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ABSTRACT Passengers on metro platforms can board a train only when the train has surplus capacity and
the dwell time is sufficient, while the latter condition is omitted in previous studies. Taking into account
the impacts of train capacity and dwell time on passengers boarding, this study develops a model on
optimizing metro timetable to reduce passenger travel time and metro operating cost, through regulating
trains’ inter-station run-time, dwell time and headway. The NSGA-II algorithm is employed to obtain
the near-optimal Pareto Frontier of the proposed model. To address insufficient dwell time scheduled in
the timetable, three operating strategies are proposed and compared: a. sticking to nominal timetable; b.
extending dwell time only; c. extending dwell time and recovering delay as soon as possible by compressing
train inter-station run-time. Case studies on real-life metro line prove that some passengers cannot board
the train during peak hours due to insufficient dwell time. In this context, strategy a brings low-quality
service because passengers are stranded at platform even though the train has surplus capacity. In contrast,
more passengers can board the train with strategies b and c because dwell time is extended for passengers’
boarding when train has surplus capacity. Compared to strategy b, strategy c reduces the average in-vehicle
time of passengers by 2.5% through compressing inter-station run-time to recover the delay. The timetable
optimized based on strategy c saves total travel time of passengers by 3.1% without increasing operating
cost when compared to the practical timetable.

INDEX TERMS Public transportation, urban railway, train scheduling, heuristic algorithms, operating cost,
passenger travel time.

I. INTRODUCTION
Metro is a key component of public transit systems, where
passengers mainly concern their travel times and expect to
arrive at their destinations as soon as possible [1]. Timetable
of metro services, specifying the departure and arrival times
of each train at each station, has great impacts on passenger
travel time, including the waiting time on the platform and
the passenger in-vehicle time. For example, the passenger in-
vehicle time can be reduced by compressing inter-station run-
time. However, once the inter-station run-time is compressed,
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the operating cost especially the energy consumption of train
movements may increase. Because of the conflicting interests
of different stakeholders, train timetabling is an inherently
multi-objective problem. In this paper, we mainly focus on
passenger waiting time, passenger in-vehicle time and oper-
ating cost of metro trains.

From the passenger’s point of view, the waiting time at
station platform can be reduced by shortening service inter-
vals between successive trains at the station. Nevertheless,
the minimal service headway should be respected to avoid
possible collision between successive trains. Once the num-
ber of accumulated passengers in a service interval exceeds
the surplus capacity of the next train, some passengers have
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to wait for the following trains. Based on the spatial lim-
itation of train capacity, Niu and Zhou [2] put forward a
model to calculate the number of boarding passengers, where
the concept of effective passenger loading period has been
introduced. However, not only the surplus capacity of trains,
but the scheduled dwell time may also restrict passengers
to board. When boarding time that required by passenger is
longer than the scheduled dwell time, a portion of passengers
are unable to board the first arrival train owing to insufficient
dwell time. This temporal constraint of dwell time should
be considered together with the spatial constraint of train
capacity, to calculate the number of in-vehicle passengers and
passenger travel time accurately.

In this paper, both temporal and spatial constraints on
passenger boarding are taken into account in timetable formu-
lation. Passengers boarding and alightingmay affect schedule
dwell time due to insufficient get-on or get-off time for
passengers. To address the problem of insufficient dwell time,
three operating strategies are proposed and compared. Mean-
time the upper boundary of dwell time in these strategies
are also restricted to ensure operation safety and efficiency.
The principles of these three strategies are: 1) sticking to
the nominal timetable although a part of passengers cannot
board the train; 2) extending dwell time to enable the boarding
of passengers as much as possible, without changing train
inter-station run-time; 3) extending dwell time to enable
the boarding of passengers when train capacity is enough,
and recover to the nominal timetable by compressing the
run-times in the following inter-stations.

Optimizing timetable from passenger’s perspective may
lead to the increment of operating cost on train movements.
Therefore, a multi-objective optimization model on train
timetable is proposed to take into account the interests of
both passengers and the operator. A NSGA-II algorithm is
designed to solve the optimization model and the Pareto
front is obtained to depict the interaction between passenger
travel time and operating cost. In comparison to the previous
studies, this paper has following contributions:
• We put forward a timetable model considering both
spatial and temporal constraints on passenger boarding
as well as the boundary of dwell time, while previous
studies considered spatial constraint on passenger board-
ing only or ignored the upper boundary of dwell time
which could cause deviations in evaluating timetable
performance.

• To deal with the potentially insufficient dwell time,
we propose three operating strategies which allow the
rescheduling of train movements. The performance of
these strategies is compared from the aspects of both
passenger travel time and operating cost, then the opti-
mal strategy is incorporated into the timetable model.

• As single objective optimization or converting different
criterions into one objective cannot reflect the inter-
ests of stakeholders, we explore the interaction between
different objectives through attaining the near-optimal
Pareto front of passenger travel time and operating cost.

The remainder of the paper is organized as follows. The
related work is introduced in Section II. Problem description
on timetable optimization as well as the interaction between
passenger boarding and timetable parameters are presented
in Section III. A train scheduling model and operating strate-
gies in the case of insufficient dwell time are proposed to
minimize passenger travel time and metro operation cost in
Section IV. In Section V, a NSGA-II algorithm is designed
to solve the problem and find the near-optimal Pareto solu-
tion. Case studies on Beijing Yizhuang line are conducted in
Section VI, to demonstrate the effectiveness of the proposed
model. Finally, conclusions are given in Section VII.

II. RELATED WORK
A. PASSENGER-ORIENTED TIMETABLE OPTIMIZATION
In order to provide more efficient rail services for passengers,
a number of researches studied passenger-oriented timetable
design for metro lines, aiming at satisfying passenger demand
and improve service quality. Newell [3] discussed the dis-
patch time of trains to minimize the total waiting time of
passengers. Ceder [4], [5] proposed an automatic method to
optimize headway or service frequency to reduce passenger
waiting time and avoid overcrowding. However, arrival rate
of passengers in earlier researches is usually simplified due
to the lack of detailed real-life passenger travel data.

As the spatial-temporal dynamics of the passenger demand
were noticed by researchers, some studies began to focus
on a peak/off-peak timetable to make a better depiction of
passenger arrival and departure [6], [7]. For these timeta-
bles, a day is divided into several periods (i.e. peak hours
and off-peak hours) and the headways within each specific
period are fixed. However, the passenger demand tends to
vary significantly over time in real life, which is in contrast
to the pre-determined fixed headways during peak/off-peak
periods. As a result, the peak/off-peak based timetable has a
great chance to cause increased passenger waiting time under
the time-varying passenger demand.

With the emergence of automated fare collection (AFC)
systems, more detailed passenger demand data can be
obtained. And most of the recent studies have turned
to the optimization of metro timetables under the time-
varying origin-destination (OD) passenger demand, which
conforms to the reality better. Niu and Zhou [2] proposed
a demand-dependent scheduling approach and formulated a
nonlinear 0-1 integer model under oversaturated conditions to
minimize the passenger waiting time at stations. Sun et al. [8]
introduced the concept of equivalent time to demonstrate train
operations and arrivals of passengers, and developed a mixed
integer programming model to optimize departure times of
trains at the first station. Niu et al. [9] considered further the
skip-stop patterns for metro scheduling under time-dependent
OD demands and introduced a timetable optimization model
aiming at reducing the weighted passenger waiting time.
Barrena et al. [10] formulated two non-linear mathematical
models to reduce average passenger waiting time, where the
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departure times of trains at the first station, the number of
trains, and running times were all able to be changed.

As well as the waiting time, passenger travel time com-
posed of both passenger waiting time and in-vehicle time
is another factor which is usually applied to evaluate metro
services. Wang et al. [11] developed a model, where the oper-
ation of trains and passenger demand characteristics were
taken into account, and thus the total passenger travel time
was expected to beminimized. Shang et al. [12] introduced an
S-pattern function to describe the cumulative demand of pas-
sengers, and then presented a timetable optimizationmodel to
reduce passenger travel time. Zhang et al. [13] investigated
the timetable optimization problem under congested condi-
tions, and two non-linear models were formulated to design
timetables with the objective of minimizing passenger travel
time under the constraints of train operations, passenger
boarding and alighting processes. Shen et al. [14] proposed
a timetable optimization model to mitigate the congestion
at platforms, and reduce the passenger travel time under a
dynamic passenger demand.

