
Received July 26, 2020, accepted August 3, 2020, date of publication August 11, 2020, date of current version August 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3015706

Towards a Modular RISC-V Based Many-Core
Architecture for FPGA Accelerators
AHMED KAMALELDIN 1, (Graduate Student Member, IEEE),
SALMA HESHAM 1, (Member, IEEE), AND DIANA GÖHRINGER 1,2, (Member, IEEE)
1Adaptive Dynamic Systems, Technische Universität Dresden, 01069 Dresden, Germany
2Center for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01069 Dresden, Germany

Corresponding author: Ahmed Kamaleldin (ahmed.kamal@tu-dresden.de)

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID
287022738 -TRR196, and by the Open Access Funding by the Publication Fund of the TU Dresden.

ABSTRACT Multi-/Many-core architectures are emerging as scalable, high-performance and
energy-efficient computing platforms suitable for a variety of application domains from edge to cloud
computing. Recently, the appearance of RISC-V open-source ISA creates new possibilities to develop
customized computing platforms with high savings in the non-recurring engineering costs. Moreover,
the current trends toward open-source hardware frameworks are aimed to reduce design time and cost for
complex system-on-chip architectures. Therefore, modularity and re-usability of hardware components
are major challenges for flexible hardware architectures. The motivation behind this work is to introduce
a modular cluster-based many-core architecture for FPGA accelerators that is re-usable and flexible
tailored to implement different many-core taxonomies with less design time and costs by using regular and
replicated sets of computing, memory, and interconnection blocks. The proposed many-core architecture
is built using multiple processing clusters coupled with a NoC for communication which allows a high
degree of design scalability. The processing cluster inside features a configurable multi-core architecture
consisting of multiple RISC-V processing elements (PE) tightly coupled with a bus-based interconnection
for intra-cluster communication using parameterized scratchpad shared memory. Each PE features a single
RISC-V core with a tightly coupled parameterized scratchpad local memory and generic AXI interface.
Evaluation results demonstrate that the proposed architecture features a scalable computing performance
of 501 MOp/s for 4 clusters and 878 MOp/s for 8 clusters. Moreover, a scalable memory bandwidth up to
4.3 GB/s is achieved for 9 clusters with a power consumption of 1.4 W per cluster utilizing 7.7% of on-chip
memory resources. The many-core architecture is implemented and evaluated on Xilinx Virtex Ultrascale+
with the feature of changing the architecture configurations during run-time using dynamic and partial
reconfiguration which provides more flexibility and re-usability.

INDEX TERMS Many-core architecture, parallel computing, RISC-V, network-on-chip (NoC), field pro-
grammable gate array (FPGA), reconfigurable computing.

I. INTRODUCTION
Current and future applications in domains like deep neu-
ral network or next-generation cellular standards like 5G
impose high demands on a novel approach for hardware
platforms that can cope with high computational complex-
ity and memory requirements with low energy consump-
tion [1], [2]. Therefore, multi-/many-core architectures have
emerged as adequate scalable hardware platforms to address

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Conti .

the ever-increasing computation demands while maintaining
a sort of energy-efficiency. Whereas, the ending of Dennard’s
scaling and the inability to achieve energy efficiency with
high computing density by a single complex processor drives
hardware architects to explore new approaches for novel
architectures in order to increase the performance thereby
maximize the energy-efficiency. Hence, current many-core
architectures designs are following the path of integrat-
ing multiple processing nodes using the same silicon area
required by a complex processing core. Whereas the pro-
cessing nodes are either simple general-purpose processors

148812 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-7446-7741
https://orcid.org/0000-0003-0021-1468
https://orcid.org/0000-0003-2571-8441
https://orcid.org/0000-0002-8718-111X

A. Kamaleldin et al.: Towards a Modular RISC-V Based Many-Core Architecture

or application-specific hardware accelerators. In the last
decade, several multi-/many-core architectures have been
developed as application-specific or application-oriented
hardware platforms either with homogeneous [3] or het-
erogeneous [4], [5] processing cores. The goal here is to
provide hardware solutions with high performance/watt for
specific application domains (e.g. software-defined-radio).
However, the integration of many processing cores requires
an efficient communication infrastructure (e.g. network-on-
chip, advanced bus-based architectures) and memory hier-
archies that can cope with the high scalability and perfor-
mance requirements besides the associated programmability
challenges.

As a result, integrating more components and different
architectural units on a complete system-on-chip increases
design efforts (e.g. verification, validation, integration) and
therefore the rising of development time and costs. More-
over, the design specifications could vary due to different
application requirements which lead to the necessity of a
new design process for each new application requirement [2].
Resultantly increasing the design effort and therefore time
to market with a continuous inflation in non-recurring engi-
neering costs. Recently, the agility and re-usability of a new
scalable/configurable computing platform have attracted the
attention of the computer architecture community [6] driven
by the proliferation of the open-source instruction set archi-
tecture (ISA) by RISC-V and also the tendency towards a new
ecosystem for open-source hardware frameworks similar to
the software counterpart.

In this context, this paper introduces a modular
cluster-based many-core architecture for FPGAs. The focus
of this work is to propose a novel modular implementation
for many-core architectures based on RISC-V open-source-
hardware processors with cluster-granularity customization
for FPGA platforms. The proposed design has re-usable and
flexible architectural units that can be tailored to implement
different heterogeneous and homogeneous many-core tax-
onomies using regular building blocks for computation (e.g.
PEs, processing clusters), with several memory hierarchies
and generic communication interconnections. Thus, our goal
is also to analyze the effects of different architecture config-
urations regarding memory types, communication/network
interconnections and the number of processing cores on the
system performance.

The foremost contributions of this work are summarized as
follows:
• Designing amodular RISC-V based PEwith tightly cou-
pled local data/instruction memory and AXI compatible
interfaces to communicate with several memorymapped
peripherals and custom HW accelerators.

• Implementing a configurable processing clusters that
hosts configurable numbers of PEs with configurable
size shared memory system connected through a shared
bus architecture.

• Developing a scalable RISC-V based many-core archi-
tecture using configurable number of processing clusters

connected through a generic NoC architecture applying
a message-based communication model.

• Allowing the flexibility of run-time configuration for
several many-core configurations through dynamic par-
tial reconfiguration techniques.

As a result, the architecture maintains a high degree of
scalability using a scalable NoC topology and the design
regularity manner offers the flexibility to scale up the number
of processing clusters with less design effort and cost. Fur-
thermore, a message-based communication model is adopted
to support data transfer over the NoC between processing
clusters. In addition, a bare metal programming method is
introduced on the level of processing clusters for paral-
lel programming over the RISC-V PEs using shared and
local data memories on the cluster level. Moreover, the pro-
posed many-core architecture is evaluated based on differ-
ent architecture configurations covering different types of
memory hierarchies/sizes, communication interconnections,
and number of cores/clusters per system to explore several
design choices and their effects on the system performance.
In this work, for real hardware implementation and evalu-
ation, the proposed architecture is implemented and eval-
uated on a Xilinx Virtex Ultrascale+ FPGA. Furthermore,
the architecture can be flexibly portable to other Xilinx FPGA
series without the need to re-design the architecture’s build-
ing block components which make it feasible for FPGA
migration. Finally, the architecture supports run-time adapta-
tion of many-core configurations regarding memory-type and
number of processing cores per cluster using dynamic and
partial reconfiguration without the need to re-synthesize the
whole architecture. Accordingly and to the best of our knowl-
edge, our proposed architecture is the first RISC-V based
many-core architecture that supports run-time adaptation of
several architectural configurations.

