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ABSTRACT Despite the great success, existing regression clustering methods based on shallow models are
vulnerable due to: (1) They often pay no attention to the combination between learning representations and
clustering, thus resulting in unsatisfactory clustering performance. (2) They ignore the relationship of data
distribution and target distribution such that those methods are noise and illumination-change sensitive. (3)
These nonlinear regression methods usually impose the hard constraint to minimize the mismatch between
the discrete cluster assignment matrix and latent representations, which leads to over-fitting. In this paper,
we utilize deep adversarial regression to tackle these problems and formulate regression based clustering
by deep adversarial learning (RCDA). By seamlessly combining with the stacked autoencoder, the proposed
model integrates learning deep nonlinear latent representation and clustering in a unified framework. Specifi-
cally, RCDA uses a kind of relax constraint between latent representations and continuous cluster assignment
matrix to avoid over-fitting, and simultaneously utilizes the t-SNE algorithm and adversarial learning to
analyze data distribution and target distribution so that improve representations learning. Experimental
results on public benchmark datasets demonstrate that the proposed architecture achieves better performance
than state-of-the-art clustering models in image clustering task.

INDEX TERMS Unsupervised learning, image clustering, regression based clustering.

I. INTRODUCTION
Clustering, primitive exploration with little or no prior knowl-
edge, is one of the most indispensable and fundamental
research topics in artificial intelligence research, and applies
in many fields such as image retrieval, image annotation,
document analysis and image segmentation, etc. In the past
few decades, many classic clustering algorithms have been
proposed, including spectral clustering (SC) [1], [2], sub-
space clustering [3], [4], graph based clustering [5] and so
on. Despite extensive study, the performance of traditional
clustering methods deteriorates with high dimensional data
due to unreliable similarity metrics, known as the curse of
dimensionality, when working with large-scale real-world
image datasets.

To deal with the problem of dimensional curse, a common
way is to transform data from a high dimensional data space
to a lower feature space by applying hand-crafted feature
extraction or dimension reduction techniques like principle
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component analysis (PCA), scale invariant feature transform
(SIFT feature) and histogram of oriented gradients (HOG
feature). Then, clustering can be performed in the lower
dimensional feature space. However, these hand-crafted fea-
tures ignore the interconnection between features learning
and clustering. To address this issue, Torre and Kanade [6]
propose a shallow model to perform clustering and feature
learning simultaneously by integrating K-Means and linear
discriminant analysis (LDA) into a joint framework. Never-
theless, the representation ability of features learned via these
shallow models is limited.

To address the above challenges, lately, deep clustering
models have emerged, which apply deep neural network to
clustering tasks. For instance, Tian et al. [7] utilizes deep neu-
ral networks (DNNs) to transform feature at first phase, and
then clustering. Xie et al. [8] propose deep embedded cluster-
ing (DEC) that simultaneously learns feature representations
and cluster assignments using DNN, in which feature map-
ping and clustering are jointly learned. Guo et al. [9] present
an improved deep embedded clustering (IDEC) method with
local structure preserved based on DEC. Dizaji et al. [10]
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base their new deep clustering model, termed DEPICT on a
multi-layer convolutional autoencoder, in which a regularized
relative entropy loss function is employed for clustering.