It is worth noting that the above researchers all took train
dwell times adjustment as a mean of reducing passenger
travel time. However, they did not consider the influence of
dwell time on passenger boarding, that is the scheduled dwell
time may be insufficient for passenger boarding and some
passengers may be left behind. In addition, the timetable
optimization from the perspective of passengers only is very
likely to result in increased operational cost. Therefore,
it is necessary to carry out multi-objective optimization on
timetable.

B. MULTI-OBJECTIVE OPTIMIZATION ON TIMETABLE
Different stakeholders with different interests are involved
in timetable optimization problem. For instance, passengers
and operator concern about travel time and operating cost,
respectively. Thus, train timetabling should be treated as
a multi-objective decision problem. Claessens et al. [15]
divided the cost of rail operation into three categories, i.e.
fixed costs per car per hour, variable costs per car per kilome-
ter and variable costs per train per kilometer. Subsequently,
Lindner and Zimmermann [16] adopted this classification
and deemed that the operational cost of train move-
ments includes fixed cost and cost per distance. Recently,
Tirachini et al. [17] considered a more detailed operator cost
which includes daily cost per line, vehicle cost per day,
vehicle cost per hour and operator cost per vehicle-kilometer.
Wang et al. [18] and Laporte et al. [19] considered the number
of required vehicles as operator’s concerns in multi-objective
timetable optimization problems whereas energy consump-
tion was omitted. In fact, the adjustment of train timetable
also has significant effects on energy consumption which
distinctly influences operating cost [20]–[22]. Many scholars
considered the proper utilization of regenerated energy in
timetabling [23]–[25] to relieve environmental concerns and
reduce operating cost.

Although many researchers have looked into timetable
optimization to improve passenger service quality or reduce
operator’s cost, the comprehensive evaluation from both pas-
sengers’ and operator’s perspectives has not been fully stud-
ied. For example, Yin et al. [26] and Huang et al. [27] took
passenger travel time and energy consumption into consider-
ation in train timetable optimization. However, metro main-
tenance cost, which depends on the running kilometers of
vehicles, was out of consideration in these studies. Moreover,
the weighted aggregation method was applied to convert the
multi-objective optimization problem into a single-objective
optimization problem. This technique requires a good knowl-
edge of the system to appropriately determine the weights of
different objectives [28].

C. PASSENGER BOARDING CONDITIONS
Passengers are able to board the train only if two board-
ing conditions are satisfied simultaneously, i.e. the train has
surplus capacity and the boarding time is scheduled long
enough. Earlier studies on timetable optimization considered
the condition of train capacity, however, the other condition
of boarding time is generally not taken into account. In prac-
tice, a part of passengers is unable to board the train if the
scheduled dwell time is insufficient. This situation is very
common in crowded metro lines. For example, observed data
of Shanghai metro Line 8 indicates that the actual dwell time
reaches three times of the scheduled dwell time in rush hours,
and the trains usually attempt to carry passengers as many as
they can [29]. A study based on a busy corridor in Netherlands
also indicated that delays may arise because of insufficient
scheduled dwell time for passenger boarding [30]. These
researches reveal that passenger boarding have noticeable
impacts on timetabling.

There are few researches paid attention to passenger board-
ing time in timetable formulation. Wang et al. [31] consid-
ered the minimum dwell time which depends on the number
of boarding and alighting passengers, and deemed that the
practical dwell time should be longer than the minimum
dwell time in order to ensure passengers’ boarding. How-
ever, prolonging dwell timewithout compressing inter-station
running time may influence the predetermined rolling stock
circulation. This problemwas addressed by Li et al. [32], they
adjusted dwell time according to the number of passengers
at the station and train regulation strategy was also applied
to recover to the nominal timetable when delays arise. The
objective of reference [41] is to enhance headway regularity
and commercial speed of trains, without considering opera-
tion cost. In these two studies, the congestion level of passen-
gers within trains or at platforms, which obviously impacts
on passenger boarding time, has not been considered.

Recently, taking into account passenger congestion,
Li et al. [33] calculated the required dwell time according to
the demand and speed of passenger boarding/alighting. How-
ever, the dwell time was regarded as a parameter rather than
a decision variable in timetable optimization. More impor-
tantly, all these existing studies ignored the upper boundary
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of dwell time, which must be respected to maintain the safe
headway. For instance, the dwell time in Wang’s research
reached 150 s, which is impractical during peak hours on
crowded metro lines where the service headway is only a
few minutes. Therefore, the boundary of dwell time must
be considered in timetable formulation, and the integrated
optimization on timetable and operating strategy to deal with
insufficient dwell time is called for as the nominal timetable
might be disturbed by passengers’ boarding and alighting.

III. PROBLEM DESCRIPTION
Generally, passengers at the platform are eager to board
the arriving train as soon as possible. However, in prac-
tice, some of them cannot board the train due to the limita-
tion of train capacity or insufficient dwell time. Therefore,
the impacts of train capacity and dwell time on passenger
boarding should be carefully considered in train timetabling.
In this section, the interaction between passenger boarding
and timetable parameters is analysed, and then the problem
of train timetable formulation is presented with the objective
of reducing passenger travel time as well as operating cost.

A. TIMETABLE OPTIMIZATION PROBLEM
This paper focuses on train scheduling on a double-track
metro line with 2N stations. As shown in Fig. 1, the stations
are numbered as i ∈ [1, 2, . . . ,N ,N + 1, . . . , 2N ], where
stations 1 and 2N , N and N + 1 denote the start terminal
and the return terminal, respectively. The set of service trains
are denoted as j ∈ [1, 2, 3, . . . ,Nj]. Each train firstly departs
from station 1 in the up-direction and getting to station N ,
then turnaround to the down direction and runs back to the
start terminal 2N .

FIGURE 1. Bi-direction metro line with 2N stations.

On the formulation of train timetable, the planning hori-
zon Tp is discretized into a series of time intervals with
length 1t , which is set as 1 second in this paper. The cycle
time for each train travelling a round-trip is a constant Tc.
All trains are assigned with the same running/dwell time
in the same segment/station, whereas these assigned times
might vary across different segments or stations. The key to
timetable formulation is to determine train inter-station run-
times, dwell times and service headways, to minimize operat-
ing cost and passenger travel time in the planning horizon Tp.

B. INTERACTION BETWEEN PASSENGER BOARDING AND
TIMETABLE PARAMETERS
The relationship between timetable and passenger boarding
is illustrated in Fig. 2. When the train stops at each station,
accumulated waiting passengers at the platform are expected

FIGURE 2. Spatial and temporal constraints on passenger boarding.

to be able to board the train, as shown in the Fig. 2. Available
train capacity, which is widely considered in previous studies,
must be calculated to determine the number of passengers
that can practically board the train. For instance, in Fig. 2(a)
below, the total number of passenger p is less than surplus
train capacity c. Therefore, all waiting passengers are consid-
ered to be able to board the train before the train departs.

In addition to the surplus train capacity, the sufficiency
of train dwell time also affects the number of boarding
passengers, which is however omitted in previous studies.
Accumulated waiting passengers need a certain period of
time to finish their boarding, and the length of this period is
related to passengers’ boarding rate λ (passenger per second).
As shown in figure (b), the period of time T -t1 is required for
all passengers’ boarding, i.e. (T -t1) ∗ λ = p. If train departs
the station at time point t2 which is earlier than T , some
passengers (the number equals to q) cannot board the train
actually because the dwell time is insufficient. Therefore, the
sufficiency of dwell time must be considered together with
train capacity constraint to ensure accurate calculation on the
number of passengers at platform or in vehicle.

Due to the aforementioned train capacity (spatial) and
dwell time (temporal) constraints, some passengers may not
board the train within the scheduled dwell time. Different
from previous studies that neglected the temporal constraint
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on passenger boarding, this paper tackles the impacts of
headway and dwell time on passenger boarding. In addition
to sticking to the nominal timetable, the other two operating
strategies are proposed to deal with the insufficient dwell
time. One of the strategies prolongs the scheduled dwell
time in busy stations and attempts to recover to the nominal
timetable as soon as possible by compressing inter-station
run-time, whereas in the other strategy, train’s delay time after
prolonging dwell time will not be recovered. The implemen-
tation effect of different operating strategies will be compared
in this paper.

