is
restricted to certain low radix values, especially less than
10. Radix-2 and radix-4 are the most implementable formats
of the SRT algorithm. The main reasons for restricting SRT
algorithm implementation to certain low radix values are the
increase in the quotient selection logic’s criticality and the
enormous increase in area requirements for storing look-up
tables for this logic. This causes it to fail to follow the
execution cycle, which is considered as two cycles. Whereas
low radix implementation provides low area requirements
and possibly follows very tight conditions of execution cycle
time, its major drawback is the higher latency, which depends
on the number of bits discovered in every iteration; in low
radix implementation, this is restricted to one or two quotient
bits per iteration. Therefore, to reduce division latency, more
bits need to be retired in every cycle. However, directly
increasing the radix can improve the cycle time at the cost
of increasing the complexity of divisor multiplier formations.
The alternative is a pipelined structure or two-stage lower
radix stages combined to form higher radix dividers by simple
staging or possibly overlapping one or both the quotient
selection logic and partial remainder computation hardware.

Svoboda algorithm is also another radix based divider algo-
rithm. The quotient bit is generated in the Svoboda algorithm

based on the only partial remainder, unlike the SRT algo-
rithm. The quotient bit selection logic is based on partial
remainder and divisor. Although the Svoboda algorithm uses
the only partial remainder for quotient bit selection logic,
it requires normalized and pre-scaled operands. If not, then it
requires an extra two multipliers causing more area and time
requirement. The pre-scaled divisor needs to be in a certain
range near to 1. Thus, it can be represented as (1+er), where er
is a small positive fractional value er < 1

/
n and n is the radix.

In each iteration, if qj results in –ve, it indicates overshooting,
to compensate overshooting by adding/subtracting er and
performing right shift operation by j-1 places depending on
the last step was subtraction/addition. A new Svoboda-Tung
algorithm is presented with a sign digit range to overcome
the Svoboda algorithm’s limitations. The major drawback of
the new Svoboda-Tung algorithm is that it generates a direct
quotient value, but the final remainder should be calculated
by scaling partial remainder with the same factor as the
operands. Thus it restricts its use with applications where the
unscaled remainder is a must.

All these radix base alternatives lead to an increase in the
area, conversion complexity, and potentially the cycle time.
In contrast, the functional iterative class offers an alternative
to the SRT algorithm. It computes the quotient bit based on
estimation or approximation of series expansion functions
like Neuton-Rapson Goldschmidt, Taylor series, etc. It uti-
lizes multiplication instead of subtraction operations, which
ultimately reduces the number of iterations and can generate
multiple quotient digits in one iteration with low latency. The
use of multiplication for functional iteration dividers makes
it more complex than simple digit recurrence dividers. This
type of divider has a major drawback of the quotient bit’s
inaccuracy because of direct rounding off of the approximate
solution values rather than infinitely precise values. The error
depends on the accuracy of the initial estimation. In the
Newton–Raphson iteration, which is limited to two multipli-
cations and must proceed in series, a large error is generated.
Reducing the error requires the introduction of a trade-off
between the additional chip area for the look-up table and
the latency of the divider. The series expansion provides
relatively lower latency. The area-focused implementation
refers to shared multipliers and creates an additional enmity
for the multiplier, which can be overcome by an additional
multiplier, causing an area increase. Goldschmidt algorithm
is another functional iterative divider that multiplies both
dividend and divisor by anti-divisor, whereas in Neuton-
Rapson, it multiplies only with the dividend. This algorithm’s
major drawback is that it does not provide the remainder,
making it useful only for the floating-point division [109].
First multiplication required for finding out values of xn, and
yn requires full precision. Another drawback, 1’s complement
can be used instead of (2 - yn) to avoid carry propagation
delay, but it adds a new approximation error in each iteration.
In Taylor series dividers, Taylor series expansion calculates
accurate anti-divisor (reciprocal) to reduce the error in the

VOLUME 9, 2021 23065

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

least important bits of quotient precision with a parallel pow-
ering section that computes high-order terms caused extra
hardware overhead causing area increase.