Traditional clustering methods refer to unsupervised set-
tings. Regression as one kind of classic machine learning
algorithm has been applied to deal with many classic super-
vised learning tasks, e.g., object classification and face recog-
nition [11]. When the prior label knowledge of instances
is unknown in regression learning, it becomes unsupervised
regression. However, there are few studies to utilize the
property of regression to tackle clustering tasks. In practice,
many high dimensional data may exhibit dense grouping in
a low dimensional subspace, and the true cluster indicator
matrix can be always embedded into a low dimensional map-
ping of the data [12]. Hence, regression can help guide the
partitioning process by modeling the dissimilarity of each
cluster in the low dimensional subspace. To take advantage
of this property, [13] developed a local and global discrim-
inative framework for balanced clustering via minimizing
distribution entropy and the least-squares regression between
cluster indicator matrix and low dimensional features. Since
the cluster indicator matrix consists of discrete binary values,
on the contrary, the low-dimensional feature is continuous.
This hard constraint allows continuous values to approximate
discrete values, which may make the overall model hard to
optimize. In order to embed the discriminative information
in the cluster indicator matrix of spectral clustering, thereby
boosting clustering performance, [14] proposed to take con-
trolling the regression constraint between the cluster indica-
tor matrix and the latent features of the data into account,
in which relaxing the cluster indicator matrix is considered,
but keep the orthogonality intact. This problem also exists in
[15], in which a robust regression-based clustering method
was presented to tackle cancer genome data. However, a vital
constraint is usually ignored by above methods, i.e., all the
elements of the cluster indicator matrix should be nonnega-
tive by definition.

Although all the above regression-based clustering meth-
ods provide impressive results, they still have several limi-
tations: 1) Overlooking the relationship of data distribution
makes the model sensitive to noise and illumination changes;
2) Being unable to capture the no-linear structure of data,
because these methods based on shallow and linear objective
function; 3) Using strict restrictions, which leads to algo-
rithms overfitting; 4) Separation of the latent representation
and clustering.

To handle the problems mentioned above, motivated by
DEC [8], stacked autoencoder [16] and adversarial learn-
ing [17], we propose a novel deep adversarial regression
clustering model (RCDA) to learn an effective parameter-
ized non-linear mapping from the data space X to a lower-
dimensional feature space F, which takes the advantages of
regression clustering methods, deep embedding models and
adversarial learning. RCDA basically consists of two train-
ing procedures: pre-training of the autoencoder and train-
ing of deep adversarial regression model. The pre-trained

autoencoder makes sure the output of encoder is reliable.
RCDA simultaneously solves for cluster assignment and
the underlying feature representation via iteratively refining
clusters with regression clustering loss and an auxiliary tar-
get distribution derived from the current data distribution.
The adversarial learning between target distribution and data
distribution significantly improves the effectiveness of two
distributions, thereby improving the effectiveness of the fea-
ture representation. Moreover, experimental results show that
RCDA achieves superior results compared to the state-of-the-
art algorithms on the image benchmark datasets. The main
contributions of this paper are summarized as follows:

• We propose a novel deep adversarial regression clus-
tering architecture RCDA to simultaneously learn fea-
ture transformation and cluster assignment. To our best
knowledge, this is the first work that uses the property
of deep learning to help regression-based clustering.

• We derive a loss function to guide agglomerative clus-
tering and deep representation learning which makes
optimization over the two tasks seamless.

• We propose a method to make the learned data
distribution and target distribution more effective,
thereby achieving superior clustering results on high-
dimensional and large-scale datasets.

II. RELATED WORKS
A. REGRESSION CLUSTERING
Regression-based clustering [14] is one of the most represen-
tative clustering methods. The objective is

min
W,b,L
‖XTW+ 1bT − L‖

2
F + ξ‖W‖

2
F , (1)

where ξ is the penalty coefficient. W and b are the parame-
ters.X and L are the raw data matrix and the cluster indicator
matrix, respectively. Problem 1 leverages hard constraint to
make the continuous low-dimensional features approximate
to the discrete cluster indicator matrix L. However, discrete
zero and one elements are too ideal, leading to a suboptimal
solution. Although some methods usually relax the cluster
indicator matrix, keep the orthogonality intact. Under this
circumstance, the relaxed solution may severely deviate from
the true solution and thus degrade the clustering performance.
Because, all the elements of the cluster indicator matrix
should be nonnegative by definition. Also, they use K-Means
to cluster indicator matrix to get the clustering results in the
last step, this postprocessing operation will increase the insta-
bility of the original performance due to the uncertainty of
K-Means. Moreover, these methods directly utilize the hand-
craft features and dimension reduction skills, which neglect
the distribution of input data. And these shallowmethods can-
not model the non-linear structure of image data so that the
algorithms is not robust enough. RCDA takes full advantages
of stacked autoencoder to transform the data with a nonlinear
mapping and integrate clustering and representation learn-
ing in a unified framework, which can consistently produce
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semantically meaningful and well-separated representations
on real-world datasets.

