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ABSTRACT Industrial Internet of Everything (IIoE), as the deep integration of industry 6.0, the Internet
of Things (IoT) and 6G mobile communication technology, pave the way for intelligent industry, enabling
industrial optimization and automation. To ensure the high quality of services (QoS) in IIoE, tremendous
real-time information generated by the pervasive smart things needs to be aggregated and processed quickly
and reliably. However, a large-scale disaster could damage the entire communication network and cut off
data aggregation such that Qos is compromised. In this paper, an Intelligent NIB based Data Aggregation
Strategy, named (IDAS), is proposed for after disaster scenarios in IIoE. Specifically, IDAS first applies both
iterative cubature kalman filter and radial basis function neural network to predict the data collection rates
of survived infrastructures. Then, an energy efficient task distribution mechanism is design. Next, a deep
reinforcement learning method is developed for the car-carrying NIB route design to perform corresponding
task. Eventually, all data are aggregated toward the rescue headquarter by NIB deployment based on Fermat
tree constructions. The theoretical analysis and simulations indicate that IDAS is not only energy efficient for
after disaster scenarios but requires the least NIB consumptionwhile comparedwith contemporary strategies.

INDEX TERMS Industrial Internet of Everything, after disaster, data aggregation, Deep Reinforcement
Learning, NIB.

The fundamental goal of Industrial Internet of Everything
(IIoE) is to inter-connect a variety of objects so that they can
exchange data for industrial applications. That implies the
connectivity is significant during data aggregation. Network-
In-a-Box (NIB) [24] is a technology that provides connec-
tivity among disconnected devices. Once the network is
damaged in a disaster, NIBs are deployed for connectivity
restoration. For simplicity, we call such NIB the stationary
NIB (SNIB). However, it is difficult to carry SNIBs to the dis-
aster scene. Therefore, vehicles are employed for NIB trans-
portation [25]. Similarly, we call such NIB the Car-carrying
NIB (CNIB). In fact, rescue equipments could be insufficient
while dealing with a large-scale disaster. That provides a
great opportunity for CNIBs to offer intermittent connections
between survived infrastructures, i.e., communication towers,
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for distress calls or mayday signals aggregation. Although
many previous works have been proposed in after diaster sce-
narios, they mainly focus on the number of SNIBs required
and the energy cost of CNIBs disregarding the energy effi-
ciency between aggregation ratio and energy cost.

In this paper, we propose an Intelligent Data Aggrega-
tion Strategy (IDAS) based on NIB deployment in the after
disaster scenario for IIoE. Specifically, IDAS consists of
an Iterative Cubature Kalman Filter and RBF Neural Net-
work (ICKF-RBFNN) based data collection rate prediction,
an energy efficient task distribution, a DRL based route
design and a Fermat tree based connection. We give the
details of our contributions as follows.

1) To ensure the data aggregation, IDAS first employs an
iterative cubature Kalman filter to train the RBF neu-
ral network for data collection rate prediction. Then,
an energy efficient task distribution mechanism is
designed. Next, a DeepReinforcement Learning (DRL)
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method is developed for each energy efficient car-
carrying NIB route design w.r.t the corresponding
data collection task. Eventually, stationary NIB are
deployed based on Fermat tree construction to reduce
the NIB consumption. All data will be collected and
aggregated toward the rescue headquarter through a
connected network by car-carrying NIBs and stationary
NIBs deployment.

2) The theoretical analysis and validation experiment
show that the proposed IDAS has a higher aggrega-
tion ratio and a less energy cost while compared with
contemporary strategies, meanwhile IDAS has the least
NIB consumption.

We organize the rest of the paper as follows. Section I
gives related work. Section II introduces the system model.
The IDAS is elaborated in Section III. The experiments are
presented in sectionIV. The conclusion is given in Section V.