Considering the most common operation of metro system,
this research is conducted based on the following assump-
tions.

1) All passengers at the platform obey First Come First
Served (FCFS) rule, and boarding process begins only if the
alighting process has finished.

Each station has enough space to accommodate all waiting
passengers. Otherwise, other strategies, e.g. passenger con-
trol, are implemented to cope with the overcrowded situation.

3) Platform and carriage are very crowded in peak hours
and most of passengers are willing, or being dispersed by
station attendants, to stay at a relatively spacious area to get a
higher possibility to get-on or get-off the train. Therefore, it is
assumed that passengers are evenly distributed on the plat-
form, and each carriage of the train has the same congestion
degree.

4) All trains stop at every station and stop-skip pattern is
not considered.

IV. MODEL FORMULATION
A. NOTATIONS
The parameters and variables employed in the model formu-
lation are given in Table 1.

B. OPERATING COST
The operating cost consists of energy cost and mainte-
nance cost depending on vehicle-kilometer. The energy cost
is related to the energy consumed by traction system and
on-board auxiliary equipment, while the regenerative energy
during braking is also taken into account. Maintenance cost
depends on service frequency which is generally determined
according to passenger demand.

1) TRACTION ENERGY CONSUMPTION
Traction energy is consumed by rolling stocks to operate
on the track, which comprises the traction energy for train
motion and the energy used by on-board auxiliary equipment.
According to the optimal train control theory [34], the energy-
efficient train control strategy includes four operating phases:
the maximum acceleration, cruising at a constant speed,
coasting and the maximum braking. Train motion is denoted
by formula (1)

d2s
dt2
·M (1+ λw) = Fout (v, x)− Fres(v, x) (1)

TABLE 1. Parameters and variables representation.

where Fout denotes the traction or braking force when train
operates with speed v at location x. A positive value of Fout
means that the train is motoring. Zero indicates that the train
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FIGURE 3. The production and utilization of regenerative braking energy.

is coasting and a negative value represents braking; λw is
the rotary allowance, which is a constant; Fres is the total
resistance force which is calculated by

Fres(v, x) = Fbasic(v)+ Fg(x)+ Fc(x)

= a+ bv+ cv2 + mg sin(θ (x))+
600
Rc(x)

(2)

where Fbasic is the well-known Davis resistance formula,
coefficients a, b and c depend on train’s characteristics; Fg(x)
is gradient resistance and θ(x) represents the gradient at
position x. A positive value of θ (x) indicates uphill and a
negative value means downhill; Fc(x) is the curve resistance
that relies on the track curve radius at position x.
The value of forceFout depends on train’s operating phases,

and ϕ is the indicator of different phases. For example,
the maximum traction force is applied in full acceleration
phase (ϕ = 1), the maximum braking force is employed
in full braking phase (ϕ = −1), and the required force in
cruising phases (ϕ = 0) is related to the total resistance force.
The calculation of the force Fout is given in formula (3).

Fout (v, x) =


Ftrac(v) ϕ = 1
−(Frb(v)+ Fmb(v)) ϕ = −1
Fres(v, x) ϕ = 0
0 otherwise

(3)

where Ftrac(v) is the maximum available traction force at
the speed of v; Frb(v) is the maximum available regenerative
braking force. With modern trains, the total braking force is
usually taken as a constant which is the sum of the forces
produced by mechanical braking and regenerative braking.
As regenerative braking force declines in high-speed condi-
tions, the mechanical braking supplies the required braking
force Fmb(v) to keep the total braking force a constant [35].

In general, no traction energy will be consumed at the
coasting and braking stages. Therefore, the energy consumed
in traction system of train j in segment i is equal to the energy
that consumed in full accelerating and cruising phases, which

can be calculated as:

E i,jtrac(RTi) =
Xi+1∑
x=Xi

max
{
F jout (v, x), 0

}
·1x

ηee−ke
(4)

Besides the traction system, the energy consumed by
ion-board auxiliary equipment should also be taken into
account. This part of energy depends on the auxiliary power
(Pjaux) and the length of operating period. The auxiliary
energy consumption of train j in station i and segment i can
be calculated as follow.

E i,jaux(RTi,DTi) = Pjaux · (RTi + DTi) (5)

2) REGENERATIVE BRAKING ENERGY
Regenerative braking produces electrical energy which can
be utilized by other trains. In this paper, calculations of
regenerative braking energy are based on our previous study
on energy-efficient operation of metro system [36]. Synchro-
nization of traction trains and braking trains in the same
Power Supply Interval (PSI) is very important in taking
advantage of regenerative braking energy, as most metro lines
have not equipped with energy storage device. The regener-
ative energy first feeds the auxiliary equipment onboard the
braking train, and the remaining energy is then injected into
the catenary which can be consumed by other trains in the
same PSI. For example, three trains are operating in the same
PSI as shown in the Fig. 3, the regenerative energy generated
by braking train j is firstly consumed by auxiliary equipment
on train j. Then, the rest of the regenerative energy is fed back
to the catenary and it can be used by traction train j + 1 and
the auxiliary equipment on train j+ 2.

It should be noted that not only the trains in the maximum
braking phase produce regenerative energy, but also trains
in the cruising phase could apply braking force to keep
the speed as a constant in downhill slopes. Once braking
is required in cruising phase, the regenerative braking is
prior to the mechanical braking. A set γ which includes
all the decision variables is used to simplify equations. The
total amount of the regenerated energy produced by braking
trains in the same PSI at time step t can be calculated in
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formula (6). In this formula, train’s regenerative braking force
is firstly calculated by subtracting mechanical braking force
(Fmb is a negative value). Then, total regenerative braking
energy is attained by multiplying train’s speed and unit time
of 1 second.

E t,PSInre_all (γ ) =
∑
j∈PSIn

ηke−re ·

∣∣∣min
{
min

{
F jout (t), 0

}
+Fmb(vj(t)), 0

}∣∣∣ · vj(t)1t (6)

The energy consumed by auxiliary equipment on braking
train(s) at the same time step is calculated by formula (7).

E t,PSInaux_self (γ ) =
∑
j

Pjaux ·1t, ∀j ∈ PSIn ∧ F
j
out (t)<0 (7)

The amount of energy required by other non-braking trains
in the same PSI consists of two parts: traction energy and
auxiliary equipment, as shown in formula (8), as shown at
the bottom of the next page. The actually utilized regenerative
energy can be calculated by formula (9), as shown at the bot-
tom of the next page. The regenerative energy is firstly used to
support auxiliary equipment on braking trains. If regenerated
energy is greater than E t,PSInaux_self , non-braking trains can utilize
the surplus regenerative braking energy.

Finally, the net energy cost is the sum of traction energy
consumption and auxiliary energy, then subtract utilized
regenerated energy. Energy consumption cost can be calcu-
lated by multiplying the unit price of energy(ωe), as shown in
formula (10).

Cenergy = ωe ·

 Nj∑
j=1

2N∑
i=1

E i,jtrac +
Nj∑
j=1

2N∑
i=1

E i,jaux − Ere

 (10)

3) METRO MAINTENANCE COST
Metro maintenance cost depends on the vehicle-kilometer,
which is determined by service frequency, fleet size and
length of metro lines. For a given metro line, fleet size and
line length are constant at operational level. Therefore, higher
service frequency leads to more maintenance cost. In this
paper, service frequency is a predetermined value and can
be adjusted before optimizing the timetable. Then, service
frequency is set as a constant during optimizing timetable
parameters.

The relationship between maintenance cost and service
frequency is expressed in formula (11).

Cmaint = 2L · m · Nj · ωmaint (11)

where L is the length of track in one direction; m is the fleet
size; ωmaint is maintenance cost per car kilometer and Nj is
the number of services within the planning horizon.

C. PASSENGER TRAVEL COST
1) PASSENGER BOARDING STRATEGIES
There are two conditions should be satisfied if passengers
want to board a train even when they arrived at the platform
before the departure of the train. First, the train remains

enough capacity to carry passengers. Second, the scheduled
dwell time is sufficient for passengers to finish the alighting
and boarding process.