Variable latency class dividers are very rare due to their
complexity and area constraints. Some techniques like radix-
n, functional iteration, and variable latency require extra
storage for look-up tables, and the high radix reduces the
latency but requires a large capacity look-up table, which is
impractical for implementation. The look-up table requires
storage like ROM, which increases the area requirements
for implementation. Optimized area and hardware resources
are needed, or the latency cycles need to be interrelated.
There are three possibilities of the hardware architecture that
can be used for dividers implementation. Serial hardware
architecture, generally maximum division algorithms, pro-
cesses sequentially, so it is best suited for implementation.
However, the sequential implementation provides less area
and easy logic for implementation but requires higher latency
and conversion time, making it infelicitous for highly critical
applications. The parallel hardware architecture is contrasting
with serial architecture. Parallel architecture has several same
element configuration devices or cores connected in parallel,
simultaneously operating, causing a reduction in latency and
execution time. As it requires multiple cores to work together
simultaneously, it makes critical synchronization and high
area requirements, leading to increased implementation cost.
Thus parallel architecture implementation is costlier, making
it unique for critical applications like graphics processing
units (GPU). A pipelined architecture is the best choice for
achieving parallelism in sequential architecture with parallel
processing. Some or all processes of division algorithms can
be pipelined to achieve partial parallel processing. GPU and
MIC have an advantage of parallel architecture for achieving
low latency and execution time on account of the high area
and complex controlling logic. As the division algorithm’s
initial nature is sequential, GPU and MIC require developing
a complex controlling logic to ensure parallelism require-
ments. In Jebelean exact division algorithm, we have an
experience that the simultaneous borrow calculation is quite
critical, and in Takahashi’s algorithm, the remainder is exe-
cuted sequentially, and if the remainder could get parallelly,
then the final quotient could get in parallel. Thus Takahashi
uses a parallel cyclic reduction method to solve the remainder
recurrence. Division algorithm implementation on parallel
architecture can cost large hardware overhead due to the use
of multiple cores in parallel, which ultimately leads to high
implementation cost but quicker execution.

On the contrary, the CPU incorporates sequential or
pipelined architecture to imply division algorithms with less
complexity and hardware overhead on account of latency
and execution time, which can be improved to some extent
by using variable latency division algorithms. Thus the use
of CPU based implementation is very useful and suitable
for general purpose and dedicated embedded applications,
an ASIC or FPGA based applications where the area is more
concerned. On the other hand, applications with a high-speed

response as the first priority and area as a second prior-
ity can use GPU and MIC implementation like graphics
processing, biomedical applications, artificial intelligence,
research applications, etc. The use of architecture is not
limited or restricted to a particular application. Maximum
division algorithms can be implemented by serial, parallel,
or pipelined architecture depending on cost, area, and com-
plexity suitability with the application. Generally, improve-
ment in one of those aspects worsens the others; thus, one has
to select a particular algorithm based on the specific applica-
tion requirements. This opens the possibility of developing a
new technique or combination of techniques, which are fast
in operation and area-efficient.

XII. FUTUR WORK
Based on the review, it is found out that the digit recurrence
division algorithm is most likely preferred for implemen-
tation in different applications considering its ease in con-
version logic and considerable area and latency constraints.
Area and latency constraints are very important for embedded
systems and ASIC design, where fast action in a considerably
less area is of great importance.We put efforts into developing
a new digit recurrence algorithm, which has simple conver-
sion logic and benefits in the area and variable conversion
time constraints of the divider circuit. The target for future
works

1. To improve the basic idea of a new algorithm by stan-
dardising algorithm steps to achieve area and timing
improvements.

2. Floorplanning and circuit implementation using mul-
tiple logic families for delay and power consumption
comparison.

3. Utilizing a new circuit in different applications to verify
results.

ACKNOWLEDGMENT
A preliminary patent is applied in Estonia based on the
research work of developing a new algorithm for division.
Application no-70390 date-June 2020.

REFERENCES
[1] Merriam-Webster Dictionary. Accessed: Jul. 2020. [Online]. Available:

https://www.merriam-webster.com/dictionary/mathematics
[2] Cambridge Dictionary by Cambridge University Press. Accessed:

Jul. 2020. [Online]. Available: https://dictionary.cambridge.org/
dictionary/english/mathematics

[3] R. K. L. Trummer, ‘‘A high-performance data-dependent hardware inte-
ger divider,’’ M.S. thesis, Inst. Comput. Sci. Syst. Anal., Paris Lodron
Univ., Salzburg, Austria, May 2005.

[4] D. G. Bailey, ‘‘Space efficient division on FPGAs,’’ in Proc. Electron.
New Zealand Conf., 2006, pp. 206–211.

[5] J. Kumari and M. Y. Yasin, ‘‘Design and Soft Implementation of N-bit
SRT Divider on FPGA through VHDL,’’ Int. J. Innov. Eng., Sci. Manage.,
vol. 3, no. 4, pp. 13–19, Apr. 2015.

[6] K. Narendra, S. Ahmed, S. Kumar, and G. H. Asha, ‘‘FPGA implemen-
tation of fixed point integer divider using iterative array structure,’’ Int.
J. Eng., Tech. Res., vol. 3, no. 4, pp. 170–179, Apr. 2015.

[7] E.Matthews, A. Lu, Z. Fang, and L. Shannon, ‘‘Rethinking integer divider
design for FPGA-based soft-processors,’’ in Proc. IEEE 27th Annu.
Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), Apr. 2019,
pp. 289–297, doi: 10.1109/FCCM.2019.00046.

23066 VOLUME 9, 2021

http://dx.doi.org/10.1109/FCCM.2019.00046

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

[8] K. Tatas, D. J. Soudris, D. Siomos, M. Dasygenis, and A. Thanailakis,
‘‘A novel division algorithm for parallel and sequential processing,’’
in Proc. 9th Int. Conf. Electron., Circuits, Syst., Dubrovnik, Croatia,
Sep. 2002, pp-553-556.