B. DEEP CLUSTERING
Deep clustering is a new kind of clustering that has arisen
in recent years. Inspired by the similarity between eigen-
value composition in spectral methods and stacked autoen-
coder [16] in learning lower-dimensional representation, Tian
et al. [7] were the first to introduce DNN to tackle clus-
tering tasks, which combines a nonlinear embedding of the
original graph and K-Means algorithm in the embedding fea-
ture space. Law [18] proposed a deep supervised clustering
metric learning method to learn data representation, given
the ground-truth partition. These methods mentioned above
firstly learn representations in a low dimensional feature
space, and then run clustering algorithm on the embedding
space, which can be divided into a two-stage procedure.
RCDA integrates unsupervised learning of deep represen-
tations and clustering into a framework. Yang et al. [19]
proposed a recurrent framework for joint unsupervised learn-
ing of deep representations and image clusters. Unlike these
models that ignore the distribution of input data and target
distribution, RCDA utilizes Student’s t-distribution as a ker-
nel to measure the distribution of input data. Xie et al. [8]
and Guo et al. [9] use KL divergence between soft assign-
ment and target distribution minimization to simultaneously
learn feature representations and cluster assignments in a
deep neural network. Although these two methods consider
the data distribution and target distribution, they ignore the
noise between distributions. Differently, RCDA utilizes the
adversarial learning between data and target distribution to
suppress the noise, thus improving the performance of clus-
tering.

III. REGRESSION BASED CLUSTERING BY DEEP
ADVERSARIAL LEARNING
In this section, we first elaborate the representation learning
model and clustering module of the RCDA. Then, we will
introduce the implementation details of RCDA. Our model
is made up of three sub-networks: one stack fully-connected
autoencoder (encoder: En, decoder: De) that is used to learn
latent representations, one deep embedding clustering layer
that to cluster samples, and one discriminator D that is used
to supervise the clustering. Figure 1 shows the framework of
our model with example X, the detailed information of the
framework will be given as follows.
Notations: For ease of explanation, suppose we aim

to cluster N instances{xi ∈ X}Ni=1 into K clusters accord-
ing to their feature attributes, where the label informa-
tion of each instance is unknown. Meanwhile, we utilize
µj(j = 1, 2, · · ·K ) to represent the centroid of each cluster.

A. REPRESENTATION LEARNING MODEL
To learn the latent representations F ∈ RN×K , we introduce
the encoder En and decoder De: RN×d

→ RN×K
→ RN×d .

The autoencoder consists of four fully connected layers, aims

to learn a latent feature F = {f1, · · · , fi, · · · , fN }(f ∈ RN×K
i )

of original input data X. There we choose autoencoder based
on the fact that autoencoder consistently produces semanti-
cally meaningful and well-separated representations on real-
world datasets. To be specific, encoder transforms the raw
input data to a low-dimensional representation F via a non-
linear mapping

fi = En(x i; θ ) = En(xTi W+ 1bT ), (2)

where En refers to the non-linear function and θ =

{W(l),b(l)} is the l-th layer’s learnable parameters of encoder
En. Then, a decoder is exploited to reconstruct the input data
X from low-dimensional representation, where the output of
decoder is the reconstructed data X̃. To ensure that the latent
features obtained by the encoder are effective, the network
minimizes the least mean square loss LAE between X and X̃
to update the learnable parameters of En and De, so we have

LAE = min
θ,ω,En,De

1
N
(X− De(En(X; θ );ω))2

= min
θ,ω,En,De

1
N
(X− X̃)2, (3)

This loss is used for training encoder En, and decoder
De. It encourages encoder to catch essential structure for the
latent representation from input data, and the latent represen-
tation recover the real data exactly. The encoder En takes X
as input and learns one latent representations F = En(X; θ ).
The decoder reconstructs the single view from the latent
representation F. The output is X̃ = De(En(X; θ );ω). ω =
{W(m),b(m)} represents learnable parameters of De at m-th
layer.