Due to the first condition, passengers might be unable to
board the train j which does not have enough capacity, even
if they arrive at the platform before the departure of train j.
Thus, the latest arrival time for passengers that can board train
j at station i is defined as TC i

j , which is also called effective
loading time and can be calculated by

TC i
j = min

DS ij ,max

τ |
τ∑

t=TC ij−1

2N∑
v=i+1

Pi,v(t)

≤ C − PV i−1
j + PAij


 ,

j = 2, 3, . . .Nj, i = 1, 2, . . . 2N − 1 (12)

Considering the fair of evaluations on alternative solutions,
a dummy train is assumed to take away all of the passengers
waiting at platforms before the study period. In this condition,
passengers arrive at platforms after the time point of DS i1,
and TC i

1 = DS i1. The scheduled departure time DS and
arrival time AR of train j at station i can be calculated by
formulas (13) and (14).

DS ij =
i−1∑
1

RTi +
i∑
1

DTi +
j−1∑
1

HDj (13)

ARij = DS ij − DTi (14)

The second condition indicates that passenger’s alighting
and boarding process takes a period of time. The minimum
dwell time to complete the alighting and boarding can be
estimated by regression models. Lam et al. [37] put forward
an equation to calculate the minimum time for the whole
alighting and boarding process according to the number of
passengers, whereas the crowdedness in the carriage was not
considered. Afterward, Puong [38] took the crowdedness into
account and proposed a new model to estimate dwell time
in high-frequency metro lines. Recent research also shows
that the crowd level is an important factor in determining
the dwell time besides the number of boarding and alighting
passengers [39].

In this study, Puong’s model is adopted to calculate the
minimum dwell time (in the form of required departure time
DM) to complete passenger’s alighting and boarding process,
as shown in formula (15). The dwell time composes four
parts: loss time for train operation, boarding time, alighting
time and additional time associated with congestion level.
The congestion level is indicated by the number of standee
per door (SD), which can be calculated by the number of in-
vehicle passengers, in-vehicle area, quantity of door and seat.
All waiting Passengers are able to board the train only if the
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scheduled departure time DS is later than DM.

DM i
j = 12.22+ 2.27PBij + 1.82PAij

+ 6.2 · 10−4(SDij)
3PBij + AR

i
j (15)

Table 2 gives the potential relationships among effective
loading time TC, scheduled departure time DS and required
departure time DM, as well as the practical implications.
The relationship between TC andDS embodies the constraint
on train capacity, which indicates that only passengers who
arrived before TC are able to board the train. According to the
aforementioned second boarding condition, passengers who
arrived before TC require a minimum departure time of DM
for boarding and alighting, and the scheduled departure time
DS should be greater than DM. Otherwise, a part of waiting
passengers may be unable to board the train.

TABLE 2. The relationship between three types of time indices.

In case of insufficient dwell time for passengers boarding,
three operating strategies are proposed which take temporal
constraint on passenger boarding into account. The impracti-
cal operating strategy, which ignores temporal constraint on
passenger boarding, is also introduced and compared with
three strategies proposed in this paper. It should be noted that
these strategies are used respectively, and only one strategy
is applied during each optimization. All these four strategies
consider the spatial constraint on train capacity.

a) OTAB: sticking to the Original Timetable, and All wait-
ing passengers are assumed to Board the train (an impracti-
cal strategy but widely applied in previous studies)

The temporal boarding condition is ignored in this strategy.
All passengers are assumed to board the train within the
schedule dwell time as long as the train has enough capacity.
The number of alighting and boarding passengers of train j
at station i are determined by the effective loading period
(TC i

j−1,TC
i
j ], which can be calculated:

PAij =
i−1∑
u=1

TC ij∑
t=TC ij−1

Pu,i(t), j = 2, 3, . . . ,Nj,

i = 2, 3, . . . , 2N (16)

PBij =

TC ij∑
t=TC ij−1

2N∑
v=i+1

Pi,v(t), j = 2, 3, . . . ,Nj,

i = 1, 2, . . . , 2N − 1 (17)

It should be noted that Pi,v(t) = 0 if i and v are in
different operating directions. After the departure of train j
from station i, the number of passengers in train j is

PV i
j = PV i−1

j + PBij − PA
i
j,

j = 2, 3, . . . ,Nj, i = 1, 2, . . . 2N − 1 (18)

This operating strategy cannot exist when the scheduled
departure time is earlier than required departure time, i.e.
DS < DM. In this case, a part of passengers actually cannot
board the train due to insufficient dwell time. This strategy
is widely applied in previous studies that only considered the
constraint of train capacity, whereas the results are inaccurate
when the dwell time is insufficient for passengers’ boarding
and alighting.

b) OTWT: sticking to the Original Timetable, a part of
passengers Wait for the next Train

Different from the OTAB strategy, the temporal boarding
condition is considered in this strategy. A part of passen-
gers has to wait for the next train if the scheduled dwell
time is insufficient, i.e. DS < DM. It should be noted that
formula (12) has to be amended to formula (19) due to the
number of waiting passenger contains newly arrived passen-
ger and left-behind passenger. Rij−1 denotes the number of
passengers who arrived before TC i

j−1 but have to wait for the
next train due to insufficient dwell time. For the first dummy
train, Ri1 = 0.

TC i
j = min

DS ij ,max

τ |
τ∑

t=TC ij−1

2N∑
v=i+1

Pi,v(t)+Rij−1

≤ C − PV i−1
j + PAij


 ,

j = 2, 3, . . .Nj, i = 1, 2, . . . 2N − 1 (19)

The effective loading time TC determines the number of
passengers that can be accommodated in the train. However,
the boarding process takes a period of time after the alighting
of passengers. Only a part of passengers can board the train
in time if the scheduled dwell time is not long enough. The
number of passengers who can actually board the train is

E t,PSInnon_brak (γ ) = E t,PSIntrac + E
t,PSIn
aux_other =

∑
j

(
max

{
F jout (t), 0

}
· vj(t)1t

ηee−ke
+ Pjaux ·1t), ∀j ∈ PSIn ∧ F

j
out (t) ≥ 0 (8)

Ere(γ ) =
∑
t∈Tp

∑
PSIn∈Np

min
{
E t,PSInre_all ,E

t,PSIn
aux_self

}
+min

{
max

{
E t,PSInre_all − E

t,PSIn
aux_self , 0

}
,E t,PSInnon_brak

}
(9)
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calculated as:

PBij = min

{
1,

DTi − 12.22− 1.82PAij
2.27PBij + 6.2 · 10−4(SDij)

3PBij

}

×

 TC ij∑
t=TC ij−1

2N∑
v=i+1

Pi,v(t)+ Rij−1

 ,
j = 2, 3, . . . ,Nj, i = 1, 2, . . . , 2N − 1 (20)

In formula (20), the ratio between surplus dwell time
for passenger boarding and required boarding time for all
passengers is firstly calculated. In extreme cases, passenger
alighting could consume more time than the dwell time, i.e.
DTi − 12.22 < 1.82PAij, and no time is left for passengers’
boarding. However, this situation will not be discussed in this
paper. The obtained proportion is multiplied by the number
of waiting passengers to estimating the number of passengers
who can actually board the train within the dwell time. Then,
time point TD, which means passengers arriving before TD
can board the train within the scheduled dwell time, can be
obtained by formula (21). In contrast, passengers arriving
after TD have to wait for the next train even if train j has
surplus capacity.

TDij =



TC i
j , DM i

j < DS ij

max

γ |
γ∑

t=TC ij−1

2N∑
v=i+1

Pi,v(t)+Rij−1 ≤ PB
i
j

,
DS ij ≤ DM

i
j

(21)

If the boarding process can be finished within dwell time,
TD is equal to TC, which means all passengers can board
the train. Otherwise, some passengers arriving at the plat-
form during [TD, TC] may not board the train. Therefore,
formulas (16) and (17) which represent the number of actual
alighting and boarding passengers are revised as formula (22)
and (23). The number of left-behind passengers due to insuf-
ficient dwell time is calculated by formula (24).