[9] K. D. Tocher, ‘‘Techniques of multiplication and division for auto-
matic binary computers,’’ Quart. J. Mech. Appl. Math., vol. 11, no. 3,
pp. 364–384, 1958.

[10] H. Asai, ‘‘A recursive radix conversion formula and its application
to multiplication and division,’’ Comput. Math. with Appl., vol. 2,
nos. 3–4, pp. 255–265, 1976.

[11] N. Sorokin, ‘‘Implementation of high-speed fixed-point dividers on
FPGA,’’ J. Comput. Sci. Technol., vol. 6, no. 1, pp. 8–11, Apr. 2006.

[12] A. Kaplan, Math on Call: A Mathematics Handbook. Wilmington, MA,
USA: Great Source Education Group, 2004.

[13] T. Bassarear and M. Moss,Mathematics for Elementary School Teachers,
4th ed. Independence, KY, USA: Cengage Learning, 2008.

[14] S. F. Obermann and M. J. Flynn, ‘‘Division algorithms and implementa-
tions,’’ IEEE Trans. Comput., vol. 46, no. 8, pp. 833–854, Aug. 1997.

[15] S. Dixit and M. Nadeem, ‘‘FPGA accomplishment of a 16-bit divider,’’
Imperial J. Interdiscipl. Res., vol. 3, no. 2, pp. 140–143, 2017.

[16] M. F. Kasim, T. Adiono, M. F. Zakiy, andM. Fahreza, ‘‘FPGA implemen-
tation of fixed-point divider using pre-computed values,’’ in Proc. Tech-
nol., vol. 11, Jun. 2013, pp. 206–211, doi: 10.1016/j.protcy.2013.12.182.

[17] G. Sutter, G. Biol, and J.-P. Deschamps, ‘‘Comparative study of SRT-
dividers in FPGA,’’ in Field Programmable Logic and Application (Lec-
ture Notes in Computer Science), vol. 3203, J. Becker, M. Platzner, and
S. Vernalde, Eds. Berlin, Germany: Springer, 2004, pp. 209–220.

[18] R. S. Hongal and D. J. Anita, ‘‘Comparative studyof different division
algorithms for fixed and floating point arithmetic unit for embedded
applications,’’ Int. J. Comput. Sci. Eng., vol. 4, no. 9, pp. 48–54, 2016.

[19] S. Kaur, M. Singh, and R. Agarwal, ‘‘VHDL implementation of non-
restoring division algorithm using high-speed adder/subtractor,’’ Int.
J. Adv. Res. Electr., Electron. Instrum. Eng., vol. 2, no. 7, pp. 3317–3324,
Jul. 2013.

[20] N. Boullis and A. Tisserand, ‘‘On digit-recurrence division algorithms for
self-timed circuits,’’ INRIA-Institut Nat. De Recherche En Informatique
Et En Automatique, France, Tech. Rep. RR-4221, Jul. 2001.

[21] J. E. Robertson, ‘‘A new class of digital division methods,’’ IRE Trans.
Electron. Comput., vol. 7, no. 3, pp. 218–222, Sep. 1958.

[22] D. Wong and M. Flynn, ‘‘Fast division using accurate quotient approx-
imations to reduce the number of iterations,’’ IEEE Trans. Comput.,
vol. 41, no. 8, pp. 981–995, Aug. 1992.

[23] S. F. Oberman and M. J. Flynn, ‘‘Design issues in division and
other floating-point operations,’’ IEEE Trans. Comput., vol. 46, no. 2,
pp. 154–161, Feb. 1997.

[24] S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and D. M. Powers,
‘‘The IBM System/360 model 91: Floating-point execution unit,’’ IBM
J. Res. Develop., vol. 11, no. 1, pp. 34–53, Jan. 1967.

[25] D. L. Fowler and J. E. Smith, ‘‘An accurate, high speed implementation of
division by reciprocal approximation,’’ in Proc. 9th IEEE Symp. Comput.
Arithmetic, Sep. 1989, pp. 60–67.

[26] X. Fang and M. Leeser, ‘‘Open-source variable-precision floating-point
library for major commercial FPGAs,’’ACMTrans. Reconfigurable Tech-
nol. Syst., vol. 9, no. 3, p. 20, Jul. 2016, doi: 10.1145/2851507.

[27] Xilinx Inc. MicroBlaze Processor Reference Guide. Accessed:
Aug. 2020. [Online]. Available: https://xilinx.com/support/documentation/
swmanuals/xilinx20164/ug984-vivado-microblaze-ref.pdf

[28] Intel Corp. Nios II Gen2 Processor Reference Guide. Accessed:
Aug. 2020. [Online]. Available: https://altera.com/en US/pdfs/literature/
hb/nios2/n2cpu-nii5v1gen2.pdf

[29] GRLIB IP Core User’s Manual, Cobham Gaisler AB. Accessed:
Aug. 2020. [Online]. Available: https://gaisler.com/products/grlib/grip.
pdf

[30] J. Liu, M. Chang, and C.-K. Cheng, ‘‘An iterative division algorithm
for FPGAs,’’ in Proc. Int. Symp. Field Program. Gate Arrays (FPGA),
Monterey, CA, USA, 2006, pp. 83–89.