We minimize the reconstruction error between the output
of decoder and the input of encoder to optimize the encoder
and decoder networks in Eq. (3). In order to improve the
performance of clustering and ensure the prime target distri-
bution is available, we pre-train the encoder and decoder.

B. CLUSTERING MODELS
To perform clustering, we map the output of the encoder,
i.e. F, to the corresponding clusters by using the t-SNE like
algorithm. To be specific, given an initial estimate of the non-
linear mapping fi, we get a latent representation F. Unlike
t-SNE [20], we employ a mapping function Student’s t-
distribution to measure the similarity between representation
fi of data point xi and cluster centroidµj instead of measuring
the similarity between data point xi and data point xj. Hence,
we can calculate the soft cluster assignment by

qij =
(1+ ||fi − µj||2/α)

−
α+1
2∑

j′ (1+ ||fi − µj′ ||2/α)
−
α+1
2

, (4)

where qij is the probability of assigning sample i to cluster
j, α is the degree of freedom of the Student’s t-distribution.
The K centroids {µj}Kj=1 is defined the trainable parame-
ters, and the initial values of µ is obtained by implement
K-Means on latent representations F. We herein call matrix
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FIGURE 1. The framework of regression based clustering by deep adversarial learning (RCDA) with unlabeled examples X.
Totally, there are three steps in the proposed model Step 1, pre-train the autoencoder via a set of examples X. At the
beginning of Step 2, load the pre-trained parameters of encoder in Step 1, and set them as initial parameters of the
encoder in Step 2, next we train the RCDA model. When the loss function of Step 2 is up to convergence condition,
the model outputs the clusters of unlabeled samples X in Step 3.

Q the actual distribution. In order to simultaneously relax the
discrete values of L in Eq. (1) and supervise the quality of
clustering, thereby improve clustering performance, we here
introduce a target distribution P as cluster indicator matrix.
Thus, the regression-based clustering objective is defined by

LC = λ21 ‖F− P‖2F + λ22 ‖P−Q‖2F (5)

where λ21 and λ22 are two tradeoff parameters. The first item
is regression-based clustering objective, the second item is
employed to supervise clustering. Our aim is to match the
soft assignment Q to the target distribution P. In this way,
we can sharpen the data distribution and concentrate the same
class data. In addition, we will get a more effective and latent
representation for clustering task.

We hope the target distribution has the following proper-
ties: 1) it can further emphasize more on the nodes assigned
with high confidence, 2) it can strengthen predictions, 3) it
can prevent large clusters from distorting the latent represen-
tations of the nodes. Hence, we computer target distribution
pij by first raising qij to the squared and then normalizing by
frequency per cluster. Hence, we have

pij =
q2ij/ti∑
j′ q

2
ij′/tj′

, (6)

where tj =
∑
i
qij is soft cluster frequency of each cluster,

which is adopted to normalize the loss contribution itself so
that distorting the hidden space by larger clusters is prevented.
In our method, we raise qij to the second power (squared
closeness), because it can simultaneously suppresses the
responses from dissimilar points and enhances the responses

FIGURE 2. Illustration of the effectiveness of squared closeness. The
green curve is the closeness, and the blue curve is the squared closeness.

from similar points, which makes the result more robust and
sparser, as shown in Fig. 2.