I. STATE-OF-THE-ART
In an after-disaster scenario, a fundamental aspect is how to
carry NIBs to reach the deployment spot. Some researches
suggest leveraging vehicles for timeliness, i.e., deploying
CNIBs. That suggests the route design for CNIBs should
take the energy cost into consideration for lifetime extension.
In the study of vehicle route design, Abbas and Younis [6]
deploy vehicles on convex hulls of components for data
aggregation and then they place RNs for connectivity restora-
tion. Similarly, the RCR [3] is proposed to further shorten
the vehicle routes by deploying RNs. CISIL [1] exploits
hyperedges of hypergraph as vehicle routes w.r.t Delaunay
triangulation. Energy cost equalization is accomplished by
LEEF [2]. On the other hand, lots of previous works take
energy cost into consideration w.r.t realistic terrains. In [4],
stochastic geometry optimizes the RN count and energy cost.
In [5], the connectivity is maintained and energy efficiency
is achieved by efficient clustering and routing as well. In [8],
ReBAT is designed to quantify terrains for minimum energy
cost routes discovery. Wang et al. [7] focus on influences
of realistic terrains and then develop the data aggregation
algorithm of the least energy cost. In [14], the data collec-
tion rate is predicted utilizing RBFNN for data aggregation
route design. Toyoshima et al. [15] propose Deep Q-Network
(DQN) based vehicle simulation systems, which is called in
this strategy DQNMDC in this paper for simplicity, consid-
ering three-dimensional environment for normal and uniform
distributions of events. However, these works are not energy
efficient, i.e., the trade-off between aggregation ratio and
energy cost is not accomplished.

Plenty of works deploy SNIB for connectivity restoration
as relays. In these works, the approximation ratio between
the number of relays required and the optimal one is usually
considered as the measurement metric, i.e., the less the better.
Misra et al. [18], Yang et al. [17] and Efrat et al. [16] build
weighted complete graphs, based on which different algo-
rithms are developed.Wang et al. [19] utilize the star topology
and the center of mass for connectivity restoration. In [20],

a straight skeleton based strategy is designed. Chen et al. [21]
consider the case that there are obstacles on the deployment
area and propose an algorithm for obstacle avoidance. In [22],
a space network coding based algorithm is designed to dis-
cover the optimal route for relay deployment. In [23], the cen-
troids of partitions are utilized to design a route for relay
deployment. Compared with these works, the proposed IDAS
require the least approximation ratio. That suggests IDAS
is more suitable for data aggregation in the after disaster
scenario for IIoE due to the number of SNIBs is limited.

II. SYSTEM MODEL
An IIoE networkwithout the connectivity is considered in this
paper, in which each node ni represents a survived infrastruc-
tures, i.e., a communication tower. As the disaster can cause a
large-scale damage, i.e., worker injury, factory collapse, com-
munication interruptions etc., the rescue headquarter should
restore the communication with injured workers through sur-
vived infrastructures. However, it is difficult to communicate
with the rescue headquarter because survived infrastructures
are overwhelmed by call attempts or their communications
with outside world are completely cut off. In these cases,
deploying NIBs, e.g., CNIBs and SNIBs, helps to reestablish
communications.

As we analysed before, three important factors, namely the
aggregation ratio, the energy cost and the number of NIBs,
should be considered during the NIB deployment. Recall that
the aggregation ratio relies on the travelling distance that
somehow determines the energy cost. However, terrains of
realistic environments are dominant for energy cost. That
indicates the importance for terrain quantification.

TABLE 1. Notions.

A. TERRAIN QUANTIFICATION
We apply the grid based quantification to measure terrain
influences. Specifically, each cell c of the grid with the side
length not less than the communication rage of a CNIB is
associated with an energy factor F on a certain terrain as

Fc =

∫
lc

∫
ec
rc, (1)
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where lc, rc and ec represent the travelling distance, the risk
and the elevation of c, respectively. Thus, the energy fac-
tor FT of route T is the sum of that of each sub-route Ti,
which is given by

FT =
∑
Ti∈T

∑
c∈Ti

Fc (2)

Accordingly, the energy cost of CNIB on route T , which is
denoted as EVehicleT , is then given by

EVehicleT = FT × ν, (3)

where ν ∝ V . Obviously, EVehicleT is proportional to terrain
influences. If a CNIB visits a component Gi on route Ti, then
it collects data a specific position pci . Thus, the energy cost of
a node nj ∈ Gi can be calculated as

ENodenjpci
= κ × L2njpci

, (4)

where κ is a power related constant and Lnjpci denotes the
length of the edge (njpci ). Thus, we can deduce that pci is the
centroid of component Gi due to pci = argmin

∑
nj∈Gi E

Node
njpci

for network lifespan improvement. Then, the energy cost for
data collection is given by

ENodeT =

∑
Ti∈T

∑
Ci∈Ti

∑
nj∈Ci

ENodenjpci
. (5)

Thus, the overall energy cost of route T is then given by

ET = EVehicleT + ENodeT . (6)

Note that reducing energy cost may somehow contradict
to aggregation ratio improvement, i.e., a route of less energy
cost might require a detour that results in a less aggregation
ratio. Thus, we focus on developing an energy efficient data
aggregation strategy to achieve the tradeoff between aggre-
gation ratio and energy cost utilizing the minimum number
of NIBs.