[31] A. A. Varghese, C. Pradeep, M. E. Eapen, and R. Radhakrishnan,
‘‘FPGA implementation of area-efficient IEEE 754 complex divider,’’
in Proc. Technol., vol. 24, 2016, pp. 1120–1126, doi: 10.1016/j.
protcy.2016.05.245.

[32] D. L. Harris, S. F. Oberman, and M. A. Horowitz, ‘‘SRT divi-
sion architectures and implementations,’’ in Proc. 13th IEEE Symp.
Comput. Arithmetic, Asilomar, CA, USA, Jul. 1997, pp. 18–25, doi:
10.1109/ARITH.1997.614875.

[33] Sumiksha, P. Konda, and S. Shetty, ‘‘Computation of SRT and CORDIC
division algorithms,’’ IOSR J. Electron. Commun. Eng., vol. 12, no. 4,
pp. 53–56, July./Aug. 2017.

[34] S. Oberman, ‘‘Design issues in high-performance floating-point arith-
metic units,’’ Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Stanford
Univ., Stanford, CA, USA, Nov. 1996.

[35] M. D. Ercegovac and T. Lang, ‘‘Simple radix-4 division with operands
scaling,’’ IEEE Trans. Comput., vol. 39, no. 9, pp. 1204–1208, Sep. 1990.

[36] J. Fandrianto, ‘‘Algorithm for high speed shared radix 8 division and
radix 8 square root,’’ in Proc. 9th Symp. Comput. Arithmetic, Jul. 1989,
pp. 68–75.

[37] S. E. McQuillan, J. V. McCanny, and R. Hamill, ‘‘New algorithms and
VLSI architectures for SRT division and square root,’’ in Proc. IEEE 11th
Symp. Comput. Arithmetic, Jul. 1993, pp. 80–86.

[38] P.Montuschi and L. Ciminiera, ‘‘Reducing iteration timewhen result digit
is zero for radix 2 SRT division and square root with redundant remain-
ders,’’ IEEE Trans. Comput., vol. 42, no. 2, pp. 239–246, Feb. 1993.

[39] P. Montuschi and L. Ciminiera, ‘‘Over-redundant digit sets and the design
of digit-by-digit division units,’’ IEEE Trans. Comput., vol. 43, no. 3,
pp. 269–277, Mar. 1994.

[40] P. Montuschi and L. Ciminiera, ‘‘Radix-8 division with over-redundant
digit set,’’ J. VLSI Signal Process., vol. 7, no. 3, pp. 259–270, May 1994.

[41] N. Quach and M. Flynn, ‘‘A radix-64 floating-point divider,’’ Comput.
Syst. Lab., Stanford Univ., Stanford, CA, USA, Tech. Rep. CSL-TR-92-
529, Jun. 1992.

[42] H. R. Srinivas and K. K. Parhi, ‘‘A fast radix-4 division algorithm and
its architecture,’’ IEEE Trans. Comput., vol. 44, no. 6, pp. 826–831,
Jun. 1995.

[43] G. S. Taylor, ‘‘Radix 16 SRT dividers with overlapped quotient selec-
tion stages,’’ in Proc. 7th IEEE Symp. Comput. Arithmetic, Jun. 1985,
pp. 64–71.

[44] T. E. Williams and M. A. Horowitz, ‘‘A zero-overhead self-timed 160-
ns 54-b CMOS divider,’’ IEEE J. Solid-State Circuits, vol. 26, no. 11,
pp. 1651–1661, Nov. 1991.

[45] T. Lang and A. Nannarelli, ‘‘A radix-10 digit-recurrence division unit:
Algorithm and architecture,’’ IEEE Trans. Comput., vol. 56, no. 6,
pp. 727–739, Jun. 2007.

[46] D. Das Sarma and D. W. Matula, ‘‘Faithful bipartite ROM reciprocal
tables,’’ in Proc. 12th Symp. Comput. Arithmetic, Jul. 1995, pp. 12–25.

[47] M. P. Vestias and H. C. Neto, ‘‘Revisiting the Newton-Raphson iterative
method for decimal division,’’ inProc. 21st Int. Conf. Field Program. Log.
Appl., Sep. 2011, pp. 138–143.

[48] P. Saha, D. Kumar, P. Bhattacharyya, and A. Dandapat, ‘‘Vedic division
methodology for high-speed very large scale integration applications,’’
J. Eng., vol. 2014, no. 2, pp. 51–59, Feb. 2014.

[49] P. Bannon and J. Keller, ‘‘Internal architecture of Alpha 21164 micropro-
cessor,’’ in Dig. Papers OMPCON Technol. Inf. Superhighway, vol. 95,
Mar. 1995, pp. 79–87.