C. ADVERSARIAL MODELS
Although the error between distribution P and Q can be
measured by ‖P−Q‖2F in Eq. (5), it cannot ensure that the
differences in salient features is small. Accordingly, we uti-
lize the adversarial learning to tackle this problem, that is to
say, we introduce the adversarial learning between P andQ to
further minimize the mismatch of them. Hence, in adversar-
ial learning phase, we take autoencoder as a generator and
combined a discriminator to make up a GAN-like module
in RCDA. The discriminator aims to distinguish the target
distributions P and the actual distribution Q, and it consists
of three-layer fully connected networks. For D, we hope it
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can distinguish that Q is the actual distribution of input data
points and P is the real target distribution. The loss function
of autoencoder minimizes the likelihood that data distribution
Q assigns to the fake source, while the discriminator is max-
imizes the likelihood that data distribution Q is assigned to
the fake source, so the objective of adversarial learning is

LD = min
En,De

max
D
λ11E

[
log(D(P))

]
+ λ12E

[
log(1− D(Q))

]
,

(7)

where λ11 and λ12 are two tradeoff parameters.
The encoder is trained to generate data distribution Q

which are similar to target distribution P. The discriminators
is trained to distinguish the data distribution Q from the
real data. They play a min-max game until convergence.
The adversarial loss can assist the encoder in mapping a
given sample X to a desired output F. Thus, the combina-
tion of adversarial loss and clustering loss further ensures
the encoder map the input data points X to a desired latent
representations, thereby boosting clustering performance.

D. IMPLEMENTATION DETAILS
In this section, we present the detailed implementation of the
unsupervised regression based clustering model. The overall
objective function of our model contains three terms covering
autoencoder loss, adversarial loss, and clustering loss, each
being linked to one sub-network of our model. The overall
objective function of RCDA is given by

L = min
En,De,µ

max
D

LAE + LD + LC . (8)

1) STEP 1: PRE-TRAINING ENCODER En AND DECODER De

We utilize original data to train stacked encoder and decoder
because the unsupervised representation learned by stacked
autoencoder naturally facilitates the learning of clustering
representations with RCDA. Similar to Vincent et al. [16]
we initialize the SAE network layer by layer with each
layer being a denoising autoencoder trained to reconstruct
the previous layer’s output after random corruption. After
greedy layer-wise training, we concatenate all encoder layers
followed by all decoder layers, in reverse layer-wise training
order, to form a deep autoencoder and then fine-tune it to
minimize reconstruction loss and update the parameters of
θ, ω,En,De. The final result is a multi-layer deep autoen-
coder with a bottleneck coding layer in the middle.

2) STEP 2: TRAINING ENCODER En, CLUSTERING LAYER
AND DISCRIMINATOR D ON ALL DATA
We discard the decoder layers and use the encoder layers as
our initial mapping between the data space and the feature
space. Then we pass the data through the initialized encoder
En to get latent representation point fi and then perform
standard K-means clustering in the feature space F to obtain
k initial centroids {µj}kj=1. According to the centroids µj and
representation point fi, we next utilize Eq. (4) to calculate

Algorithm 1: Regression Based Clustering by Deep
Adversarial Learning

Input: Data X ∈ RN×d , number of clusters: K ,
Parameter λ11, λ12, λ21, λ22.

Output: Cluster label ci of xi ∈ X.
1 Randomly initialize the parameters of En,De;
2 for not converged do
3 // Step 1 −→ Pre-train the autoencoder
4 Updating En and De by Eq. (3);
5 end
6 Use the pre-trained parameters of En and De to project
raw sample and gain F;

7 Implement K-Means on feature space F, obtain the
initial clustering centroids {µj}Kj=1;

8 Calculate initial Q and P via Eqs. (4, 6);
9 Input Q and P to discriminator networks;
10 for not converged do
11 // Step 2 −→ Jointly training overall networks.
12 Alternately updating autoencoder and the

discriminator by Eq. (8), where the centroid of j-th
cluster is updated by

µj+1← µj + 2η
∑N

i=1

(
1+

∥∥zi − µj∥∥2)−1 ×(
pij − qij

) (
zi − µj

)
//η: learning rate of

autoencoder;
13 end
14 for all xi ∈ X do
15 // Step 3 −→ Calculating the clusters
16 ci := maxIndex(pi),pi ∈ PN×K ;
17 end
18 return: Cluster label ci.

the data distribution Q, and easily calculate the target dis-
tribution P via Eq. (6). Finally, we enter the distribution P
and Q into discriminator networks for adversarial learning.
We minimize the total loss function Eq. (4) to alternately
optimize the parameters of discriminator network, centroids
µj and autoencoder network via back propagation algorithm
until the objective function converges. Algorithm 1 reports a
brief description of RCDA model.