The rest of the article is structured as follows: Section II
discusses background and related work. Section III gives a
detailed overview of the proposed modular design approach
for the proposed RISC-V based many-core architecture.
The evaluation and experimental results are presented in
Section IV. Finally, SectionV summarizes this work and gives
an outlook for future work.

II. RELATED WORK AND BACKGROUND
Several high-performance and energy-efficient multi-/many-
core architectures have been developed in both academia
and industry. However, there are a limited number of studies
discussing system scalability and design regularity in the
form of replicated building blocks or tile-based architectures
for homogeneous and heterogeneous many-core implemen-
tations. Besides, common multi-/many-core architectures are
mass-produced in the form of ASIC which make them highly
customized platforms for specific applications with dedicated
processing cores. Therefore, design time and manufacturing
are significant obstacles with high non-recurring engineering
costs which are not affordable for small-size companies or

VOLUME 8, 2020 148813

A. Kamaleldin et al.: Towards a Modular RISC-V Based Many-Core Architecture

academic research. We provide here a review of related work
for homogeneous and heterogeneous multi-/many-core archi-
tectures and frameworks for FPGA and ASIC platforms.

Kurth et al. [7] presented a heterogeneous many-core
research platform on FPGA (HERO). It explores the inte-
gration of RISC-V core into a shared memory cluster-based
programmable many-core accelerator (PMCA). The PMCA
is connected with an ARMCortex A53 as a host CPU through
anAXI coherent interconnect which provides coherent access
to the shared external memory with the host caches mem-
ory. Thus, the system allows shared virtual memory which
eases the system programmability. Moreover, the PMCA is
configurable in terms of the number of clusters and cores
supported during design time. Meanwhile, shared hardware
accelerators can be coupled with the RISC-V cores within the
cluster. However, the PMCA clusters are connected through
a custom shared bus architecture which limits the overall
scalability to 8 clusters. Therefore, to increase the degree
of scalability, OpenPiton [8] platform is proposed as an
open-source scalable architecture for many-core system pro-
totyping. OpenPiton is a tile-based architecture that supports
different NoC topologies for tiles inter-connection. Each tile
contains an Ariane 64-bit RISC-V core with private cache
memory connected to three NoC routers. Further, multiple
tiles are integrated into a chip and multiple chips are con-
nected together with a NoC for a scalable architecture. More-
over, each tile is configurable at design time to be extended
with a tightly coupled floating point or a stream processing
unit. Moreover, OpenPiton supports cache coherency proto-
col enabling shared memory across multiple chips. In the
same context, the embedded scalable platform (ESP) pro-
posed by Carloni [9], Giri et al. [10] is aimed to address the
complexity of design regularity for heterogeneous many-core
architecture with a special focus on HW/SW interaction
between RISC-V cores and hardware accelerators. Therefore,
the ESP tile-based architecture contains coherent socket inter-
face and direct memory access (DMA) engine for commu-
nication and data sharing through a NoC. The accelerators
are hosted by the tile connected to a communication socket
as a loosly coupled model. Moreover, ESP socket interface
supports the integration of high level synthesis (HLS) based
accelerator.

Similarly, Savas et al. [11], [12] proposed a framework
to design a domain-specific heterogeneous many-core archi-
tecture from application data flow graphs. The framework
is based on a heterogeneous tile-based architecture con-
sisting of a simple RISC-V core, memory and accelerator
tiles connected through a NoC. Also, the framework allows
the integration of HLS based accelerators to the architec-
ture. RVNoC [13] framework is a design time configurable
RISC-V NoC-basedMPSoC to integrate many RISC-V cores
using a reconfigurable NoC architecture to allow large sys-
tem scalability in term of computing elements. However,
it leaks the flexibility manner of cluster/tile based architec-
tures to host multiple RISC-V PEs or hardware accelerators
on a single processing unit with a shared or local memory

system which gives a second level of design scalability inside
the cluster/tile node. Furthermore, Memphis [14] framework
is proposed for scalable heterogeneous many-core SoCs.
It supports the generation and integration of homogeneous
PEs with hardware accelerators as shared peripherals to all
PEs. However, it does not support the tightly coupled inte-
gration of HW accelerators directly with PEs like the case
of cluster/tile based architectures. Moreover, the generated
architectures [13], [14] lacking fine configurations regarding
memory types/sizes and processing cores as proposed by
our modular architecture. In contrast, Vestias and Neto [15],
José et al. [16] proposed a configurable FPGA-based many-
core overlay for applications acceleration. It works as a
co-processor for high performance embedded systems with
configurable local memory size, core counts, and supported
arithmetic operations per processing core. As well, the GRVI
Phalanx overlay [17] is proposed for extreme scalability for
FPGA-based many-core accelerators. It efficiently uses the
FPGA resources to place hundreds of RV32I base processing
clusters with a scalable NoC architecture.

In addition to FPGA based platforms for rapid prototyp-
ing and evaluation, several many-core architectures that tar-
get ASIC platforms for low power and energy consumption
requirements have been developed. In this context, Black-
Parrot [18] is proposed as modular low power RISC-V
based multi-core architecture. The architecture is specified
as a heterogeneous tile-based architecture similar to the ESP
platform proposed by [9], [10] which also maintain data
coherency between the RISC-V and accelerators tiles. Hence,
BlackParrot uses a cache-coherent NoC for communica-
tion between all tiles. Moreover, it supports the extension
with second level caches between multiple tiles and external
DRAM and user peripherals. Besides, Ax et al. [19] proposed
the Core-VA as a NoC-based many-core architecture with
a hierarchical communication and cluster-based structure.
The architecture features global asynchronous and locally
synchronous (GALS) NoC architecture. Moreover, each clus-
ter has a tightly-coupled shared memory between the cores
for low memory latency and to reduce energy consumption.
However, integration of hardware accelerators is not sup-
ported. Similarly, P2012 [20] many-core GALS architecture
is built as a modular cluster-based architecture with tightly
coupled shared memory. It features a configurable number
of processing cores and memory size. Moreover, besides the
NoC interface, the cluster has a stream interface which allows
communication to multiple hardware accelerators. In the
same context, Epiphany [21] is a commercial energy-efficient
many-core with a global memory address space over NoC.
Therefore, each core is allowed to access other cores memory
coherently. However, the architecture does not introduce a
cluster level and implements synchronous NoC architecture.
Kalray MPPA-256 [22] is another commercial many-core
architecture that supports a cluster-based architecture. Each
cluster owns a private address space with local caches mem-
ories. Moreover, the architecture does not support a global
address space on the NoC level compared to [18]–[20].

148814 VOLUME 8, 2020

A. Kamaleldin et al.: Towards a Modular RISC-V Based Many-Core Architecture

TABLE 1. Comparison of different state-of-the-art multi/many-core platforms with respect to architecture specifications.

Accordingly, our proposed architecture differentiates from
these above-mentioned work as shown in Table 1 by pro-
viding more design configurability and flexibility related
to memory types/sizes and number of cores per cluster in
order to achieve high design scalability and regularity fea-
tures for a modular platform that supports multiple comput-
ing and memory choices to be tailored for different appli-
cations. Hence, the proposed many-core is implemented
as a cluster-based architecture. The clusters are connected
through a synchronous NoC architecture ARTNoC [23] using
stream network interfaces. Each cluster tightly couple mul-
tiple RISC-V PEs with shared instruction/data memories
using a shared AXI interconnect. The cluster features a pri-
vate address space which allows the communication between
all PEs and shared peripherals. Moreover, each PE fea-
tures a scratchpad local memory for low memory latency
access. Besides, each PE is extended with a stream interface
for communication with hardware accelerators. In addition,
a message-based communication model is developed to man-
age the data transfer between the clusters over the NoC.
Furthermore, the cluster is configurable based on the number
of cores and memory sizes and could be reconfigured during
run-time using dynamic partial reconfiguration.