III. THE IDAS APPROACH
A. ICKF-RBFNN BASED DCR PREDICTION
We employ RBFNN to predict Dcrni based on environmental
data, i.e., temperature t , humidity h and pressure p. Thus,
we let the number n of historical data (ti, hi, pi) equal to the
number of nodes on input layer as that of output layer. For
simplicity, we denote the set of environmental data and cor-
responding data collection rate pair as X = {(ti, hi, pi, zi)}.
As the weights ωij, the center cm and the width bm can affect
RBFNN, the proper values of these parameters should be
determined. In this paper, the RBFNN is trained based on
the Gauss-Newton Iterative Cubature Kalman Filter (ICKF).
We first give the state Xk as:

Xk = [ω11, . . . , ωmn, c1, . . . , cm, b1, . . . , bm],

where the number of hidden layer nodes is denoted by m.
Then, we have {

Xk+1 = Xk + vk ,
Zk = g(Xk ,X )+ uk

(7)

where Xk and Zk are state vector and measurement vector,
respectively; uk and vk represent the measurement noise and
the process noise ofmean 0 and covarianceRk andQk , respec-
tively; the nonlinear mapping between input and output layer
is denoted by g(·) denotes, i.e., g(Xk ,X ) = [g1, · · · , gn]T =
Wkϕk with

Wk =


w11 · · · wm1
w12 · · · wm2
...

...
...

w1l · · · wmn

,

ϕk =


ϕ(X , c1, b1)
ϕ(X , c2, b2)

...
ϕ(X , cm, bm)

.
The details of training process are given as follows:

1. Time Update: Evaluate cubature points

Xj,k−1 = Sk−1ξj + X̂k−1,

where chol(.) represents Cholesky decomposition and
{ξj} denotes standard volume point set. We obtain the
estimated value by substituting the volume point as

X∗j,k = f (Xj,k−1).

Then, state X̄ and variance P̄k are calculated as

X̄k =
m∑
j=1

φjX∗j,k ,

P̄k =
m∑
j=1

φjX∗j,kX
∗T
j,k − X̄k X̄

T
k + Qk−1.

where φi = 1
2m(n+2) .

2. Measure Update: Themeasurement update begins with
X̄k and P̄k and it is iterated until the stop condition
is met. Let the state and the variance estimated in the
ith iteration be denoted by X̂ (i)

k and P(i)k , respectively.
We determine volume points by

Ŝ(i)k = chol(P(i)k ),

X (i)
j,k = Ŝ(i)k ξj + X̂

(i)
k .

The state and variance in the ith iteration are estimated as

X̂ (i+1)
k = X̄k +W

(i)
k [Zk − g(X̂

(i)
k ,X )

− (P(i)xz,k )
T P̄−1k (X̄k − X̂

(i)
k )],

P(i+1)k = P̄k −W
(i)
k P(i)zz,k (W

(i)
k )T ,

where W (i)
k = P(i)xz,k (P

(i)
zz,k )
−1. To reduce the linearized error

introduced by truncating high-order terms of taylor expan-
sion, P(i)zz,k and P

(i)
xz,k are calculated as

P(i)zz,k =
m∑
j=1

φjZ
(i)
j,k (Z

(i)
j,k )

T
− Ẑ (i)

k (Ẑ (i)
k )T + Rk ,

P(i)xz,k =
m∑
j=1

φjX
(i)
j,k (Z

(i)
j,k )

T
− X̂ (i)

k (Ẑ (i)
k )T ,
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where Z (i)
j,k = g(X (i)

j,k ,X ) and Ẑ (i)
k =

m∑
j=1
φjẐ

(i)
j,k . The stop

condition is given by

||X (i+1)
k − X (i)

k || ≤ ε or i = Nmax ,

where ε and Nmax are the predetermined threshold and the
maximum iteration number respectively.

Once the training finished in N rounds, the estimated state
vector is obtained as X̂k = X̂ (N )

k with Pk = P(N )
k . Thus,

Dcrni can be predicted utilizing (7).