PAij =
i−1∑
u=1

TDij∑
t=TC ij−1

Pu,i(t),

j = 2, 3, . . . ,Nj, i = 2, 3, . . . , 2N (22)

PBij =

TDij∑
t=TC ij−1

2N∑
v=i+1

Pi,v(t),

j = 2, 3, . . . ,Nj, i = 1, 2, . . . , 2N − 1 (23)

Rij =

TC ij∑
TDij

2N∑
v=i+1

Pi,v(t) (24)

c) EXDL: EXtending dwell time and DeLay occurs
Different from the OTWT strategy, dwell time can be

extended in a reasonable range to accommodate more waiting
passengers in this strategy. Firstly, the number of passengers

who can be accommodated in the train is obtained according
to effective loading time. Then, the required departure time
for these passengers completing boarding is calculated. After
that, three scenarios are defined according to the relation-
ship among scheduled departure time DS, required depar-
ture time DM and upper boundary of extended departure
time DLmax:

• DS > DM, dwell time is sufficient for passenger alight-
ing and boarding, and scheduled timetable will not be
unchanged.

• DS < DM ∧ (DM-DS) ≤ DLmax, dwell time is insuffi-
cient and scheduled departure time is delayed to match
passenger demand.

• DS < DM ∧ (DM-DS) > DLmax, the required extension
of dwell time exceeds the upper boundary, and the prac-
tical departure time should be equal to DS + DLmax.

In the first two scenarios, formulas (16-18) that applied in
OTAB strategy are implemented to calculate effective load-
ing time and the number of boarded passengers. This is
because passenger’s boarding process can be finished within
the scheduled or prolonged dwell time. In the third situation,
a part of passengers cannot board the train even if the dwell
time has been prolonged. In this case, formulas (19-24) in
OTWT strategy are used to describe the passenger boarding
process. The delay caused by extending dwell time will not be
recovered in EXDL strategy. Therefore, practical departure
and arrival times of all the stations after station ir, where delay
occurs, will be postponed, as shown in formulas (25) and (26).
Also, train’s cycle time is extended due to the delay. It should
be noted that DLmax is used for limiting the upper boundary
of practical dwell time, in order to ensure operating safety and
a certain extent of fairness, as well as reserve some capacity
for downstream stations.

DS ij < DPij < DS ij + DLmax (25)

APi+1j = DS ij + RTi, ∀i > ir (26)

d) EXRE: EXtending dwell time and REcover delay time
In accordance with EXDL strategy, scheduled departure

time can be extended in the EXRE strategy to enable more
passengers to board the train. If the required extension of
dwell time is less than the acceptable range, formulas (16-18)
in OTAB strategy can be used for calculating the number of
in-vehicle passengers. Otherwise, formulas (19-24) in OTWT
strategy will be implemented owing to some passengers can-
not board the train.

Differently, the deviation from the nominal timetable is
expected to be eliminated as soon as possible via compressing
inter-station running times in EXRE strategy. Even though the
extent of compressing running time is rather limited in one
inter-station, the delay can be gradually recovered in the next
few inter-stations. The rescheduled timetable configurations
are attained by formula (27) -(30).

First, the station where delay occurs is marked with id. The
sum of available inter-station run-time is used for calculating
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the station where delay can be fully recovered, and this station
is marked as idr.

idr = min

{
i|

2N∑
i=id

RTi − RTmin
i

> min
{
max

{
DM i

j − DS
i
j , 0
}
,DLmax

}}
(27)

Then, minimum inter-station run-time is applied in seg-
ments id to idr, to recover the scheduled timetable. Rest of
the delay time is recovered in segment idr.

RTi =



RTmin
i , i = id, id + 1, . . . , idr − 1

RTi − (min
{
max

{
DM i

j − DS
i
j , 0
}
,DLmax

}
− (

idr−1∑
i=id

RTi − RTmin
i )), i = idr

(28)

After than, the practical train departure and arrival times in
the following stations are also changed.

DPij =



DS ij +min
{
max

{
DM i

j − DS
i
j , 0
}
,DLmax

}
,

i = id

DS ij +min{max{DM id
j − DS

id
j , 0},DLmax}

− (
idr−1∑
i=id

RTi−RTmin
i ), i = id + 1, . . . , idr

(29)

APij = DS ij + RTi, i = id, id + 1, . . . , idr (30)

Fig. 4 summarized the possible scenarios for passenger
boarding and the corresponding operating strategies. Firstly,
TC i

j is calculated according to train capacity and scheduled
departure time. Based on TC i

j , the numbers of boarding and
alighting passengers are obtained. This part of passengers and
congestion level are used to calculate the required departure
time DM. The comparison of DM and DS is the starting con-
dition for prolonging the dwell time. If DM ≤ DS, trains will
depart from the station on time and four different strategies
have the same result. In contrast, when DM > DS, a part of
passengers is unable to board the train if the train strictly com-
plies with the scheduled departure time (OTAB and OTWT
strategies). Alternatively, dwell time will be prolonged in
EXRE and EXDL strategies to enable more passengers to
board the train.

2) PASSENGER TOTAL TRAVEL TIME
In general, passengers expect to arrive at their destinations as
soon as possible. To this end, the timetable formulation aims
to reduce the total travel time of passengers, includingwaiting
time and in-vehicle time. Passenger in-vehicle time comprises
inter-station running time and dwell time. Consequently, the

FIGURE 4. Passenger boarding scenarios and different operating
strategies with the consideration of temporal and spatial boarding
constraints.

total travel time can be calculated by formula (31).

Ctime(γ ) =
J∑
j=1

2N−1∑
u=1

2N∑
v=u+1

TDuj∑
t=TDu−1j

(DPij − t)+
v−1∑
i=u

RT i

+

v−1∑
i=u+1

DT i

 · Pu,v(t)
 (31)

It should be noticed that the temporal boarding constraint
is not considered in OTAB strategy, and TD is set the same
value as TC in OTAB strategy because all passengers are
assumed to be able to board the train if they arrived before
TC. Besides, the practical arrival/departure time (AP/DP) in
OTAB and OTWT strategies equal to the scheduled time
(DS/AR). In EXDL and EXRE strategies, however, practical
arrival/departure time may be revised according to passenger
alighting and boarding situations

D. OBJECTIVE FUNCTION
The objective of timetabling problem in this research is to
minimize metro operating cost and passenger travel time.
It is impossible to find a solution that can simultaneously
minimize these two contradictory objectives. Therefore,
a multi-objective optimization model is developed to explore
the relationship between each objective. Decision maker
could select the most suitable solution according to practical
operation requirements. The objective function is formulated
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as:

minCtotal(γ ) = {Cenergy + Cmaint ,Ctime} (32)

E. CONSTRAINTS
To ensure operational safety and service efficiency, the fol-
lowing constraints should be satisfied.

1) RUNNING TIME CONSTRAINT
the scheduled running time in the inter-station i should be
bounded with the consideration of service quality and the
maximum operating speed. The improvement on RT has
impacts on both energy consumption and passenger travel
time. For example, more traction energy will be consumed if
RT is lessened. Meanwhile, passenger travel time is likely to
be reduced. Especially, we treat the turnaround (i.e., the seg-
ment N and 2N ) time as a special segment running time.

Tmin
i ≤Ti ≤ T

max
i , i = 1, 2, 3, . . . ,N , . . . , 2N−1, 2N

(33)

2) CYCLE TIME CONSTRAINT
the cycle time, defined as the sum of DT and RT of all the
stations, is predetermined. However, the cycle time may be
prolonged in EXDL strategy when delays occur.

Tc =
∑

1≤i≤2N

DTi + RTi (34)

3) HEADWAY CONSTRAINT
the service headway between two successive trains must be
no less than the minimum headway for operation safety.
Meanwhile, the deviation of service headway from the aver-
age headway (Have) should be limited within an appropriate
range ρ, for the reason that headway regularity provides better
service fairness for passengers.∣∣Hj − Have∣∣ < ρ (35)

4) POWER PEAK CONSTRAINT
the instantaneous traction power in the same PSI should not
exceed the maximum capacity of the power supply system.∑
t∈Tp

∑
j∈PSIn

F jout (t) · vj(t) ≤P
n
max, ∀j ∈ PSIn ∧ F

j
out (t) > 0

(36)

5) MAXIMUM DWELL TIME CONSTRAINT
The scheduled departure time of train j from station i can
be postponed to satisfy passengers’ boarding and alighting.
From aspects of operating safety and fairness, practical depar-
ture time’s (DP) deviation from the scheduled departure time
(DS) should be restricted in a reasonable range (DLmax).