III. MODULAR MANY-CORE ARCHITECTURE
The proposed many-core architecture features a mod-
ular and hierarchical interconnect design which targets
domain-specific and general-purpose applications for FPGA
accelerators. Moreover, the proposed many-core architec-
ture can be considered as a model for rapid prototyp-
ing of different many-core taxonomies with homogeneous
or heterogeneous computing elements (by adding optional

application-specific hardware accelerator cores) and supports
different styles of interconnect topologies. The proposed
architecture is a cluster-based many-core architecture which
consists of a scalable number of processing clusters con-
nected by a network-on-chip interconnect as shown in Fig-
ure 1. Within each cluster, several processing elements with
shared data and instruction memories are tightly coupled
via a bus-based interconnect. In this section, the proposed
many-core architecture and its programming method are
described.

A. PROCESSING ELEMENT
The Processing Element (PE) is the main computing
unit inside the proposed many-core architecture. The pro-
posed design modularity of the PE allows the execution
of general-purpose applications across different domains
e.g. (signal or image processing) with different computing
requirements and memory footprints. The PE consists of a
single open-source RI5CY soft-core processor [24] and a
local tightly coupled memory (TCM) subsystem for data and
instructions as shown in Figure 1 (b). The RI5CY core is a
32-bit 4-stage pipeline in-order processor. The core imple-
ments a simple RV32IMC ISA with main arithmetic-logic-
unit (ALU) and dedicated units for multiplication, division
and multiply-accumulate (MAC). Moreover, the RI5CY core
can be extended to support RV32IMFC with an optional
single-precision floating-point unit to increase the computing
capabilities. Moreover, the majority of the instructions have a
latency of one clock cycles except for the load/store (LD/ST)
and the dedicated arithmetic instructions which have a mini-
mum latency of 2 clock cycles [25].

In addition, like typical Harvard architecture, the PE fea-
tures separated local instruction and data memories tightly

VOLUME 8, 2020 148815

A. Kamaleldin et al.: Towards a Modular RISC-V Based Many-Core Architecture

FIGURE 1. Overview of the proposed RISC-V based many-core architecture with a 3× 3 mesh NoC including:
(a) Processing cluster block diagram with shared memories, network interface and optional hardware
accelerator, (b) RISC-V PE block diagram consisting of a RV32IMC core (RI5CY) with TCMs.

coupled with the RI5CY core. The local TCMs feature a
low memory latency of one clock cycle for read/write oper-
ations for private computation within a single PE. Moreover,
using a local memory per each PE reduces the probability
of memory interference between multiple PEs compared to
the uniform memory access (UMA) in shared memory hier-
archies. To emphasise the design modularity, the memory
sizes of D/I-TCM are configurable during the design time
based on the target applications memory requirement. Also,
all the memory blocks have a fixed word width of 32-bit
compatible with the RV32 ISA. As shown in Figure 1 (b),
the ITCM in the local memory subsystem is implemented
as a dual-ported BRAM with a read-only interface to the
RI5CY core instruction port (I-Port) for instruction fetching
to supply one instruction to the decode stage every clock
cycle. In addition, a write-only interface to the data port
(D-Port) allows the transfer of specific instructions from the
shared instruction memory to the ITCM during the memory
initialization stage. In contrast, the DTCM is implemented
as a single port BRAM with read/write interfaces to the
RI5CY core D-Port. The DTCM is only accessed directly via
its coupled PE. Therefore, accessing the DTCM directly by
other PEs is prevented and the local data memory has to be
transferred to the shared data memory to allow data sharing
between several PEs in the same processing cluster. In addi-
tion to the local TCMs, the RI5CY core I/D-Ports interfaces
are extended by implementing data and instruction bridges
(D, I-Bridges) to provide compatible interfaces to the AXI-
4 and AXI-Stream standard interfaces which allows a direct
connection to RI5CY core to communicate with the AXI
memory-mapped/stream components inside the processing
cluster. Since the RI5CY core or the PE is the master unit on
the proposed system. The supported AXI-4 interface is a mas-
ter interface which permits a connection to any AXI-4 slave

peripherals inside the cluster. Figure 2 gives an abstract
schematic of the D, I-Bridges internal implementation. The
D-Bridge handles the RI5CY read/write memory requests
(req_D) and the write-enable (we) signals from the D-Port
interface by rerouting them based on the memory-mapped
address range to the corresponding memory-mapped compo-
nent as shown in Figure 2 (a). Hence, a finite state machine is
implementedwith 7 states covering the read/write states to the
(AXI-4, AXIS, ITCM_write and DTCM) memory-mapped
interfaces. According to the state and the address-range input,
the D-Port interfaces (data_write/read_D, valid_D, grant_D)
are re-connected to the correspondingmemory-mapped inter-
faces and a connection is established between the core
and the corresponding memory-mapped peripheral. More-
over, inside the FSM a custom AXI-4/AXIS protocol con-
verter is implemented to convert the D-Port interfaces to a
compatible AXI-4/AXIS-interfaces. Similar to the D-Bridge,
the I-Bridge is implemented as shown in Figure 2 (b)
with a 2 states FSM for only reading from the ITCM
or the shared instruction memory attached to the AXI-4
interconnect.

B. PROCESSING CLUSTER
The processing cluster tightly couples multiple PEs with
shared instruction and data memories using a shared bus
interconnect. Therefore, the PEs share a common address
space inside the processing cluster which allows the com-
munication between them and accessing shared memo-
ries and shared memory-mapped peripherals via the bus
interconnect as shown in Figure 1 (a). In this work for
purposes of modularity and compatibility, the AXI-4 inter-
connect standard with a 32-bit width is used as the shared
bus interconnect. The AXI-4 interconnect uses separate

148816 VOLUME 8, 2020

A. Kamaleldin et al.: Towards a Modular RISC-V Based Many-Core Architecture

FIGURE 2. Schematic of the data and instruction bridges inside the RISC-V PE to connect the RISC-V core to the D/I TCM and the memory mapped AXI
peripherals.

channels for address and data. In addition, separate read/write
channels can be established simultaneously which allows
parallel data transaction across the shared bus. Further-
more, the AXI-4 interconnect applies a round-robin arbitra-
tion scheduling scheme for multiple requests to the same
shared peripheral. This fact increases the data transfer band-
width across the bus and reduces the probability of bus
congestion.

The processing cluster implements a UMA architec-
ture, where each PE can access shared data and instruc-
tion scratchpad memories connected to the bus as a slave
memory-mapped peripheral. Therefore, the shared datamem-
ory is used for communication and synchronization between
the PEs inside a single cluster. While the shared instruction
memory is implemented as read-only memory which is used
as a boot memory during thememory initialization stage [26].
Also, it is considered the main execution memory inside
the cluster to store the common instructions running on all
PEs. In the UMA architecture, each PE experiences the same
bandwidth and latency to the memory. However, the overall
memory bandwidth is divided between the number of PEs,
since all of the memory read/write request and data transac-
tion are conducted across the AXI interconnect. The growing
number of PEs connected to the bus leads to a decrease in
the total memory bandwidth for a single cluster. In order
to enhance the memory bandwidth, the shared data and
instruction memories are implemented as dual-ported BRAM
blocks. Therefore, two memory read/write channels can be
established across the shared bus to handle two memory
requests simultaneously. However, the memory bandwidth
scalability is limited and starts to saturate after a certain num-
ber of PEs. The shared data and instruction memories are size
configurable at design time. Moreover, the cluster supports
the integration of loosely coupled hardware accelerator as a
memory-mapped peripheral to the PE connected to the shared

bus or tightly coupled to a specific PE via the AXI-stream
interfaces as shown in Figure 1 (a).