[50] S. E. Richardson, ‘‘Exploiting trivial and redundant computation,’’
in Proc. IEEE 11th Symp. Comput. Arithmetic, Jul. 1993,
pp. 220–227.

[51] J. Cortadella and T. Lang, ‘‘High-radix division and square-root with
speculation,’’ IEEE Trans. Comput., vol. 43, no. 8, pp. 919–931,
Aug. 1994.

[52] K. Huang and Y. Chen, ‘‘Improving performance of floating point divi-
sion on GPU and MIC,’’ in Proc. 15th Int. Conf. Algorithms Archit. Par-
allel Process., Zhangjiajie, China, 2015, pp. 691–703, doi: 10.1007/978-
3-319-27122-4_48.

[53] X. Fang and M. Leeser, ‘‘Vendor agnostic, high performance, double
precision floating point division for FPGAs,’’ in Proc. IEEE High Per-
form. Extreme Comput. Conf. (HPEC), Sep. 2013, pp. 1–5, doi: 10.
1109/HPEC.2013.6670335.

[54] W. Liu and A. Nannarelli, ‘‘Power dissipation challenges in multi-
core floating-point units,’’ in Proc. ASAP-21st IEEE Int. Conf. Appl.-
Specific Syst., Archit. Processors, Jul. 2010, pp. 257–264, doi: 10.
1109/ASAP.2010.5540986.

[55] A. Thall, ‘‘Extended-precision floating-point numbers for GPU compu-
tation,’’ in Proc. Special Interest Group Comput. Graph. Interact. Techn.
Conf., Boston MA, USA, Jul. 2006, p. 52.

[56] M. Qasaimeh, K. Denolfy, J. Loy, K. Vissersy, J. Zambreno, and
P. H. Jones, ‘‘Comparing energy efficiency of CPU, GPU and FPGA
implementations for vision kernels,’’ in Proc. Int. Conf. Embedded Softw.
Syst. (ICESS), Jun. 2019, pp. 1–8.

VOLUME 9, 2021 23067

http://dx.doi.org/10.1016/j.protcy.2013.12.182
http://dx.doi.org/10.1145/2851507
http://dx.doi.org/10.1016/j.protcy.2016.05.245
http://dx.doi.org/10.1016/j.protcy.2016.05.245
http://dx.doi.org/10.1109/ARITH.1997.614875
http://dx.doi.org/10.1007/978-3-319-27122-4_48
http://dx.doi.org/10.1007/978-3-319-27122-4_48
http://dx.doi.org/10.1109/HPEC.2013.6670335
http://dx.doi.org/10.1109/HPEC.2013.6670335
http://dx.doi.org/10.1109/ASAP.2010.5540986
http://dx.doi.org/10.1109/ASAP.2010.5540986

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

[57] K. Jun, ‘‘Modified non-restoring division algorithm with improved delay
profile,’’ M.S. thesis, Fac. Graduate, School Univ. Texas Austin, Austin,
TX, USA, 2011.

[58] S. F. Oberman and M. J. Flynn, ‘‘An analysis of division algorithms
and implementations,’’ Comput. Syst. Lab., Dept. Elect. Eng. Comput.
Sci., Stanford Univ., Stanford, CA, USA, Tech. Rep. CSL-TR-95-675,
Jul. 1995.

[59] J.-S. Chiang, H.-D. Chung, and M.-S. Tsai, ‘‘Carry-free radix-2 sub-
tractive division algorithm and implementation of the divider,’’ Tamkang
J. Sci. Eng., vol. 3, no. 4, pp. 249–255, 2000.

[60] N. Burgess and T. Williams, ‘‘Choices of operand truncation in the SRT
division algorithm,’’ IEEE Trans. Comput., vol. 44, no. 7, pp. 933–938,
Jul. 1995.

[61] B. Mehta, J. Talukdar, and S. Gajjar, ‘‘High speed SRT divider for
intelligent embedded system,’’ in Proc. Int. Conf. Soft Comput. Eng. Appl.
(icSoftComp), Dec. 2017, pp. 1–5.

[62] D. M. Russinoff, ‘‘Computation and formal verification of SRT quotient
and square root digit selection tables,’’ IEEE Trans. Comput., vol. 62,
no. 5, pp. 900–913, May 2013.

[63] W. Liu and A. Nannarelli, ‘‘Power efficient division and square
root unit,’’ IEEE Trans. Comput., vol. 61, no. 8, pp. 1059–1070,
Aug. 2012.

[64] A. Nannarelli, ‘‘Performance/power space exploration for binary64 divi-
sion units,’’ IEEE Trans. Comput., vol. 65, no. 5, pp. 1671–1677,
May 2016.

[65] R. E. Bryant, ‘‘Bit-level analysis of an SRT divider circuit,’’ in
Proc. 33rd Design Automat. Conf., Las Vegas, NV, USA, 1996,
pp. 661–665.