DPij = max{DS ij ,min{DM i
j ,DS

i
j + DLmax} (37)

6) TRAIN CAPACITY CONSTRAINT
Train capacity is always a practical and necessary in this
model. Passenger can never board train jwhich has no surplus
capacity left at station n.

n∑
i=1

PBij −
n∑
i=1

PAij ≤ C (38)

V. SOLUTION ALGORITHM
In multi-objective optimization problem, there is a set of
acceptable trade-off optimal solutions rather than a unique
solution. These acceptable solutions compose the Pareto opti-
mal set which means any solutions in the Pareto set cannot
improve at least one of the objectives without degradation
any other objectives. To find the Pareto optimal set of the pro-
posed model, a Non-dominated Sorting Genetic Algorithm II
(NSGA-II) algorithm is developed in this study. TheNSGA-II
is a powerful multi-objective evolutionary algorithm which
is competent to find a much better spread of solutions and
better convergence near the true Pareto optimal set [40].
Decision maker can flexibly select a passenger-oriented or
economy-efficient timetable from the Pareto front, according
to practical operating conditions. Fig. 5 gives the flowchart
of the developed NSGA-II.

FIGURE 5. The flowchart of NSGA-II algorithm.

A. CHROMOSOME CODING AND INITIALIZING
An initial population P with N individuals is generated based
on the practical timetable configurations, using integer cod-
ing. There are n stations in one direction, thus the length of
each individual chromosome is 4n + Ncar − 1, which can be
divided into three parts: dwell times (Gene position 1 to 2n),
running times (Gene position 2n + 1 to 4n) and headways
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FIGURE 6. Generating chromosome based on practical timetable configurations with constant cycle time.

Algorithm 1 Generating Feasible Solutions

Input: Practical DT and RT, variation range δ
Output: Feasible solutions
1: While K 6= ∅
2: x = [δ − 2× rand(δ)]
3: randomly pick k1 ∈ K
4: G(k1) = G(k1)+ x
5: randomly pick k2 ∈ K
6: G(k2) = G(k2)− x
7: end while
8: Output [DT, RT]

(Gene position 4n + 1 to 4n + Ncar − 1), as shown in Fig.6.
The k-th gene position in the chromosome is denoted asG(k).
It should be noted that the cycle time is considered as a fixed
value. The computational procedure of generating a chromo-
some with a fixed cycle time is shown as the pseudo-code of
Algorithm 1.

To keep the cycle time as a constant, new populations
are generated by increasing or reducing inter-station run-
times and dwell times in a practical timetable. Firstly, all
dwell times and running times in the chromosome com-
pose the set K with 4n elements, which are indicated as
G(1),G(2) . . . ,G(4n). Secondly, a gene positionG(k1) is ran-
domly selected in the set K and a random variable x is added
toG(k1). The value of random variable x is determined within
a variation range δ, i.e. −δ ≤ x ≤ δ. Thirdly, another gene
position G(k2) is randomly selected in K, and the previously
used random variable x is now subtracted from G(k2). The
above process is repeated until all elements in K are revised
and the variables k1, k2 and x are generated randomly in each
revision. As such, cycle time remains unchanged because the
sum of inter-station run-times and dwell times is a constant.

Headways in chromosomes are generated similarly. The
only difference is that the number of elements may be odd
numbers. In this regard, the final selected element remains
unchanged. Therefore, different chromosomes share the same
average headway and service frequency within the operation
period.

B. SELECTION, CROSSOVER AND MUTATION
The individuals in P are selected by a roulette-wheel, in which
individuals with higher fitness have a higher possibility to be
selected. Crossover and mutation operations are carried out
among three different gene positions and different parts of
decision variables are exchanged, as shown in Fig. 7. The
value of a gene position is regenerated randomly if muta-
tion operation is activated according to mutation possibil-
ity. Offspring population Q is formed based on the selected
individuals in population P through crossover and mutation.
Finally, a new population R with 2N individuals is generated
by mixing populations P and Q.

The crossover and mutation operations may change the
cycle time and make the solution infeasible. If cycle time
exceeds the scheduled value, a gene position which repre-
sents running time or dwell time is randomly selected and
subtracted by 1 second. The selection and subtraction repeat
until cycle time equals to the scheduled value. Similarly, the
cycle time can be prolonged by randomly adding seconds in
some gene positions.

C. NON-DOMINATED SORTING AND
CROWDED-COMPARISON
Each individual in population R is compared with every
other solution in order to identify the non-dominated
level. If two individuals satisfy the rule that Obj1(Ri) <

Obj1(Rj) and Obj2(Ri) < Obj2(Rj) in a minimization prob-
lem with two objectives, Rj is dominated by Ri and Ri is
marked as a non-dominated solution.

In non-dominated sorting operation ofR individuals, all the
non-dominated solution (N1) is assigned rank 1 and removed
from the population. For the remaining R-N1 dominated
solutions, they are sorted again and forming a new set of
non-dominated solutions (N2) which are assigned rank 2. This
process continues until all the individuals are ranked. For the
individuals with the same rank level, the crowding distance
for each individual is calculated by formula (39).

di =
2∑

obj_n=1

f i−1obj_n − f
i+1
obj_n

f max
obj_n − f

min
obj_n

(39)
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FIGURE 7. Crossover operation in generating new population.

FIGURE 8. Generating new population by Non-dominated sorting and
crowded-comparison operations.

di denotes the crowding distance of the individual i in a
non-dominated front; f iobj_n is the value of n

th objective of the
individual i; f max

obj_n and f
min
obj_n are the maximum and minimum

values of nth objective, respectively.
The new population of N individuals is picked from popu-

lation R based on the non-dominated rank and the crowding
distance, as shown in Fig. 8. Individuals with the lowest
rank level are preferred. Afterwards, solutions belonging to
the same rank level are sorted according to the crowding
distance, and individuals located in lesser crowded regions
(greater di) are selected to form the new population. If the
evolution reaches the maximum generation, the algorithm
will be terminated and export the optimized solutions.

VI. CASE STUDIES
Beijing Metro Yizhuang line, which is 21.5 km with 13
stations, is selected to conduct case studies. The study period
is peak hours from 7:00 a.m. to 9:00 a.m. on weekdays.
The Origin-Destination matrix is given in Fig. 9, which
is obtained from Beijing Metro Operation Ltd. The sched-
uled inter-station running time and station dwell time in the

FIGURE 9. Passenger volume in peak hours.

TABLE 3. Vehicle performance and parameters settings.

real-world timetable as well as the distance between two
adjacent stations are listed in Table 3. It should be noticed
that the up direction is from CQ to SJZ. The running time
in segment n denotes the scheduled run-time between station
n and station n + 1. The whole line is divided into 6 power
supply intervals which are shared by both directions. Train
parameters are listed in Table 4. The mathematical model is
solved by Matlab R© 2016a on a personal laptop with 4 cores
of 2.3 GHz and 8 GB RAM.
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TABLE 4. Nominal timetable of Beijing Metro Yizhuang line in real-world.

In the case study section, the interaction between service
headways and required station dwell times is analyzed firstly.
The performance of different operating strategies in response
to insufficient dwell time is then compared followed by the
sensitivity analysis on the boundary in prolonging station
dwell time. Finally, the current timetable of Beijing Metro
Yizhuang line is optimized to tackle the concerns of stake-
holders, based on the optimal operating strategy.

A. THE INTERACTION BETWEEN SERVICE HEADWAY AND
REQUIRED DWELL TIME
Service headways may have a great impact on station dwell
time, especially in peak hours on busy metro lines. For
example, a larger service headway results in more passengers
waiting at the platform, which in turn requires longer dwell
time. This inherent relationship between service headway
and dwell time is considered and analyzed in this section,
assuming that passenger volume is even distributed in study
period.

Fig. 10 and Fig.11 depict the required dwell time (RDT)
for passengers to alight and board under different headways
in up and down directions, respectively. It should be noted that
the constraint of train’s surplus capacity is always considered
in case studies. The bold red line in figures represents the
scheduled dwell time at each station in the nominal timetable.
It is obvious that RDT increases with headway, but growth
rates vary across stations. In some cases, the RDT exceeds
the scheduled dwell time significantly (e.g. the JG station
in down direction), which means that a great number of
waiting passengers cannot board the train within the sched-
uled dwell time. Therefore, it is necessary to consider the
interaction between service headways and station dwell times
inmetro timetable formulation. Otherwise, dwell timemay be

FIGURE 10. Dwell times in down direction with different headways.

FIGURE 11. Dwell times in up direction with different headways.