C. NETWORK-ON-CHIP
A Network-on-Chip (NoC) is used on large scale
Multi-Processor System-on-Chip (MPSoC) or many-core
architectures to connect dozens to hundreds of PEs or pro-
cessing clusters together, providing on-chip end-to-end com-
munication paradigm and increasing the system scalability.
In this work, the ARTNoC [23] real-time NoC architecture
is used for inter-cluster communication in the proposed
many-core architecture. The NoC provides guaranteed qual-
ity of service (QoS) in terms of bandwidth and end-to-
end latency. In addition, the router architecture is highly
modular and parametrizable. It supports different I/O ports
configurations, switching controls, buffering sizes and rout-
ing schemes. The ARTNoC circuit-switched-based version is
used in the implementation as it features a low area overhead
compared to a packet-switched based NoC. The NoC is based
on a 2-D mesh topology with an XY-routing algorithm with
configurable size and I/O data widths at design time. Further-
more, the NoC internal architecture consists of 1© a 5 ports
circuit-switched router including a control path circuitry and
arbiters for path reservation, 2© a crossbar to switch between
the I/O ports and using round-robin arbitration scheme,
3© synchronous network links for communication between
the routers as shown in Figure 1 (a). The circuit-switched
NoC reserves a static transmission path between the source
and destination. This is performed by sending a single-flit
setup packet from the source containing the X-Y coordinate
of the destination node. Moreover, the NoC can transmit a
single packet flit every one clock cycle with a 32-bit payload
data.

In addition, a network interface (NI) is implemented to
allow communication between the processing cluster and the

VOLUME 8, 2020 148817

A. Kamaleldin et al.: Towards a Modular RISC-V Based Many-Core Architecture

FIGURE 3. Network Interface (NI) block diagram.

NoC. The used ARTNoC I/O interfaces are compatible with
the AXI-stream interface. Therefore, the proposed NI archi-
tecture is based on a flit-based streaming approach. Hence,
the NI links between the address-based shared bus used by the
cluster and the AXI-stream interface of the NoC. Moreover,
the NI allows the transmitting or receiving of data directly
from/to the PEs via the PE stream port without passing by
the shared bus interconnect which provides a tightly coupled
connection between the PE and the NoC. An overview of the
NI internal architecture is shown in Figure 3. The NI has two
separated channels for sending and receiving data. It is con-
nected to the shared bus interconnect as AXI-slave memory-
mapped peripheral that can be accessed by all PEs. Moreover,
the NI supports the streaming of data directly to a single PE
via the stream port in order to reduce the data interference
between multiple PEs for hard real-time applications. The
NI internal architecture consists of 1© an AXI-stream FIFO
of size 64 locations to store the transmitted or received data
to/from the NoC, 2© a customAXI-stream to AXI-4 converter
to connect the FIFO and its control signals to the cluster AXI-
interconnect. A certain PE can access the NI by setting a
synchronization flag (for either sending or receiving) in the
shared memory indicating that the NI is used by this PE to
prevent NoC deadlocks and data interference between several
NI requests from different PEs. The data flow between a PE
to a NI for NoC sending is performed by setting a pointer to
the shared data memory or PE DTCM to transfer a specified
size of data. The data is transmitted by a form of a group
of 32 packet-flits to the NI-TX FIFO either by the PE stream
port or the AXI-interconnect based on the NI control signals.
Similarly, in the receiving direction, the received packet-flits
are stored in the NI-RX FIFO until a reading request comes
from a certain PE to transfer the packets to the shared data
memory or DTCM. Due to the separated read/write channels
of the AXI-interconnect, transmitting and receiving of data
can be done concurrently.

FIGURE 4. Sequence diagram of the synchronous message-based
communication model for NoC data transfer between the clusters.

D. COMMUNICATION MODEL
Typical many-core and MPSoC architectures are consid-
ered as a suitable platform to run multi-tasks applications.
Each task is mapped to one or more PEs or process-
ing clusters based on the computation requirements. The
tasks are connected via a directed data flow graph that
defines the data flow and the execution period of each task
for a specific application. In this work, a communication
model between the clusters with unidirectional RX/TX chan-
nels is developed based on the NoC and NI architectures
described in the previous subsection. The communication
model applies a message-based communication approach ini-
tiated by the transmitting cluster and ending by the receiving
cluster. Figure 4 shows a sequence diagram of synchronous
message-based communication between two processing clus-
ters. The proposed communicationmodel provides a synchro-
nization mechanism between the sender and receiver clusters
to avoid NoC deadlocks and prevents packet losses during
the transmission. As shown in Figure 4, the transmission is
initiated by any PE in the sender cluster. The first trans-
mitted packet contains the X-Y coordinate of the destina-
tion followed by 32 packet-flits containing the first 32 pay-
load packets. The sending PE is blocked until it receives
an acknowledgement (ack) packet from the receiving cluster
to indicate a successful establishment of a communication
channel. Afterwards, the sending cluster starts to stream
the following data packet-flits and the receiving PE in the
receiving cluster is blocked until successful receiving of the
complete size of data. However, the software latency cost is
higher than the physical data streaming latency of the NoC.
Due to the reading and writing processes from/to the shared
or TCM data memories on both processing clusters. Listing 1
shows the C application programming interfaces (APIs) for
the proposed communication model depicted in Figure 4
for sending (send_data) and receiving (rec_data) over the
NoC architecture using the NI. The communication APIs are

148818 VOLUME 8, 2020

A. Kamaleldin et al.: Towards a Modular RISC-V Based Many-Core Architecture

FIGURE 5. Instruction memory mapping and its relevant linker script (.ld)
for a single processing cluster.

executed from the shared instruction memory of the cluster
to be accessable to all of the PEs in a cluster.

E. PROGRAMMING METHOD AND SOFTWARE
EXECUTION
Programming many-core architectures or MPSoCs is a chal-
lenging task for the programmer to effectively uses their
computation and communication resources. For this reason,
a bare-metal programming method is developed for the pro-
posed many-core architecture to generate multiple binary
files from multi-tasks application source codes e.g. (c codes)
corresponding to the number of used processing clusters.
Whereas, each processing cluster executes a single binary
file for its mapped task from the application data flow graph.
Task mapping and partitioning processes are done statically
by the programmer at design time. Therefore, the proposed
programming method does not support mapping or partition-
ing methods during runtime.

The PULP-RISC-V GNU toolchain [27] is used to compile
the C source codes for the RV32IMC architecture. After-
wards, the generated (.elf) file is converted to a Verilog
memory file using the objcopy-tool of the toolchain. The
Verilog memory file contains the generated binary file or the
complete instruction set for a single cluster. Finally, a BRAM
coefficient file (.coe) is generated from the Verilog memory
file to be loaded on the shared instruction memory during
design time. In-order to programme each PE inside the pro-
cessing cluster a memory initialization stage is required to
load the ITCM of each PE by the corresponding instruction
sets of a specific task running on this PE. Therefore, a linker
script (.ld) is developed as shown in Figure 5 for instruction
memory mapping. The linker script defines the instruction
memory partitions based on the memory address space for

Listing 1. C API functions for sending/receiving data to/from the NI.

Listing 2. Memory initialization C code for a single processing cluster.

the complete processing cluster. Hence, during the memory
initialization, each PE starts to load its instruction set from
the shared instruction memory based on the address mapping
to its ITCM as shown in Listing 2. In the application C
code each function which has to be executed from a local
ITCM has to be preceded with a memory section attribute
e.g. (__attribute__((section(‘‘.tcm_rom0′′)))) which defines
its executable ITCM as shown in Listing 2.