[66] S. F. Oberman and M. J. Flynn, ‘‘Minimizing the complexity of SRT
tables,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 6, no. 1,
pp. 141–149, Mar. 1998.

[67] T. M. Carter and J. E. Robertson, ‘‘Radix-16 signed-digit division,’’ IEEE
Trans. Comput., vol. 39, no. 12, pp. 1424–1433, Dec. 1990.

[68] D. E. Atkins, ‘‘Higher-radix division using estimates of the divisor
and partial remainders,’’ IEEE Trans. Comput., vol. C-17, no. 10,
pp. 925–934, Oct. 1968.

[69] R. Trummer, P. Zinterhof, and R. Trobec, ‘‘A high-performance data-
dependent hardware divider,’’ in Systems and Simulation, Parallel Numer-
ics. Ljubljana, Slovenia: Salzburg Univ.; Ljubljana Jožef Stefan Institute,
2005, ch. 7, pp. 193–206.

[70] R. Erra, ‘‘Implementation of a hardware algorithm for integer division,’’
M.S. thesis, Elect. Eng., Fac. Graduate College Oklahoma State Univ.,
Payne County, OK, USA, Aug. 2019.

[71] I. Rust and T. G. Noll, ‘‘A digit-set-interleaved radix-8 division/square
root kernel for double-precision floating point,’’ in Proc. Int.
Symp. Syst. Chip, Tampere, Finland, Sep. 2010, pp. 150–153, doi:
10.1109/ISSOC.2010.5625547.

[72] S. Knowles, ‘‘Arithmetic processor design for the T9000 transputer,’’
Proc. SPIE, vol. 1566, pp. 230–243, Dec. 1991.

[73] A. Pineiro, J. D. Bruguera, F. Lamberti, and P. Montuschi, ‘‘A radix-2
digit-by-digit architecture for cube root,’’ IEEE Trans. Comput., vol. 57,
no. 4, pp. 562–566, Apr. 2008.

[74] N. Takagi, S. Kadowaki, and K. Takagi, ‘‘A hardware algorithm for inte-
ger division,’’ in Proc. 17th IEEE Symp. Comput. Arithmetic, Jun. 2005,
pp. 140–146.

[75] B. R. Lee and N. Burgess, ‘‘Improved small multiplier based
multiplication, squaring and division,’’ in Proc. 11th Annu. IEEE
Symp. Field-Program. Custom Comput. Mach. (FCCM), Apr. 2003,
pp. 91–97.

[76] A. Nannarelli and T. Lang, ‘‘Low-power divider,’’ IEEE Trans. Comput.,
vol. 48, no. 1, pp. 2–14, Jan. 1999.

[77] A. Nannarelli, ‘‘Radix-16 combined division and square root unit,’’ in
Proc. 20th IEEE Symp. Comput. Arithmetic, Jul. 2011, pp. 169–176,
doi: 10.1109/ARITH.2011.30.

[78] H. P. Sharangpani and M. L. Barton, ‘‘Statistical analysis of floating-
point flaw in the Pentium processor (1994),’’ Intel Corp., Santa Clara,
CA, USA, Tech. Rep., 1994, pp. 1–32.

[79] E. M. Clarke, S. M. German, and X. Zhao, ‘‘Verifying the SRT division
algorithm using theorem proving techniques,’’ in Computer Aided Ver-
ification (Lecture Notes in Computer Science), vol. 1102, R. Alur and
T. A. Henzinger, Eds. Berlin, Germany: Springer, 1996, pp. 111–122,
doi: 10.1007/3-540-61474-5_62.

[80] E. M. Schwarz and M. J. Flynn, ‘‘Using a floating-point multiplier’s
internals for high-radix division and square root,’’ Dept. Elect. Eng.
Comput. Sci., Comput. Syst. Lab., Stanford Univ., Stanford, CA, USA,
Tech. Rep. CSL-TR-93-554, Jan. 1993.

[81] A. Vazquez, E. Antelo, and P. Montuschi, ‘‘A radix-10 SRT divider based
on alternative BCD codings,’’ in Proc. 25th Int. Conf. Comput. Design,
Lake Tahoe, CA, USA, Oct. 2007, pp. 280–287, doi: 10.1109/ICCD.
2007.4601914.

[82] L. Chen, F. Lombardi, P. Montuschi, J. Han, and W. Liu, ‘‘Design of
approximate high-radix dividers by inexact binary signed-digit addition,’’
in Proc. Great Lakes Symp. VLSI, May 2017, pp. 293–298, doi: 10.
1145/3060403.3060404.

[83] J.-A. Pineiro, M. D. Ercegovac, and J. D. Bruguera, ‘‘High-radix iterative
algorithm for powering computation,’’ in Proc. 16th IEEE Symp. Comput.
Arithmetic, Santiago de Compostela, Spain, Jun. 2003, pp. 204–211.

[84] A. F. Tenca and M. D. Ercegovac, ‘‘On the design of high-radix on-
line division for long precision,’’ in Proc. 14th IEEE Symp. Comput.
Arithmetic, Adelaide, SA, Australia, Apr. 1999, pp. 44–51.