IV. EXPERIMENTS
In this section, we apply the proposed RCDA model to
image clustering and evaluate the performance on four pop-
ular datasets (MNIST, CIFAR10, CIFAR100 and STL-10)
with three frequently-used measures (Accuracy, Normalized
Mutual Information and Adjusted Rand Index).

A. DATASETS AND EXPERIMENTAL SETTINGS
Four widely-used clustering benchmark datasets i.e.
MNIST [21], CIFAR-10 [22], CIFAR-100 [22] and STL-
10 [23] are used to verify the effectiveness of the proposed
method. Statistics of four datasets are shown in Table 1.
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TABLE 1. Details of datasets, where # means the number of.

TABLE 2. Details of hyper-parameter, where # means the number of.

• MNIST The MNIST dataset consists of 70000 hand-
written digits of 28 × 28 pixel size. The digits are centered
and size-normalized. We transform the image to a vector
(dimension is 784 = 28× 28) as input to all algorithms.
•CIFAR-10The CIFAR-10 dataset consists of 60000 32×

32 colour images in 10 classes, with 6000 images per class.
We transform the color image to a vector (dimension is 3072
= 32× 32× 3) as input to all algorithms.
• CIFAR-100 This dataset is just like the CIFAR-10,

except it has 100 classes containing 600 images each. The
100 classes in the CIFAR-100 are grouped into 20 super-
classes. 20 superclasses are considered in our experiments.
We also transform the color image to a 3072-dimensional
vector.
• STL-10 The dataset consists of 96 × 96 color images.

There are 10 classes with 1300 examples each. It also
contains 100000 unlabeled images of the same reso-
lution. We used the unlabeled set when training our
autoencoder.

For a fair comparison, the training and testing samples of
each dataset are jointly utilized in our experiments for all
algorithms, and we set the number of clusters is the number
of ground-truth categories. Similar to DEC [8], on STL-
10 dataset, we concatenated HOG feature and a 8 × 8
color map to use as input to all algorithms, the remain-
ing datasets and methods, the pixel intensities serve as
inputs.

All the hyper-parameters and their values of our approach
are listed in Table 2. We use TensorFlow to implement our
approach. Stochastic gradient descent (SGD) with momen-
tum is adopted in the autoencoder loss Eq. (3) minimization
phase. During optimizing clustering loss Eq. (5) and adver-
sarial loss Eq. (7), Adam stochastic optimization is adopted.
In our experiments, the stacked autoencoder described in [8]
is utilized in our model. For the discriminator networks D,
we utilize a three-layer fully-connect layers with dimension
K → 2000 → 2000 → 1, where the number of last
layer neurons is changed to one to discriminate the input
distribution is real or fake.

B. EVALUATION METRICS
In our experiments, we utilize three popular measures in the
literature to evaluate the performance of clustering methods,
accuracy (ACC), normalized mutual information (NMI) and
adjusted rand index (ARI).
• ACC Accuracy is the best mapping between cluster

assignments and true labels, which is defined by

ACC = max
m

∑n
i=1 σ (li,m(ci))

n
(9)

where li is true label of sample i, ci is the cluster assign-
ment produced by the algorithm, and m(·) ranges over all
possible one-to-one mappings between clusters and labels
and n means the number of samples. When m(ci) = li,
σ (li,m(ci)) = 1.
• NMI Normalized mutual information is the normalized

measure of similarity between two labels of the same data,
which is defined by

NMI =
I (l, c)