IV. IMPLEMENTATION RESULTS AND PERFORMANCE
EVALUATION
Physical hardware implementation, system scalability/
reconfiguration and performance analysis results of different
design configurations are discussed and presented in this
section. The Xilinx Virtex Ultrascale+ XCVU9P FPGA is
used for implementation and prototyping of the proposed
RISC-V based many-core architecture.

Besides, Xilinx Vivado Design Suite HLx 2017.4 is used
for RTL synthesis, simulation, verification, FPGA place and

VOLUME 8, 2020 148819

A. Kamaleldin et al.: Towards a Modular RISC-V Based Many-Core Architecture

FIGURE 6. Complete system and testing setup for the 36 RV32 PEs
many-core implementation, the MicroBlaze is used to dump the clusters
data memories.

routing as well as bitstream generation. In this section,
the many-core architecture is evaluated based on:

1) The hardware resources utilization of the different
building blocks described in Section III.

2) The system scalability in terms of the number of PEs
(RV32 cores) inside the processing cluster and its
impact on the overall memory bandwidth of a single
cluster.

3) The performance of NoC communication is measured
in term of data transfer latency and the maximum
achievable data rate between the clusters.

All benchmarks and test cases used for evaluation are
written in software (C codes) and compiled using the
PULP-RISC-V GNU toolchain [27] as described in the pre-
vious subsection (programming method and software execu-
tion) to generate the corresponding (.elf) files and coefficient
files (.coe) to be loaded into the shared instruction memory
of each cluster during the synthesis phase. The numbers of
execution cycles in this section are software measured by
using the performance counter register of the RI5CY core
(PCCR) [25]. The number of cycles measured by the PCCR
can be read using read_csr assembly function call in the
application software and stored back in the cluster shared
data memory to be retrieved back during the simulation (on
Vivado simulator) and testing on FPGA. In addition, dynamic
and partial reconfiguration (DPR) is applied to change the
processing cluster configuration in terms of number of cores
and memory sizes during runtime without re-synthesizing the
complete architecture.

A. HARDWARE IMPLEMENTATION AND PROTOTYPING
The proposed many-core architecture has been implemented
in a modular and hierarchical design process by creating each
module as an intellectual-property (IP) block and integrating
them inside the cluster module. The PE module contains the
RI5CY core integrated with the I, D-Bridges with parameter-
ized size D/I-TCMs. Also, NIs for transmitting and receiving

TABLE 2. Hardware resources utilization and power consumption for
36 PEs (9 clusters) many-core platform on Xilinx XCVU9P.

are implemented as separate modules containing AXI-stream
FIFOs of 32-bit data width and depth of 64 locations plus
the required protocol converters. Afterwards, the process-
ing cluster module integrates multiple PE modules con-
nected to the AXI-interconnect via the AXI-I, D interfaces.
Besides, AXI-BRAM controllers with parameterized size
shared instruction/data dual-ported BRAMs and NI modules
are connected to the AXI-interconnect. In addition, the NoC
(ARTNoC) is implemented as a single parameterized module
including the circuit-switched routers based on the mesh
topology size and the network links. The NoC parame-
ters are mesh size, flit size and the maximum number of
packet-flits for single-stream transmission over the NoC.
Figure 6 shows the complete implementation and testing
setup for 9 processing clusters with 36 RI5CY cores syn-
thesized and placed on the Xilinx XCVU9P FPGA. A sin-
gle MicroBlaze soft-core processor is connected to each
cluster via the AXI-interconnect for system monitoring and
to dump the shared data memory of each cluster. Hence,
the shared data memory in each cluster is considered as a
memory-mapped peripheral to the MicroBlaze during the
monitoring stage to extract the memories contents for results
and operations checking.

148820 VOLUME 8, 2020

A. Kamaleldin et al.: Towards a Modular RISC-V Based Many-Core Architecture

TABLE 3. Comparison between different processing cluster/tile with respect to architecture specifications and hardware resources utilization.

Table 2 shows the hardware resources utilization for the
complete system depicted in Figure 6 of the many-core archi-
tecture with 3 × 3 NoC size. The processing cluster is con-
figured with 4 PEs, 256 KB shared data memory and 64KB
shared instructionmemory. Each PE is configured with 16KB
ITCM and 64 KB DTCM. As shown in Table 2 (fifth row),
a processing cluster consumes ∼3% of the total amount of
LUT on the FPGA. While the complete NoC consumes∼6%
of the FPGA LUTs. Therefore, combining several cores in
a cluster is more resource efficient than connect single cores
directly to the NoCwhich leads to a high resources utilization
and high power consumption by a large size NoC to achieve
large scale many-core architectures. Furthermore, the power
consumption of the complete system is estimated by Xilinx
Power Estimator (XPE) at a clock frequency of 120 MHz as
shown in Table 2 (last three rows).

Table 3 shows a comparison between our proposed cluster
and several state-of-the-art cluster- /tile-based architectures
specifications. The comparison is based on single cluster/tile
specifications and hardware resources utilization without
adding hardware accelerators. Our proposed cluster architec-
ture supports a more complex RV32 core with M (multipli-
cation and division) extension with more memory resources
in comparison with the cluster architecture of GRVIPha-
lanx [17]. Furthermore, in comparison with HERO [7] with
similar RV32 extensions for PE, the hardware resources uti-
lization of (LUTs and FFs) are less than ∼30% of HERO’s
cluster resources utilization while using 4 PEs (half of PEs
number used by [7]). In contrast, the tile-based architectures
of [8], [10], [12] support a single core RV64G/C with floating
point execution unit and multiple levels of caches subsystems
which increase the resources utilization compared to the pro-
posed cluster-based architecture with scratchpad memories
and less complex RISC-V cores.

B. DESIGN SCALABILITY AND COMPUTING
PERFORMANCE
Design scalability determines the capability and the flex-
ibility of a parallel computing architecture to meet the
required computing resources, memory bandwidth and com-
munication data rate for parallel algorithms with growing
complexity. Moreover, scalability is used to predict the per-
formance of many-core architectures from the measured
performance of single cores. In this work, the proposed

FIGURE 7. Memory bandwidth scalability for a single processing cluster
with respect to the number of RV32 cores per cluster.

many-core architecture is evaluated based on the maximum
achievable memory bandwidth with respect to the number of
PEs per cluster. Also, the computing performance is evaluated
by the achievable number of operations per second (Op/s) and
the maximum data transfer latency between the clusters over
the NoC. The memory bandwidth is measured by a parallel
executing of a copy function on all PEs to copy data of size
of 4 KB through 3 evaluation scenarios 1© shared data mem-
ory to shared data memory (SH-SH), 2© from shared data
memory to the DTCM (SH-DTCM) or vice versa (DTCM-
SH) and 3© from DTCM to DTCM (DTCM-DTCM).
Figure 7 shows the memory bandwidth scalability for one
processing cluster. As a result, the data transfer bandwidth
in case of shared to shared data memory is scaled by 1.5x
using two PEs compared to one PE. However, the dual-port
data memory is used, memory bandwidth is not scaled by the
same factor due to the waiting cycles consumed for address
collision mitigation if two PEs write or read from the same
address at the same time. In contrast, splitting the memory
write destinations by using DTCM in (SH-DTCM) scenario
exploits the dual-ported memory feature by increasing the
scalability to 2x in case of using 2 PEs.