[85] H. Nikmehr, B. Phillips, and C.-C. Lim, ‘‘Fast decimal floating-point
division,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14,
no. 9, pp. 951–961, Sep. 2006.

[86] M. D. Ercegovac and R. McIlhenny, ‘‘Design and FPGA implemen-
tation of radix-10 algorithm for division with limited precision primi-
tives,’’ in Proc. Conf. Rec. 42nd Asilomar Conf. Signals, Syst. Comput.,
Pacific Grove, CA, USA, Oct. 2008, pp. 762–766.

[87] M. D. Ercegovac and R. McIlhenny, ‘‘Design and FPGA implementation
of radix-10 combined division/square root algorithm with limited preci-
sion primitives,’’ in Proc. Conf. Rec. Forty 4th Asilomar Conf. Signals,
Syst. Comput., Pacific Grove, CA, USA, Nov. 2010, pp. 87–91.

[88] M. D. Ercegovac and J. M. Muller, ‘‘Complex square root with operand
prescaling,’’ in Proc. 15th IEEE Int. Conf. Appl.-Specific Syst., Archit.
Processors, Sep. 2004, pp. 1–11.

[89] M. D. Ercegovac and J. M. Muller, ‘‘Complex division with prescaling of
operands,’’ in Proc. Appl.-Specific Syst., Archit., Processors, Jun. 2003,
pp. 304–314.

[90] M. Baesler, S. O. Voigt, and T. Teufel, ‘‘FPGA implementations
of radix-10 digit recurrence fixed-point and floating-point dividers,’’
in Proc. Int. Conf. Reconfigurable Comput. FPGAs, Dec. 2011,
pp. 13–19.

[91] M.D. Ercegovac and J.M.Muller, ‘‘Variable radix real and complex digit-
recurrence division,’’ in Proc. 16th Int. Conf. Appl.-Specific Syst., Archit.,
Processors, Jul. 2005, pp. 316–321.

[92] D. Wang, M. D. Ercegovac, and N. Zheng, ‘‘Design and analysis of high
radix complex dividers,’’ in Proc. 2nd Int. Conf. Comput. Eng. Technol.,
vol. 1, Apr. 2010, pp. V1-84–V1-88.

[93] M. D. Ercegovac, T. Lang, and P. Montuschi, ‘‘Very-high radix divi-
sion with prescaling and selection by rounding,’’ IEEE Trans. Comput.,
vol. 43, no. 8, pp. 909–918, Aug. 1994.

[94] J. D. Bruguera, ‘‘Radix-64 floating-point divider,’’ in Proc. IEEE 25th
Symp. Comput. Arithmetic (ARITH), Jun. 2018, pp. 84–91.

[95] N. Burgess, ‘‘A fast division algorithm for VLSI,’’ in Proc. IEEE Int.
Conf. Comput. Design, VLSI Comput. Processors, Cambridge,MA, USA,
Oct. 1991, pp. 560–563.

[96] C. Tung, ‘‘A division algorithm for signed-digit arithmetic,’’ IEEE Trans.
Comput., vol. C-17, no. 9, pp. 887–889, Sep. 1968.

[97] L. A. Montalvo, K. K. Parhi, and A. Guyot, ‘‘New Svoboda-Tung divi-
sion,’’ IEEE Trans. Comput., vol. 47, no. 9, pp. 1014–1020, Sep. 1998.

[98] J.-S. Chiang and M.-S. Tsai, ‘‘A radix-4 new Svobota-Tung divider with
constant timing complexity for prescaling,’’ J. VLSI Signal Process.,
vol. 33, pp. 117–124, Jan. 2003.

[99] M. Kuhlmann and K. K. Parhi, ‘‘Fast low-power shared division and
square-root architecture,’’ in Proc. Int. Conf. Comput. Design. VLSI Com-
put. Processors, Oct. 1998, pp. 128–135.

[100] L. Montalvo and A. Guyo, ‘‘Svoboda-Tung division with no com-
pensation,’’ in Proc. IEEE Int. Conf. VLSI Design, Jan. 1995,
pp. 381–385.

[101] M. Joldes, O. Marty, J.-M. Muller, and V. Popescu, ‘‘Arithmetic algo-
rithms for extended precision using floating-point expansions,’’ IEEE
Trans. Comput., vol. 65, no. 4, pp. 1197–1210, Apr. 2016.

[102] T. J. Kwon, J. Sondeen, and J. Draper, ‘‘Floating-point division and square
root using a Taylor-series expansion algorithm,’’ in Proc. 50th Midwest
Symp. Circuits Syst., Montreal, QC, Canada, Aug. 2007, pp. 305–308,
doi: 10.1109/MWSCAS.2007.4488594.