TABLE 5. Passenger alighting and boarding with different headways.

insufficient for passenger boarding in peak hours with large
headway.

Table 5 gives a detailed comparison of required dwell
times for passengers boarding a train at the JG station (down
direction) under different headways, and the scheduled dwell
time of the nominal timetable is 30 s. The total number of pas-
sengers alighting the train (PAall), total waiting passengers at
the platform (PBall) and the standees per door in the train (SD)
increase with the headway, whereas the number of passengers
who board the train (PBsuc) successfully declines after head-
way reaches a certain level. The reason for the reduction of
PBsuc is that the growing congestion level decreases the speed
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FIGURE 12. Energy consumption of different operating strategies.

FIGURE 13. Passenger waiting and in-vehicle times in down direction.

of passenger boarding, due tomore conflicts among alighting,
boarding and standing passengers. Passengers need more
time to board (tPB) a more crowded train and the boarding
process (TPB) lasts for a longer time. The alighting process
(TPA) is finished within a second because very few passengers
alight at JG station.

B. THE COMPARISON OF DIFFERENT OPERATING
STRATEGIES
The real-world operating data of Yizhuang line involving
five trains scheduled with regular headways is employed
to explore the performance of the four operating strategies
proposed in this study. Figs. 12 - 14 give the performance
of different operating strategies under different headways,
in terms of train energy consumption and passenger travel
time. It should be noted that the length of study period varies
due to the changed headway.

In Fig. 12, a notable increment in energy consumption is
observed in EXRE strategy when the headway is prolonged.
The reason is that train running times in several inter-stations
are compressed under EXRE. However, the impacts of

FIGURE 14. Passenger waiting and in-vehicle times in up direction.

service headway on energy consumption are very minor
under the other three strategies, as the inter-station run-time
remains the same with OTWT, OTAN, and EXDL.

When the headway is shorter than 280 s, all four operating
strategies consume the same energy as all passengers can
board the train within dwell time.

Once the headway is between 280 s and 380 s, the required
time to complete the boarding of all passengers exceeds
the scheduled dwell time in some stations. As such, EXDL
strategy prolongs the dwell time and the energy increases
slightly as the auxiliary equipment consumption grows with
time. However, with EXRE strategy, not only the dwell time
is prolonged, but also the inter-station running time is com-
pressed. Longer headway induces more extension of dwell
time, which also indicates more running time has to be com-
pressed. As a result, the energy consumption of EXRE strat-
egy increases significantly when the headway grows from
280 s to 380 s.

When the headway exceeds 380 s, the rising trend of
EXRE strategy is retarded because one of the stations has
reached the maximum prolonged dwell time (DLmax), and
running time in the following inter-stations will not be fur-
ther compressed. In addition, energy consumption of OTWT
and OTAB strategies keep as a constant because these two
strategies always follow the original timetable regardless of
passenger boarding.

The dotted line in Fig. 13 represents passenger waiting time
under different operating strategies and headways. OTAB
strategy always leads to the lowest waiting time because the
temporal constraint on passenger boarding is ignored, thus all
waiting passengers are assumed to board the train as long as
the train has enough capacity.

In contrast, OTWT strategy considers the RDT may be
larger than scheduled dwell time. In this case, some passen-
gers cannot board the train even if its capacity is sufficient
and passengers have to wait for the next train. Because of
no extension of dwell time, the OTWT results in the largest
waiting time.
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The passenger waiting time of EXDL and EXRE strategies
equals to that of OTAB strategy, when headway is smaller
than 380 s. The reason is that the dwell time is prolonged to
complete the boarding of passengers.

When the headway is greater than 380 s, RDT at JG sta-
tion exceeds the maximum prolonged dwell time and some
passengers have to wait for the next train. Consequently,
the waiting time of EXDL and EXRE strategies are higher
than that of OTAB strategies when headway is larger than 380
s. It should be noted that EXDL and EXRE strategies share
the samewaiting time and the red dotted line which represents
waiting time in EXDL model is covered by the black dotted
line.

When it comes to the in-vehicle time, as shown by the solid
line in Fig. 13, the in-vehicle time of OTAB strategy increases
steadily with the service headway, because enlarged headway
results in more waiting passengers and all of them can board
the train.

Whereas in OTWT strategy, some passengers cannot board
the train due to temporal boarding constraint. The reduction
on in-vehicle passengers results in less passenger in-vehicle
time.

EXDL and EXRE strategies involve similar in-vehicle time
when headway is smaller than 280 s. When the service head-
way is between 280 s and 380 s, the in-vehicle time of EXDL
strategy is slightly higher because the delay caused by the
prolonged dwell time is not recovered, which goes against
the benefit of in-vehicle passengers.

When the headway continues increasing, RDT at JG station
exceeds the maximum prolonging time. Under such circum-
stances, some passengers cannot board the train as the dwell
time reaches the upper boundary. Therefore, the in-vehicle
times of EXDL and EXRE strategies are lower than the
in-vehicle time of OTAB strategy, because the total numbers
of served passengers of EXDL and EXRE are less than that
of OTAB strategy.

Fig. 14 depicts the passenger waiting time and in-vehicle
time in the up direction, which is quite similar to the tendency
of that in the down direction. The main difference is that the
results of EXDL and EXRE strategies are alike. The reason
is that passenger demand in the up direction is relatively low
and the required dwell time does not reach the maximum
allowable dwell time.

OTWT strategy leads to the largest waiting time because a
part of passengers has to wait for the next train, whereas the
other three strategies involve the same waiting time.

In respect of in-vehicle time, OTWT induces the least in-
vehicle time due to that less passengers are serviced. EXDL
results in the longest in-vehicle time because dwell times at a
few stations are prolonged and the inter-station running times
remain the same.

A Comprehensive comparison of four operating strategies
is listed in Table 6. Compared to OTAB strategy, OTWT strat-
egy induces longer waiting time when the headway exceeds
300 s. It reveals that a part of passengers cannot board the train
within the scheduled dwell time, and the average waiting time

FIGURE 15. The comparison of original timetable to revised timetable in
EXRE strategy.

is underestimated in OTAB strategy. Therefore, the OTAB
strategy deviates from the practical operating condition and
the calculation results may be incorrect, especially in peak
hours.

Different from OTWT strategy, scheduled dwell time can
be extended within a reasonable range in EXDL and EXRE
strategies. Table 6 shows that EXDL and EXRE perform
much better than OTWT in terms of waiting time, average
in-vehicle time and the total number of served passengers.
Particularly, the in-vehicle time of EXRE was significantly
reduced in comparison with that of EXDL as inter-station
running times might be compressed in EXRE.

To sum up, these strategies are feasible and can achieve the
same result when scheduled dwell time can satisfy passen-
ger’s alighting and boarding. In crowded conditions, however,
OTAB strategy becomes infeasible because the constraint of
boarding time is not considered. Case studies proved that
dwell time should be appropriately extended to improve
passenger service, and EXRE strategy can effectively
improve the service quality with a slight increase in energy
consumption.

C. SENSITVITY ANALYSIS ON THE BOUNDARY IN
PROLONGING STATION DWELL TIME
As aforementioned, EXRE strategy is recommended because
passenger travel time is significantly saved by extending
dwell time and compressing inter-station run-time. The
reduction in passenger travel time largely depends on the
boundary in prolonging dwell time DLmax, which is set as
a constant in aforementioned cases.

The time-space diagrams of the train movement in OTWT
and EXRE strategies are shown in Fig. 15. It can be found that
dwell time is extended in some crowded stations, e.g. JG sta-
tion (location 6272 m). Then, extended dwell time is recov-
ered in the following stations by compressing inter-station
running time.

To investigate the performance of EXRE strategy under
different boundaries in prolonging dwell time, extensive anal-
yses on serviced passengers as well as their waiting and
in-vehicle times are illustrated in Fig. 16. The headway is set
as 400 s and the DLmax is a discrete variable between 0 s and
40 s. The performance of OTWT and OTAB is constant with
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TABLE 6. Comparison of four operating strategies in practical timetable configurations.

FIGURE 16. The performance of EXRE strategy with different boundaries
in prolonging station dwell time.

different values of DLmax, since the nominal timetable is not
regulated in these two strategies.