Moreover, in case of using shared data memory for read-
ing or writing, increasing the number of PEs over 2 will
not increase the memory bandwidth scalability in propor-
tional to the number of PEs due to the traffic contention
through the AXI-interconnect. On the other hand, as shown in
Figure 7, memory bandwidth is proportionally scalable
with the increasing number of PEs in case of using

VOLUME 8, 2020 148821

A. Kamaleldin et al.: Towards a Modular RISC-V Based Many-Core Architecture

FIGURE 8. Total memory bandwidth of the many-core platform with
respect to the total number of RV32 cores and the used data memories
inside the processing cluster.

FIGURE 9. Total latency in number of cycles for the NoC data transfer in
cases of connecting the NI to the AXI-interconnect or directly to the PE
AXIS interface.

DTCMs for writing and reading in a non-uniform memory
access (NUMA) mode. The total memory bandwidth for the
complete many-core architecture is calculated as follows:

Memory BW =
freq.× nPE × 2× data_size

ncycles
× ncluster (1)

where, nPE is the number of PEs per cluster, data_size is
the data transfer size from memory source to destination per
bytes within one cluster, ncycles is the measured number of
clock cycles, and ncluster is the total number of processing
cluster in the many-core architecture. Figure 8 shows the total
memory bandwidth for different many-core sizes and mem-
ory types configurations. A maximum memory bandwidth
of 4.3 GB/s is achieved by a 3×3×4many-core configuration
using only DTCMs which is ∼5x the maximum memory
bandwidth achieved with the same many-core configuration
using only shared data memories.

In order to measure the data transfer latency for a sin-
gle NoC transfer. A variant set of data sizes are transferred
between two processing clusters by using two NI configura-
tion modes. In the first configuration the NI is connected as
a slave peripheral to the bus and the data and control signals
are sent/received through the AXI-interconnect to the PEs.
While in the second NI configuration the control signals only
are transferred via the AXI-interconnect and the data signals
are directly connected to the PE via the AXIS interface.

Figure 9 shows the measured data latency for both NI con-
figurations. Therefore, connecting the NI data port (RX/TX
FIFOs) directly to the PE decreases the data transfer latency
by ∼10x compared to connect it to the AXI-interconnect.
However, connecting the NI to a single PE prevents the other
PEs in a cluster to share it and to connect to the NoC.

A fixed point parallel square matrix multiplication bench-
mark is implemented in order to evaluate the computing
performance of the proposed many-core architecture. The
parallel block matrix algorithm is used to partition the A
matrix into sub-matrices equals to the number of processing
clusters. While the B matrix is partitioned into sub-matrices
equals to the number of PE per cluster e.g. (A_size = 32 ×
32, Asub_size = 32/ncluster×32;B_size=32×32, Bsub_size =
32×32/nPE). Each processing cluster is responsible for an A
sub-matrix and each PE inside a cluster compute the multipli-
cation of a sub-matrix A with a sub-matrix B. For evaluation,
two many-core configurations with 4 and 8 clusters including
16/32 RV32 cores are used for computation. In addition,
a ninth cluster is used for block matrix generation, data trans-
fer and results collection from each cluster. Table 4 shows the
measured computing latency of the parallel matrixmultiplica-
tion with different fixed point sizes using only the shared data
memory or the DTCMs of each processing cluster for LD/ST
the sub-matrices elements. Furthermore, the computing per-
formance at a clock frequency = 120 MHz is calculated as
follows:

Performance (Op/s) =
2× n3

ncycles
× freq. (2)

where n3 is the computing complexity of square matrix mul-
tiplication of size (n×n), ncycles is the computing latency
per clock cycles and the multiplication by 2 is the number
of multiply and accumulate (MAC) operations. As shown
in Table 4 (DTCM column), The computing performance is
increased by ∼1.75x in case of using DTCMs for LD/ST
operations in comparison of only using the shared data mem-
ories. Besides, the computing scalability is doubled in case
of using 32 cores compared to 16 cores for local and shared
data memory configuration. Also, from Table 4 (performance
results), it can be observed that increasing the matrix sizes
increases the computing performance. Whereas, the total
number of LD/ST operations is proportional to the square
size of the matrix while the computation isO(n3). Therefore,
a decreasing in the percentage of LD/ST cycles from/to the
memory to the total computing cycles ncycles has occurred
which increases the computing performance based on equa-
tion (2). Similarly, reducing the fixed-point data size from
32-bit to 16- or 8-bit decreases LD/ST cycles from/to the data
memory. Therefore, the total computing latency is reduced
and the computing performance is increased. As a result,
a maximum performance of 878.4 FP-MOp/s can be achieved
in case of 8-bit (64 × 64) matrix size over 32 cores with
DTCM as shown in Table 4. Moreover, Figure 10 shows the
overall speedup (acceleration) achieved when parallelizing
different matrix multiplication sizes over 16 cores (4 clusters)

148822 VOLUME 8, 2020

A. Kamaleldin et al.: Towards a Modular RISC-V Based Many-Core Architecture

TABLE 4. Computing performance and data transfer latency for matrix multiplication benchmark using 16/32 cores at clock frequency = 120 MHz.

FIGURE 10. Overall matrix multiplication speedup over 16/32 cores for different matrix sizes n with several bit-widths and memory configurations.

and 32 cores (8 clusters) using different bit-width opera-
tions and memory types (shared data or DTCM memory).
The speedup is calculated by (n3)/Computing latencycycles.
Where Computing latencycycles is the execution time per
clock cycles for multiplication and n3 is the computing
complexity of the matrix multiplication. The (red bars)
in Figure 10 represents 8-bit width matrix multiplication.
It shows a scalable performance of 1.8x by using 8 clusters
compared to 4 clusters. While in case of 32-bit width (green
bars) multiplication the performance scalability is 1.7x as
the numbers of memory operations increased compared to
the 8-bit width multiplication case. Moreover, using DTCM
instead of shared data memory increases the multiplication
speedup by at least the double (>2x) in cases of 32, 16-bit
width multiplication as shown in Figure 10.

C. MATRIX LU DECOMPOSITION (USE CASE)
LU decomposition is a key function for linear algebra cal-
culations required by signal/image processing applications.
LU decomposition factors a square matrix of size (n×n) as
a product of a lower (L) and upper (U) triangular matri-
ces. It is performed by a sequence of Gaussian elimina-
tions to form A = LU. LU decomposition can be performed
for a non-singular matrix A in a column-oriented method
as shown in Algorithm 1. The algorithm is parallelized
over the many-core architecture as follows. Matrix A is
divided column-wise over the number of processing clusters.
Each cluster receiving a sub-matrix of A and computes a

Algorithm 1 LU Decomposition
1: n : rows[A]
2: Loop-1: Acols are divided by # clusters = 4 or 8
3: for k ← 1 to n do
4: ukk ← akk
5: Loop-2: Asub_cols are divided by # cores = 4
6: for i← k + 1 to n do
7: lik ← aik/ukk
8: uki← aki
9: end for

10: Loop-3: Asub_cols are divided by # cores = 4
11: for i← k + 1 to n do
12: for j← k + 1 to n do
13: aij← aij − lik × ukj
14: end for
15: end for
16: end for
17: return L and U

sub-matrix for L and U as shown by Algorithm 1 (Loop-
1) then store the results in its shared data memory. Inside
each cluster, the A sub-matrix is divided again column-wise
over the number of cores (PEs) per cluster as shown by
Algorithm 1 (Loop-2, Loop-3). Therefore, the computation
is conducted in parallel over the number of PEs as each PE
is responsible to produce a sub-matrix for L and U. The LU
calculation requires MAC and reciprocal operations with a
total computing complexity of ∼ O(23n

3). For performance

VOLUME 8, 2020 148823

A. Kamaleldin et al.: Towards a Modular RISC-V Based Many-Core Architecture

TABLE 5. Performance evaluation of the LU decomposition test case.