1
2 [H (l)+ H (c)]

, (10)

where I is the mutual information metric and H is entropy.
• ARI Adjusted rand index is defined by

ARI=

∑k
i,j=1 C

2
nij −

∑k
i=1 C

2
nτi
·
∑k

i=1 C
2
nri

C2
n

1
2 (
∑k

i=1 C
2
nτi
+
∑k

i=1 C
2
nri
)−

∑k
i=1 C

2
nτi
·
∑k

i=1 C
2
nri

C2
n

, (11)

where combination operation Cm
n is defined as a selection of

m items from a collection n.
All abovemeasures range in [0, 1], and higher scores imply

better clustering performance.

C. COMPARISON METHODS
In the experiment, we compare the proposed model with
many competitive or representative methods, including tra-
ditional methods K-Means [24], SC [3], AC [25], SEC [14]
and the clustering based on NMF [26]. For deep represen-
tation based clustering approaches, we employ some unsu-
pervised learning methods including AE [27], SAE [28],
DAE [29], DeCNN [30], SWWAE [31] and DEC [8], deep
subspace clustering-L2 (DSC) [32], latent distribution pre-
serving deep subspace clustering (DPSC) [33], deep cluster-
ing with sample-assignment invariance prior (DCSAIP) [34].

D. EXPERIMENT RESULTS AND ANALYSIS
1) IMAGE CLUSTERING
Table 3 reports the clustering results, including ACC, NMI
and ARI of the algorithms on the aforementioned datasets.
Comparing the experimental results, we have several inter-
esting observations as follows:

(1) For image clustering task, our model achieves the
best results on all datasets except the CIFAR-10 dataset.
Specifically, the ACC on the MNIST dataset increase 6.67%
compared the strongest competitor DEC [8]. On the CIFAR-
10 and CIFAR-100 datasets, the advantage of the ARI is not
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TABLE 3. The clustering results of various methods on four datasets. The best results are highlighted in bold. ⊗ means the results are unavailable from
the corresponding paper or code. The data marked with ? in the upper right corner is obtained by running the code provided by the author.

FIGURE 3. Part of clustering result on MNIST data sets. For each data set,
each row represents one class.

very obvious. However, the proposed method get much more
improvement than the DEC, which demonstrates that the
proposed method can effectively learning the latent represen-
tation hidden in visual features. Furthermore, the approaches
of deep representation (such as DeCNN [30], SWWAE [31])
is dramatically outperforms the traditional methods (such as
K-Means [24], AC [25]), by which we can draw a conclusion
that representation learning is significant to image clustering.
Additionally, the proposed RCDA is better than some deep
subspace clustering models, e.g., DPSC [33] and DSC [32],
which demonstrate we learned better latent space. Fig. 3
shows part of the clustering result on MNIST dataset.

(2) For large-scale image datasets such as CIFAR-100 and
STL-10, the proposed method is more distinct superiority
than other methods. Hence, RCDA is able to handle complex
and massive image clustering task.

2) PERFORMANCE ON VARIOUS NUMBER OF CLUSTERS
Fig. 4 shows the clustering results on MNIST dataset when
the number of clusters various between 5 and 25 with an
interval 5. In summary, as the number of clusters changes, our

FIGURE 4. Comparison of clustering performance with changing number
of clusters on MNIST dataset.

method generally degraded. This is because more uncertainty
is triggered as the number of clusters changes. The results
demonstrate that CADR possesses adequate capability to
tackle various clusters.