B. ENERGY EFFICIENT TASK DISTRIBUTION
Recall that all data of a component Gi will be collected
while a CNIB reached the position pci . That suggests the set
P = {pci } of data collection positions should be parti-
tioned into Nm nonoverlapping clusters Cis, each of which
is assigned a CNIB responsible to collect and aggregate data
for correspondingGis. Otherwise, a component, sayGi, could
be visited by several CNIBs such that data is lost due to the
limited buffer size of each node. That suggests the time gap
should have the following constrain

L
V
≤

BUFni
DCRGi

(1+ η), (8)

where L represents the length of the route, η is the tol-
erable data loss ratio adapted w.r.t realistic scenarios, and
DcrGi denotes the data collection rate of component Gi,
i.e., DcrGi = max

ni∈Gi
Dcrni . Accordingly, a greedy partitioning

algorithm is developed as follows:
Step 1, construct a Hamilton cycle HP over set P and

label each pci ∈ HP sequentially along the HP, i.e., HP =
pc1p

c
2 . . . p

c
np
c
1, then repeat Step 2 with a different starting

position pcj ∈ Hp each time;
Step 2, sequentially add pci toCj, i.e.,Cj = Cj∪{pci }, only if

LHCj satisfies (8); Otherwise, add current position p
c
k to Cj+1

and repeat this step until each pci ∈ HP belongs to a certain
cluster;
Theorem 1: The Aggregation Ratio of IDAS ARIDAS

equals to 1
1+η , only if the tolerable data loss rate η is chosen

as

η =
L(HGi ) ∗ DCRni

V ∗ Bufni
− 1. (9)

Proof: Let the optimal partition is denoted by G. For
each sub-partition Gi ∈ G, we have optimal Hamilton cycle
HGi such that

L(HGi )
V
≤
BUFni
DCRni

,

then no data will be lost. That impliesARIDAS = 100%. If η =
max
Gi∈G
{
L(HGi )DCRni
VBUFni

− 1}, then according to (8) we have

L(HGi )
V
≤
BUFni
DCRni

(1+ η).

That implies ARIDAS = 1
1+η .

On the other hand, if the tolerable data loss rate is chosen
as η′ > η, then we have

L(HGi )
V <

BUFni
DCRni

(1 + η′). Thus,

let a node ni aggregates (1 + η′BUFni ) data, then only 1
1+η

data successfully delivered to the sink. In addition, it can be

deduced that
L(HGi )
V >

BUFni
DCRni

(1+ η′) only if η′ < η.

That suggests the fact of
L(HG′i

)

V ≤
BUFni
DCRni

(1 + η′) for each
Gi ∈ G only if a subset G′i ⊂ Gi. Thus, we add each ni ∈
(Gi − G′i) to a G′i randomly to create G′′i with

∑
|G′′i | = n.

It is obviously that

L(G′′i )

L(L(HGi ))
≤ 2.

Accordingly, we have

1
8
3 (1+ η)

=
BUFniV

2DCRni2L(HGi )
< ARIDAS

<
BUFniV

DCRni2L(HGi )
=

1
2(1+ η)

.

Therefore, the theorem holds.

C. DRL BASED ROUTE DESIGN
We consider the CNIB route design in a continuous
multi-agent data aggregation environment. That suggests tra-
ditional DRL methods, i.e., DQN, can not be applied to
CNIB route design. Therefore, we utilize Deep Deterministic
Policy Gradient (DDPG) to design CNIB route. Note that
each CNIB m has a state smt at each timeslot t , and is then
given an action amt to obtain a reward rmt and observe new
state st+1 from the environment. Before applying DDPG to
CNIB route design, we give the definitions of state, action
and reward, respectively.

1) State Space: State is denoted as S = {(S1, S2, S3)},
in which S1 represents a cluster Cm of collection posi-
tions assigned to a specific CNIB m such that S1 =
{(xk,m, yk,m)}|C

m
|

k=1 ; S2 = {(x
m
t , y

m
t )}, where x

m
t , y

m
t are

coordinates of CNIB m at timeslot t; and S3 = {nmt }
is the number of remaining collection positions m at
timeslot t with nmt+1 = nmt −1 if a collection position is
visited and the corresponding data is collected at next
timeslot.