FIGURE 11. Placement of 9 reconfigurable processing clusters and a
static 3× 3 mesh NoC on the Xilinx Virtex Ultrascale+ XCVU9P floorplan.

evaluation, 16 and 32 cores many-core configurations are
used to compute the LU decomposition for two square matrix
sizes of (32×32, 64×64). In addition, an extra cluster is used
for matrix generation and results collection. Table 5 shows
the computing and data transfer latency for the different
many-core and matrix sizes configurations. Whereas the data
transfer latency is higher than the computing latency due
to the software cost of data transfer latency over the NoC
(described in Section III) plus the memory read/write over-
head by each PE.

D. RUN-TIME RECONFIGURATION
In order to provide high flexibility and configurability for
the proposed many-core architecture. Xilinx dynamic partial
reconfiguration (DPR) technique is supported to change the
configuration of the many-core architecture during run-time
without the need to synthesize the complete architecture for
every configuration changes. For the many-core implemen-
tation setup depicted in Figure 6, the FPGA floorplan is
divided into 9 reconfigurable regions to host a reconfigurable
processing cluster each and one static region including a 3×3
NoC, a single MicroBlaze, and testing peripherals as shown
in Figure 11. Each processing cluster can host a dynamic
number of PEs depends on the computation requirements
of the target applications. In addition, the shared memory
sizes can be changed at run-time by uploading a new partial
bitstream with a new memory configuration.

Moreover, DPR provides the feature to change the run-
ning application over a cluster at run-time by changing the
contents of the shared instruction memory using a new par-
tial bitstream. For experimental analysis, an external recon-
figuration technique using the JTAG interface is developed
to load the partial bitstreams from an external device (e.g.
PC) to the Virtex Ultrascale+ FPGA configuration memory.

TABLE 6. DPR resources utilization and reconfiguration time.

Table 6 shows the resources utilization of the reconfiguration
region assigned to a single cluster and the percentage of
usage by a different number of PEs. Besides, the measured
reconfiguration time for a single reconfiguration region is
equal to ∼0.9s and it could be reduced by using SelectMap
or PCIe interfaces.

V. CONCLUSION
This work proposes a novel modular RISC-V based
many-core architecture with a high degree of design
scalability and regularity for FPGA platforms. The
architecture is based on a configurable cluster-based design
connected through a scalable generic NoC architecture. The
processing cluster features a RISC-V based multicore com-
puting architecture supporting a software managed shared
and local memory systems. Moreover, it supports design-
/run-time configurable number of PEs and memory sizes
based on the target application requirements. Several build-
ing blocks for PEs, memory systems and interconnections
are developed and designed based on a modular and reg-
ular manner and implemented in the form of configurable
IP blocks to be integrated together to generate different
many-core taxonomies. The proposed approach aims to
ease the development and the implementation of homoge-
neous/heterogeneous many-core architectures by reducing
the design time and the non-recurrent engineering costs. The
many-core architecture is evaluated based on different archi-
tecture configurations to measure the design scalability in
terms of growing numbers of processing clusters, the number
of PEs per cluster and the achievable memory bandwidth as
well the hardware resources utilization of the architecture
building blocks. The results show a high degree of computing
and memory bandwidth scalability by using local memory
blocks per processing cluster for memory intensive applica-
tions e.g. (matrix multiplication) compared to using shared
memory blocks. Moreover, the used NoC architecture allows
the integration of a scalable number of processing clusters for
compute intensive applications.

As for the future work, it is planned to integrate cus-
tom hardware accelerators for linear algebra functions to
the proposed architecture in order to provide a real-time
computing architecture for signal-/image processing applica-
tions. In addition, an internal DPR controller coupled with
a RISC-V core will be implemented inside a static clus-
ter to speedup the reconfiguration time to support real-time
requirements.

148824 VOLUME 8, 2020

A. Kamaleldin et al.: Towards a Modular RISC-V Based Many-Core Architecture

REFERENCES
[1] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi, ‘‘Scaling

for edge inference of deep neural networks,’’Nature Electron., vol. 1, no. 4,
pp. 216–222, Apr. 2018.

[2] G. P. Fettweis, E.Matus, R.Wittig,M.Hasler, S. Damjancevic, S. Nam, and
S. Haas, ‘‘5G-and-beyond scalable machines,’’ in Proc. IFIP/IEEE 27th
Int. Conf. Very Large Scale Integr. (VLSI-SoC), Cuzco, Peru, Oct. 2019,
pp. 105–109.

[3] R. Airoldi, F. Garzia, T. Ahonen, and J. Nurmi, ‘‘Ninesilica: A homo-
geneous MPSoC approach for SDR platforms,’’ in Computing Plat-
forms for Software-Defined Radio. Cham, Switzerland: Springer, 2017,
pp. 107–119.

[4] S. Gregor, B. Hübener, J. Ax, M. Flasskamp, W. Kelly, T. Jungeblut,
and M. Porrmann, ‘‘The CoreVA-MPSoC: A multiprocessor platform for
software-defined radio,’’ in Computing Platforms for Software-Defined
Radio. Cham, Switzerland: Springer, 2017, pp. 29–59.

[5] S. Haas et al., ‘‘A heterogeneous SDR MPSoC in 28 nm CMOS for low-
latency wireless applications,’’ in Proc. 54th IEEE Design Automat. Conf.
(DAC), Austin, TX, USA, 2017, pp. 1–6.

[6] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H.Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt, J. Wright,
J. Zhao, Y. S. Shao, K. Asanovic, and B. Nikolic, ‘‘Chipyard: Integrated
design, simulation, and implementation framework for custom SoCs,’’
IEEE Micro, vol. 40, no. 4, pp. 10–21, Jul. 2020.

[7] A. Kurth, P. Vogel, A. Capotondi, A. Marongui, and L. Benini, ‘‘HERO:
Heterogeneous embedded research platform for exploring RISC-V many-
core accelerators on FPGA,’’ in Proc. Comput. Archit. Res. RISC-V Work-
shop (CARRV), 2017, pp. 1–7.

[8] J. Balkind, K. Lim, F. Gao, J. Tu, D. Wentzlaff, M. Schaffner,
F. Zaruba, and L. Benini, ‘‘OpenPiton+Ariane: The first open-source,
SMP Linux-booting RISC-V system scaling from one to many cores,’’
in Proc. 3rd Workshop Comput. Archit. Res. RISC-V (CARRV), 2019,
pp. 1–6.

[9] L. P. Carloni, ‘‘Invited: The case for embedded scalable platforms,’’ in
Proc. 53rd IEEE Design Automat. Conf. (DAC), Austin, TX, USA, 2016,
pp. 1–6.

[10] D. Giri, K.-L. Chiu, G. Di Guglielmo, P. Mantovani, and L. P. Carloni,
‘‘ESP4ML: Platform-based design of systems-on-chip for embedded
machine learning,’’ in Proc. Design, Automat. Test Eur. Conf. Exhib.
(DATE), Grenoble, France, Mar. 2020, pp. 1049–1054.

[11] S. Savas, Z. Ul-Abdin, and T. Nordström, ‘‘Designing domain-specific
heterogeneous architectures from dataflow programs,’’ Computers, vol. 7,
no. 2, pp. 1–28, 2018.

[12] S. Savas, Z. Ul-Abdin, and T. Nordström, ‘‘A framework to generate
domain-specific manycore architectures from dataflow programs,’’Micro-
processors Microsyst., vol. 72, pp. 1–18, Feb. 2020.