3) SENSITIVITY ANALYSIS
We then test the sensitivity of our method w.r.t the parameter
λ11 of the adversarial learning and parameter λ21 of regres-
sion term. We first analyze the sensitivity of the parameter
λ11. The tested range is [0, 1.0]. The ACC, NMI and ARI
metric values on MNIST dataset of different λ11 ∈ [0, 1.0]
are shown in Fig. 5 (a), from which we can observe that our
method performs stably in a wide range of λ11. When we
make this experiment, the parameter λ21 is a constant (10−4).
Next, we test the sensitivity of the parameter λ21, in which
we set λ11 = 0.5. Due to the fact that the regression term
‖F− P‖2F in Eq. (5) is a huge number, so we set λ21 ∈
[10−11, 10−1] to keep the clustering loss in Eq. (5) balanced.
As shown in Fig. 5 (b), our method achieves stably perfor-
mance in a wide range of λ21. When λ21 is bigger than 10−3,
the clustering loss cannotmaintain balance between these two
terms in Eq. (5), which lead to bad clustering results. The

146750 VOLUME 8, 2020



F. Tang et al.: Regression Based Clustering by Deep Adversarial Learning

FIGURE 5. Sensitivity analysis of parameter λ11 and λ21 on MNIST
dataset.

default value of the parameter λ11 of adversarial learning and
ratio λ21 of regression term is recommended to be set to 0.5
and 10−4, respectively.

4) CONVERGENCE ANALYSIS
As shown in Fig. 6 (a), we show the objective value con-
vergence curve of pre-training autoencoder, i.e., Eq. (3),
on MNIST dataset. As shown in Fig. 6 (b), we show the total
objective value convergence curve of the proposed RCDA,
i.e., Eq. (8). As seen, the proposed method has good con-
vergence in both the pre-training stage and the clustering
stage. Especially in the clustering stage, the proposed method
converges very quickly, which ensures the running speed of
RCDA.

5) VISUALIZATION
For convenience, we randomly choose 5, 000 samples from
MNIST dataset, and provide a t-SNE visualization of our
proposed RCDA. As shown in Fig. 7 (a), we apply t-SNE on
the raw sample. As shown in Fig. 7 (b), we apply t-SNE on
the latent representation learned by RCDA, i.e., the represen-
tation F obtained via Eq. (2). As can be seen, our approach
exhibits a clearer and more compact cluster structure than the

FIGURE 6. The objective convergence curves of our proposed RCDA.

raw sample. This nice cluster-structured property is attributed
to adversarial regression learning of our proposed RCDA.

E. DISCUSSION OF ADVERSARIAL REGRESSION
According to objective function Eq. (8), we discard the
discriminator networks D for proving that the adversarial
learning between data distribution Q and target distribution
P can help to improve clustering effect via improving the
performance of latent representation. Hence, the Eq. (8) can
be changed as

L = min
En,De

max
D

LAE + β1LC (12)

where β1 is the parameters of clustering loss. With similar
experiment settings for four datasets, Table 4 shows the differ-
ence between the results of containing discriminator networks
D and discarding D.
In Table 4, we report the clustering results of containing

P,Q adversarial learning or not. Note that the performance
when adding P,Q adversarial learning outperforms the meth-
ods without P,Q adversarial learning on all the three cluster-
ing quality measures. Hence, the P,Q adversarial learning in
Eq. (8) is advantageous in the process of latent representation
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FIGURE 7. Visualization of raw sample and the latent representations learned by RCDA on MNIST dataset.

TABLE 4. The clustering results of adversarial regression analysis on four
datasets, where 7 denote the network does not contain discriminator
network D and 3 is exactly the opposite.

learning of our deep adversarial regression for clustering
model.

V. CONCLUSION
In this paper, we propose a novel clustering model called
regression based clustering by deep adversarial learning
(RCDA), which jointly learns a mapping from the data space
to a lower dimensional feature space and precisely predicts
cluster assignments. In our method, we consider the distribu-
tion relationship between data distribution and target distribu-
tion, and utilize adversarial learning to supervise clustering.
To enhance the representation ability of latent representa-
tions, we utilize a soft regression constraint as clustering
loss to update learnable parameters of autoencoder. Empirical
results on four widely used datasets show this new deep
clustering model outperforms existing clustering methods.
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