WhenDLmax equals to 0, EXRE and OTWT have the same
results because dwell time will not be extended and a part
of passengers may be unable to board the train. As DLmax
increases, more passengers can board the train within the
extended dwell time and the performance of EXRE strategy
tends to approach the OTAB strategy. When DLmax is equal
to or greater than 33 s, passenger alighting and boarding
can be completed within the extended/scheduled dwell time.
In other words, a proper extension of dwell time is con-
tributing to improve service quality. The extent in prolonging
station dwell time depends on the passenger demand and the
schedule of the following train.

D. MULTI-OBJECTIVE OPTIMIZATION OF TRAIN
TIMETABLE
To verify the effectiveness of the proposed timetable model,
the practical timetable of Beijing Metro Yizhuang line with
the planning horizon of 2 hours in the morning peak is

optimized without changing the number of train services,
which is set as 25 in each direction and the average headway
is 300 s. Extensive studies with different numbers of train ser-
vices are then carried out to explore the relationships among
the service frequency, passenger travel time and operating
cost. On the algorithm parameters applied in the above cases,
the crossover rate is 0.8; the mutation rate is 0.1; the size of
population is 60 and the maximum generation is 100 which
are selected based on empirical analyses and data experi-
ments. In this case, the computational cost of the proposed
approach is about half an hour.

Table 7 lists the performance of four operating strategies in
the practical timetable. The different performance of OTAB
and OTWT strategies clearly validates the necessity of con-
sidering temporal boarding constraint in timetable formula-
tion. With the practical timetable, a part of passengers is
unable to board the train within the scheduled dwell time and
they have to wait for the next train. EXDL and EXRE strate-
gies allow more passengers to board the currently-arrived
train by extending dwell time, at the cost of energy consump-
tion. The results demonstrate that EXDL and EXRE strate-
gies contribute to the improvement on service quality, while
EXRE strategies can also reduce in-vehicle time by com-
pressing inter-stations running times at the expense of slight
increment in energy consumption. Therefore, the EXRE is
implemented in the multi-objective timetable optimization.

Fig. 17 gives the near-optimal Pareto front of the optimized
timetables under EXRE strategy. The performance of the
practical timetable with EXRE is also marked as red cross.
It can be found that the practical timetable can be improved
from both perspectives of passenger travel time and operator
cost. For passengers, total travel time in optimized timetable
can be saved by 3.09%, from 26615342 s to 25792132 s,
and the operator’s cost remains unchanged. At the same
time, the operator’s cost can be reduced with the optimized
timetable by reallocating inter-station run-times for traction
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TABLE 7. The performance of practical timetable with different operating strategies.

FIGURE 17. The Near-optimal Pareto frontier with EXRE operating
strategy.

FIGURE 18. Passenger travel time and operating cost with different train
services.

energy saving and improving the utilization of regenerative
braking energy. Based on practical operating conditions of
metro lines, decision-makers can select a particular solution
from the obtained near-optimal Pareto frontier in all runs.
It should be noted that service frequency is not changed
in Fig. 17, therefore, the maintenance cost is a constant.

Fig. 18 shows the impacts of train service frequency on
operator cost and passenger travel time. Operating cost,
including energy consumption and maintenance investment,

almost increases linearly with the number of services. On the
contrary, passenger travel time has a notable decline when the
number of services increases from 19 to 21, while the rate of
decrease is smooth otherwise. In this case, the service number
of trains is recommended to be greater than 20 so that passen-
ger travel time can be saved significantly. Another result that
can be concluded from these cases is the scalability of the
proposed approach. Because various operating strategies and
operating conditions can be applied flexibly.

VII. CONCLUSION
This paper has developed a multi-objective timetable opti-
mization model with the consideration of both passenger
travel time and operating cost. The inherent relationship
between service headway and dwell time is analyzed. To cope
with the insufficient dwell time that may arise in practice,
different operating strategies are proposed and compared in
terms of operating cost and passenger travel time. A NSGA-II
algorithm is developed to explore the relationship between
the objectives and the near-optimal Pareto front is attained
by adjusting headways, inter-station running times as well
as dwell times. Case studies are conducted on the real-world
data of Beijing Yizhuang line.

Case studies have demonstrated that apart from the well-
considered spatial constraint in existing studies, temporal
constraint in passenger boarding should also be taken into
account. The rationality of dwell time in peaks hours of
busy metro lines has notable impacts on passenger service.
The OTAB strategy which was widely employed in previous
studies has been proved to be impractical and inaccurate when
passenger requires more boarding time than scheduled dwell.
Results of EXRE strategy proved that it is worthwhile to
prolong the scheduled dwell time when passenger boarding
and alighting require more time than the scheduled time.
Because passenger travel time can be significantly reduced
in EXRE strategy at the price of little increment in energy
consumption, and we recommend this applicable strategy in
busy metro lines. Additionally, all the proposed strategies
achieve the same result in unsaturated conditions.

In future studies, an integrated optimization on train
timetable and rolling stock scheme will be explored, as the
regulation on train timetable might affect the predetermined
operation scheme for rolling stocks. Besides, the proposed
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algorithm can be further optimized to achieve better compu-
tational efficiency and high-quality solutions.

APPENDIX
NOMENCLATURE
Due to a lot of parameters and variables have been used
through the paper, a nomenclature is added here to for the ref-
erence. All parameters are divided into 5 categories according
to different usages and the meanings are listed in the table
below.

Category Parameter Meaning

M
et
ro

lin
es

i The number of stations
N Total number of stations
Np Total number of the power

supply interval
PSIn The number of power supply

interval n
Pnmax The maximum capacity of the

power supply system
Xi The location of the station i
1x The length of train movement

within certain time interval
L The length of track in one

direction

M
et
ro

tr
ai
ns

j The number of trains
Nj Total number of trains
ηee−ke Conversion efficiency from

electricity to kinetic energy
ηke−re Conversion efficiency from

kinetic energy to regenerative
energy

M The mass of rolling stock
λw The rotary allowance
Fout The traction or braking force
Fbasic Davis resistance formula
Fg(x) Gradient resistance at

location x
θ (x) Gradient at location x.
Fc(x) Curve resistance
Ftrac(v) Maximum available traction

force
Frb(v) Maximum available

regenerative braking force
Fmb(v) The mechanical braking

Pjaux The power of auxiliary
on-board equipment

m Fleet size
ωmaint Maintenance cost per car

kilometer

M
et
ro

tim
et
ab
le

1t The length of Minimal Time interval
Tc Cycle time for each train travelling a

round-trip
Tp Planning horizon
TD Effective dwell time that considers both

spatial and temporal constrains on
passenger boarding

TC i
j The time point that train j is full loaded

at station i or reaches scheduled
departure time

TDij The time point that passenger’s boarding
process can be finished within dwell
time

DM i
j The time point that passenger’s boarding

and alighting process is finished
DTloss The door opening, door closing and

safety check time
DLmax The boundary in prolonging dwell time
DS ij The scheduled departure of train j from

station i
ARij The scheduled arrival of train j at

station i
DPij The practical departure of train j from

station i
APij The practical arrival time of train j at

station i
ir The station in which the scheduled

departure time is delayed
idr The station in which delayed time is

fully recovered
Tmax
i Maximum operating time in segment i
Tmin
i Minimum operating time in segment i
Hj Headway time between train j and

train j+ 1
Have Average headway within the planning

horizon
ρ Maximum deviation from average

headway

Pa
ss
en
ge
r
re
la
te
d

C Train loading capacity
PAij The number of alighting passengers

per door at station i from train j
PBij The number of boarding passengers

per door at station i to train j
SDij The number of standee per door at

station i in train j
PV i

j The number of in-vehicle passengers in
train j in the i-th segment

Rij The number of passengers waiting at
station i after the departure of train j due
to limited boarding time

Ctime The total travel time of passengers
Pi,v(t) The number of passengers who arrive

station i at time t heading to station v
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E
ne
r g
y
co
ns
um

pt
io
n

E i,jtrac Traction energy consumption of
train j in segment i

E t,PSInre_all Total amount of the regenerative energy
in PSIn at time t

E t,PSInaux_self Auxiliary energy consumed by braking
trains in PSIn at time t

E t,PSInnon_brak Total energy consumed by non-braking
trains in PSIn at time t

E t,PSInaux_other Auxiliary energy consumed by
non-braking trains in PSIn at time t

Ere Utilized regenerative energy
Cenergy Energy consumption cost
ωe The unit price of energy
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