2) Action Space: Distance dmt and moving direction ψm
t

consists of the action set A = {(ψm
t , d

m
t )|ψ

m
t ∈

[0, 2π ], dmt ∈ [0, dmax]}.
3) Reward : Data bmt collected by timeslot t , proportion

of remaining collection position nmt /|C
m
|, and energy

cost ET is utilized to calculate reward as:

rmt =


1
ET
, if bmt = 0

nmt b
m
t

|Cm|ET
, if bmt > 0,

Thus, the overall reward is rt =
∑

m r
m
t .
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Note that four DNNs are utilized to control each CNIB,
i.e., actor network π (st |δπ ), critic network Q(st , at |ηQ) with
randomly initialized weights δπ , ηQ and target networks with
δπ
′

= δπ and ηQ
′

= ηQ, where at = (a1t , · · · , a
Nm
t ) and

st = (s1t , · · · , s
Nm
t ).

For distributed training process, a group of transitions,
i.e., 〈S,A,R〉, is sampled as mini-batches from each CNIB’s
private buffer. Then, we update critic network Q by minimiz-
ing the following function

L(ηQ) = E[(Yi − Q(si, ai|ηQ))2],
Yi = γQ′(si+1, ai+1|ηQ

′

)+ ri,

where ai = (a1i , · · · , a
Nm
i ) and ai+1 = π ′(si+1). Then,

the actor network π is updated by

∇δπ J = E[ ∇δππ (si|δπ )∇aQ(si, ai|ηQ)|ai = π (si)],

where J (.) represents the performance function. Target net-
works are updated w.r.t parameters ηQ

′

and δπ
′

based on a
factor % as

ηQ
′

= %ηQ + (1− %)ηQ
′

,

δπ
′

= %δπ + (1− %)δπ
′

.

D. FERMAT TREE BASED CONNECTION
The last step for restoring data aggregation is to establish
inter-cluster connections, for which SNIBs are deployed.
As only a limited number of SNIBs are available, Nm closest
positions pdi s, each of which locates on the boundary of a
specific clusterCi, are chosen for SNIB deployment along the
corresponding Fermat tree. For clarity, we let T ki , f

k
Ti and F

k
Ti

denote the triangle, the Fermat point and the corresponding
tree built on the kth iteration. Then, the details of Fermat tree
construction are given as follows.

Step 1, the Delaunay Triangulation is applied to net-
work G such that the triangulated graph DG = ∪Ti is
established;

Step 2, let each Ti join the set T by such order, only if
Ti ∩ Tj = ∅, ∀Tj ∈ T .

Step 3, at kth iteration, buildFkTi that consists of two longest
edges ei, ej ∈ Fk−1Ti and f k−1Ti and repeat this step with
k = k + 1;

Step 4, after k rounds iterations, we have FTi = ∪F
k
Ti ;

Step 5, construct a Fermat tree (F) w.r.t the minimum span-
ning tree (MST) of graph G, i.e., F = FT1 ∪ FT2 · · · ∪MST ,
and break cycles if necessary.
Theorem 2: The approximation ratio of SNIB deployment

is 3
√
3

4−
√
3
.

Proof: In general, a number of triangles tis are dis-
covered based on Delaunay Triangulation. Within each tri-
angle Ti, two longest edges adjacent to the Fermat point
f kTi is utilized to build a Fermat tree FkTi at kth iteration.

Note that the length of a Fermat tree is about
√
3
2 times that

of the corresponding MST. Then by induction, it is clear
that

L(FTi ) ≤ αβ(1+ αβ + α
2β2 + . . .+ αkβk−1)L(MSTTi )

<
αβ

1− αβ
L(MSTTi )

=

√
3

4−
√
3
L(MSTTi ),

with α =
√
3
2 and β = 1

2 . The number of SNIB utilized
to connect MSTTi , denoted by NMSTTi , is given as NMSTTi =
L(MSTTi )−4R

R [20]. Accordingly, we obtain

NFTi =
L(FTi )− 2R(k − 1)− 6R

R
+ k.

It can be deduced that∑
Ti

NFTi ≤

√
3

4−
√
3
NMST

due to NMST ≥
∑

Ti NMSTTi . Placing SNIBs along the MST
is a 3-approximation algorithm, therefore the approximation
ratio of proposed method is 3

√
3

4−
√
3
.

IV. PERFORMANCE EVALUATION
A. SIMULATION SETUP
The validation experiment of IDAS is conducted on an Intel
Core i7-8550u 1.8 GHZ CPU, 16GB RAM computer in
Python. In the simulation, we assume that all devices are
deployed within 5000m × 5000m area of random terrains.
Table 2 gives parameters of this experiment.

TABLE 2. Simulation setup.