23068 VOLUME 9, 2021

http://dx.doi.org/10.1109/ISSOC.2010.5625547
http://dx.doi.org/10.1109/ARITH.2011.30
http://dx.doi.org/10.1007/3-540-61474-5_62
http://dx.doi.org/10.1109/ICCD.2007.4601914
http://dx.doi.org/10.1109/ICCD.2007.4601914
http://dx.doi.org/10.1145/3060403.3060404
http://dx.doi.org/10.1145/3060403.3060404
http://dx.doi.org/10.1109/MWSCAS.2007.4488594

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

[103] A. Kumar and T. N. Sasamal, ‘‘Design of divider using Taylor series in
QCA,’’ Energy Procedia, vol. 117, pp. 818–825, Jun. 2017.

[104] A. A. Liddicoat and M. J. Flynn, ‘‘High-performance floating-point
divide,’’ in Proc. Euromicro Symp. Digit. Syst. Design, Warsaw, Poland,
Sep. 2001, pp. 354–361.

[105] B. Liebig and A. Koch, ‘‘Low-latency double-precision floating-point
division for FPGAs,’’ in Proc. Int. Conf. Field-Program. Technol. (FPT),
Shanghai, China, 2014, pp. 107–114.

[106] K. N. Han, A. F. Tenca, and D. Tran, ‘‘High-speed floating-point
divider with the reduced area,’’ Proc. SPIE, vol. 7444, Sep. 2009,
Art. no. 74440O, doi: 10.1117/12.827850.

[107] J.-A. Pineiro and J. D. Bruguera, ‘‘High-speed double-precision compu-
tation of reciprocal, division, square root, and inverse square root,’’ IEEE
Trans. Comput., vol. 51, no. 12, pp. 1377–1388, Dec. 2002.

[108] I. Kong and E. E. Swartzlander, ‘‘A goldschmidt division method with
faster than quadratic convergence,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 19, no. 4, pp. 696–700, Apr. 2011.

[109] R. E. Goldschmidt, ‘‘Applications of division by convergence,’’ M.S. the-
sis, Dept. Elect. Eng., Massachusetts Inst. Technol., Cambridge, MA,
USA, Jun. 1964.

[110] B. Pasca, ‘‘Correctly rounded floating-point division for DSP-enabled
FPGAs,’’ in Proc. 22nd Int. Conf. Field Program. Log. Appl. (FPL), Oslo,
Norway, Aug. 2012, pp. 249–254.

[111] H. F. Ugurdag, F. D. Dinechin, Y. S. Gener, S. Goren, and L.-S. Didier,
‘‘Hardware division by small integer constants,’’ IEEE Trans. Comput.,
vol. 66, no. 12, pp. 2097–2110, Dec. 2017.

[112] N. Emmart and C. Weems, ‘‘Asymptotic optimality of parallel short
division,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),
May 2016, pp. 864–872.

[113] N. Emmart and C. Weems, ‘‘Parallel multiple precision division by a
single precision divisor,’’ in Proc. 18th Int. Conf. High-Perform. Comput.
Dec. 2011, pp. 1–9, doi: 10.1109/HiPC.2011.6152712.

[114] T. Jebelean, ‘‘An algorithm for exact division,’’ J. Symbolic Comput.,
vol. 15, no. 2, pp. 169–180, Feb. 1993.

[115] DK Design Suite User Guide, DK Version 4, document UM-2005-4.2,
Celoxica Limited, 2005.

[116] Handel-C Language Reference Manual, DK Version 4, document RM-
1003-4.2, Celoxica Limited, 2005.

UDAYAN S. PATANKAR (Member, IEEE) was
born in Nagpur, Maharashtra, India, in September
1987. He received the Diploma degree in elec-
tronics and communication from the Maharashtra
State Board of Technical Education, Mumbai,
India, in 2008, and the B.E. degree in electronics
design technology and the M.E. degree in elec-
tronics engineering from RTMNU, Nagpur Uni-
versity, Nagpur, in 2011 and 2014, respectively.
He is currently pursuing the Ph.D. degree with the

Thomas Johann Seebeck Department of Electronics, Tallinn University of
Technology, Estonia. He is one of the authors of the book titled Elements
of Vedic Mathematics (Tallinn Press, 2018). His research interests include
mathematics, semiconductor electronics, circuit design, analog-digital cir-
cuits, and semiconductor devices. He is also amember of the IEEEConsumer
Electronics Society and the Electron Devices Society.

ANTS KOEL (Member, IEEE) was born in Tallinn,
Estonia, in August 1962. He received the Diploma
degree in industrial electronics from the Tallinn
Polytechnic Institute, Estonia, in 1985, the mas-
ter’s degree in 1998, and the Ph.D. degree from the
Tallinn University of Technology, Tallinn, Estonia,
in 2014. He became a member of theWessex Insti-
tute International Advisory Committee on Mate-
rials Characterization and the Chairman of the
Steering Committee of the IEEE-Sponsored Baltic

Electronics Conference 2020 organized by TUT.

VOLUME 9, 2021 23069

http://dx.doi.org/10.1117/12.827850
http://dx.doi.org/10.1109/HiPC.2011.6152712