[13] M. A. Elmohr, A. S. Eissa, M. Ibrahim, M. Khamis, S. El-Ashry,
A. Shalaby, M. AbdElsalam, and M. W. El-Kharashi, ‘‘RVNoC: A frame-
work for generating RISC-V NoC-based MPSoC,’’ in Proc. 26th Euromi-
cro Int. Conf. Parallel, Distrib. Netw.-Based Process. (PDP), Cambridge,
U.K., Mar. 2018, pp. 617–621.

[14] M. Ruaro, L. Caimi, V. Fochi, and F. Moraes, ‘‘Memphis: A framework for
heterogeneous many-core SoCs generation and validation,’’ Des. Autom.
Embedded Syst., vol. 23, pp. 103–122, Aug. 2019.

[15] M. Vestias and H. Neto, ‘‘A many-core overlay for high-performance
embedded computing on FPGAs,’’ in Proc. 1st Int. Workshop FPGAs
Softw. Program. (FSP), 2014, pp. 71–76.

[16] W. José, H. Neto, and M. Vestias, ‘‘A many-core co-processor for embed-
ded parallel computing on FPGA,’’ in Proc. Euromicro Conf. Digit. Syst.
Design, Aug. 2015, pp. 539–542.

[17] J. Gray, ‘‘GRVI phalanx: A massively parallel RISC-V FPGA acceler-
ator accelerator,’’ in Proc. IEEE 24th Annu. Int. Symp. Field-Program.
Custom Comput. Mach. (FCCM), Washington, DC, USA, May 2016,
pp. 17–20.

[18] D. Petrisko, F. Gilani, M. Wyse, D. C. Jung, S. Davidson, P. Gao, C. Zhao,
Z. Azad, S. Canakci, B. Veluri, T. Guarino, A. Joshi, M. Oskin, and
M. B. Taylor, ‘‘BlackParrot: An agile open source RISC-V multicore for
accelerator SoCs,’’ IEEEMicro, vol. 40, no. 4, pp. 93–102, Jul./Aug. 2020.

[19] J. Ax, G. Sievers, J. Daberkow, M. Flasskamp, M. Vohrmann, T. Junge-
blut, W. Kelly, M. Porrmann, and U. Rückert, ‘‘CoreVA-MPSoC: A
many-core architecture with tightly coupled shared and local data mem-
ories,’’ IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 5, pp. 1030–1043,
May 2018.

[20] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, ‘‘P2012: Building an
ecosystem for a scalable, modular and high-efficiency embedded comput-
ing accelerator,’’ in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE),
Dresden, Germany, Mar. 2012, pp. 983–987.

[21] A. Olofsson, T. Nordstrom, and Z. Ul-Abdin, ‘‘Kickstarting high-
performance energy-efficient manycore architectures with epiphany,’’ in
Proc. 48th Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA,
USA, Nov. 2014, pp. 1719–1726.

[22] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, and
T. Strudel, ‘‘A clustered manycore processor architecture for embedded
and accelerated applications,’’ in Proc. IEEE High Perform. Extreme Com-
put. Conf. (HPEC), Waltham, MA, USA, Sep. 2013, pp. 1–6.

[23] S. Hesham, D. Gohringer, and M. A. El Ghany, ‘‘ARTNoCs: An evaluation
framework for hardware architectures of real-time NoCs,’’ in Proc. IEEE
Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW), Chicago, IL,
USA, May 2016, pp. 259–264.

[24] P. D. Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand,
and L. Benini, ‘‘Slow and steady wins the race? A comparison of ultra-
low-power RISC-V cores for Internet-of-Things applications,’’ in Proc.
27th Int. Symp. Power Timing Modeling, Optim. Simulation (PATMOS),
Sep. 2017, pp. 1–8.

[25] A. Traber, M. Gautschi, and P. D. Schiavone. (Apr. 2019).
RI5CY: User Manual. [Online]. Available: https://pulp-platform.
org/docs/ri5cy_user_manual.pdf

[26] A. Kamaleldin, M. Ali, P. A. Rad, M. Gottschalk, and D. Gohringer,
‘‘Modular memory system for RISC-V basedMPSoCs on Xilinx FPGAs,’’
in Proc. IEEE 13th Int. Symp. Embedded Multicore/Many-Core Syst.-Chip
(MCSoC), Singapore, Oct. 2019, pp. 68–73.

[27] PULP RISC-V GNU Compiler Toolchain. Accessed: Aug. 12, 2020.
[Online]. Available: https://github.com/pulp-platform/pulp-riscv-gnu-
toolchain

[28] ESP: The Open-Source SoC Platform. Accessed: Aug. 12, 2020. [Online].
Available: https://github.com/sld-columbia/esp

AHMED KAMALELDIN (Graduate Student
Member, IEEE) received the B.Sc. and M.Sc.
degrees (Hons.) in electronics and electrical com-
munications engineering from Cairo University,
Egypt, in 2012 and 2017, respectively. He is
currently a Research Assistant with the Adaptive
Dynamic Systems (ADS) Chair, Technische Uni-
versität Dresden, Germany. His current research
interests include reconfigurable computing, multi-
processor systems-on-chip (MPSoCs), networks-

on-chip, hardware-software co design, and runtime systems.

SALMA HESHAM (Member, IEEE) received the
M.Sc. degree in electronics engineering from Ger-
man University in Cairo (GUC), Egypt, in 2012,
with DAAD exchange thesis semester from Ulm
University, Germany, and the dual Ph.D. degree
(summa cum laude) in electrical engineering and
information technology from Ruhr-Universität-
Bochum (RUB), Germany, and GUC, in 2019.
From 2012 to 2019, she was an Assistant Lecturer
and a Research Assistant with GUC. From 2012 to

2014, she was involved in collaborative research work with TU-Darmstadt,
Germany. From 2015 to 2019, she was a Bilateral Doctoral Researcher
with RUB and GUC. From 2019 to 2020, she was a part of collaborative
research work with the Adaptive Dynamic Systems (ADS) Chair, Technische
Universität Dresden, Germany. Since September 2019, she has been a Lec-
turer with GUC, Berlin Exchange Campus. Her research interests include
hardware design of digital circuits and systems, real-time networks-on-
chip, multiprocessor systems-on-chip (MPSoCs), and asynchronous circuit
designs.

VOLUME 8, 2020 148825

A. Kamaleldin et al.: Towards a Modular RISC-V Based Many-Core Architecture

DIANA GÖHRINGER (Member, IEEE) is profes-
sor for Adaptive Dynamic Systems at TUDresden,
Germany. From 2013 to 2017 she was an assis-
tant professor and head of the MCA (application-
specific Multi-Core Architectures) research group
at Ruhr-University Bochum (RUB), Germany.
Before that she was working as the head of
the Young Investigator Group CADEMA (Com-
puter Aided Design and Exploration ofMulti-Core
Architectures) at the Institute for Data Processing

and Electronics (IPE) at the Karlsruhe Institute of Technology (KIT). From,
2007 to 2012, she was a senior scientist at the Fraunhofer Institute of

Optronics, System Technologies and Image Exploitation IOSB in Ettlingen,
Germany (formerly called FGAN-FOM). In 2011, she received her PhD
(summa cum laude) in Electrical Engineering and Information Technology
from the Karlsruhe Institute of Technology (KIT), Germany. She is author
and co-author of 1 book, 10 invited book chapters and over 130 publica-
tions in international journals, conferences and workshops. Additionally,
she serves as technical program committee member in several international
conferences and workshops. She is reviewer and guest editor of several
international journals. Her research interests include reconfigurable comput-
ing, multiprocessor systems-on-chip (MPSoCs), networks-on-chip, simula-
tors/virtual platforms, hardware-softwarecodesign and runtime systems.

148826 VOLUME 8, 2020