IDAS is first compared with DQNMDC [15], LEEF [2],
DRLDC [13], and CISIL [1] in aggregation ratio and energy
cost. And the SNIB consumption comparison is conducted
between IDAS and baselinesOACRQST [21], CRPA [23] and
OASS [20].

B. AGGREGATION RATIO
Fig. 1(a) shows the impact of velocity V on aggregation ratio.
It is clearly that as V grows the aggregation ratio increases
rapidly at first and get stable eventually for each strategy.
IDAS outperforms baselines approaches with the highest
aggregation ratio. This is because the DRL based energy
efficient CNIB route design helps to discover the optimal
route such that the trade-off between aggregation ratio and
energy cost is achieved.
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FIGURE 1. Aggregation ratio considering different (a) V , (b) N , (c) Dcr ,
and (d) Nm.

Observed from Fig. 1(b), we know that as the number of
nodes N increases the aggregation ratio decreases for each
strategy. The rationale behind that is as follows. More nodes
deployed result in longer travelling distance such that there
are insufficient time to collect data. However, the travelling
distancewill increase slowlywith a dense population of nodes
at last. No doubt that IDAS has the highest aggregation ratio
among all strategies.

As shown in Fig. 1(c), the aggregation ratio decreases as
data collection rate Dcr increases. In fact, Eq. (8) determines

the relation between the Dcr and the aggregation ratio. That
suggests the aggregation ratio will decrease rapidly if the
Dcr chosen much larger than a pre-determined threshold.
Observed from Fig. 1(c), we know that the highest aggrega-
tion ratio is achieved for each strategy if Dcr = 80bit/s while
the lowest aggregation ratio is discovered if Dcr = 220bit/s.
IDAS beats all baseline approaches.

The aggregation ratio increases as the growth of the num-
ber of CNIBs Nm and eventually stabilise for every strategy
(see Fig. 1(d)). The rationale behind that is as follow. With
more CNIBs deployed, more data will be collected. Note
that the experiment area is fixed such that if the aggregation
ratio has approached 100% then no more Nm is needed.
IDAS obtains the aggregation ratio much higher than that of
baseline approaches.

Fig. 1 suggests the proposed IDAS is more suitable in after
disaster scenarios for better data aggregation.

C. ENERGY COST
As shown in Fig. 2(a), the energy cost grows with N . It is
clearly that IDAS outperforms all baseline approaches. This
is because the DRL based route design helps to reduce
the energy cost even if more nodes involved. As shown
in Fig. 2(b), as Nm increases the maximum energy decreases.
The proposed strategy IDAS performs better than others in a
relatively lower maximum energy cost. Besides, Nm seems to
affect IDAS less than other strategies due to the consideration
of the trade-off between aggregation ratio and energy cost.
Both Fig. 2(a) and (b) verify the advantage of the proposed
IDAS in energy cost for after disaster scenarios.

FIGURE 2. The energy cost comparison while varying (a) N and (b) Nm.
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D. SNIB CONSUMPTION
As shown in Fig. 3(a), it is evident that SNIBs required for
each approach decrease as R increases. The proposed IDAS
consumes the least number of SNIBs. This is because IDAS
iteratively applies Fermat points to shorten the length of con-
nections between nodes. Observed from Fig. 3(b), we know
that as N increases the SNIBs count grows. However, when
N = 180, the SNIB count drops for all approaches. The
rationale behind that is less inter-cluster distances are resulted
from a dense population of nodes. The proposed IDAS out-
performs all baseline approaches. That indicates the IDAS
should be applied to after disaster recovery.

FIGURE 3. The number of SNIB required while varying (a) R and (b) N .

V. CONCLUSION
6G empowered Industrial Internet-of-Everything (IIoE)
promises a high quality of services with the consideration of
disaster recovery. In this paper, an Intelligent NIB based Data
Aggregation Strategy, named (IDAS), is proposed for after
disaster scenarios in IIoE. Specifically, IDAS first applies
an ICKF-RBFNN to predict the data collection rates of
survived infrastructures. Then, an energy efficient task dis-
tribution mechanism is developed for the trade-off between
the aggregation ratio and the energy cost. Next, a deep rein-
forcement learning method is employed for car-carrying NIB
route design to perform corresponding data collection task.
Eventually, all data are aggregated toward the rescue head-
quarter by NIB deployment based on Fermat tree construc-
tions. The theoretical analysis and simulations indicate that
IDAS is not only highly energy efficient for after disaster
scenarios but requires the least NIB consumption while
compared with contemporary strategies.
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