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ABSTRACT This paper investigates vibration suppression of uncertain hose and drogue systems in the
presence of actuator nonlinearities. Firstly, a previously presented model of the hose and drogue systems
is extended to describe how the hose and drogue systems restrain the vibration, while the accompanying
unknown aerodynamic coefficients are estimated by invoking the parameter projection method. Subse-
quently, for the actuator nonlinearities of dead-zone and saturation, a smooth dead-zone approximate
function is constructed to design the dead-zone compensation method, based upon which the proposed
control scheme can handle actuator dead-zone and saturation simultaneously while improving the output
efficiency of the actuator. Next, for the actuator nonlinearities of backlash and saturation, a smooth backlash
inverse is constructed based upon which the presented control scheme can cope with the both actuator
nonlinearities simultaneously. Finally, by utilizing backstepping method and hyperbolic tangent function,
the proposed control schemes can also achieve the control objectives of vibration suppression and external
disturbance attenuation. Simulation examples are included to demonstrate the validity of the proposed control
schemes.

INDEX TERMS Adaptive control, backlash, dead-zone, distributed parameter system, uncertain nonlinear
system.

NOMENCLATURE
A(t) Aerodynamic force generated by the elevators
A0,Fθ Coefficients of A(t)
dh Diameter of the hose
ddrog Diameter of the drogue
ft Skin friction drag of the hose
Cft Coefficient of ft
fn Pressure drag of the hose in the normal direction
Cfn Coefficient of fn
fdrog Drag of the drogue
Cfdrog Coefficient of fdrog
g Acceleration of gravity
L Length of the hose
m Mass of the drogue and elevators
P(z) Tension of the HDS
ρ Linear density of the hose
ρair Air density
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θ(t) Angle of the elevators
θ̄ , θ Upper and lower bounds of θ (t)
θ0 Constant angle of the HDS
V0 Constant velocity of the air-tanker
w(z, t) Transverse displacement of the HDS
N(x) Actuator dead-zone or backlash
N (x) Approximation of actuator dead-zoneN(x)
N̂ (x) Estimate of N (x)
Ñ (x) Estimate error of N (x)
˙(∗) Partial derivative of (∗) with respect to t
γNl, γNr Slopes of actuator dead-zone
γl, γr Approximations of γNl, γNr
γ̂l(t), γ̂r (t) Estimates of γl, γr
γ̃l(t), γ̃r (t) Estimate errors of γl, γr
γ̄ , γ Upper and lower bounds of γNl and γNr
¯̂γ, γ̂ Upper and lower bounds of γ̂l(t) and γ̂r (t)
aNl, aNr Breakpoints of actuator dead-zone
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al, ar Approximations of aNl, aNr
âl(t), âr (t) Estimates of al, ar
ãl(t), ãr (t) Estimate errors of al, ar
al, ār Lower bound of aNl and upper bound of

aNr

âl, ¯̂ar Lower bound of âl(t) and upper bound of
âr (t)

γ̂lal(t), γ̂rar (t) Estimates of γlal and γrar
γ̃lal(t), γ̃rar (t) Estimate errors of γlal and γrar
ζ Slope of actuator backlash
ζ̂ (t) Estimate of ζ
ζ̃ (t) Estimate error of ζ
ζ̄ , ζ Upper and lower bounds of ζ
¯̂
ζ, ζ̂ Upper and lower bounds of ζ̂ (t)
hl, hr Breakpoints of actuator backlash
h̄ Upper bound of −hl and hr
ζ̂hl(t), ζ̂hr (t) Estimates of ζhl and ζhr
ζ̃hl(t), ζ̃hr (t) Estimate errors of ζhl and ζhr
¯̂ζhl Upper bound of ζ̂hl(t)
ζ̂hr Lower bound of ζ̂hr (t)
(∗)′ Partial derivative of (∗) with respect to z

I. INTRODUCTION
The hose and drogue system (HDS) is vital equipment in
aerial refueling, which can transfer fuel from the air-tanker to
the receiver [1]. As depicted in Fig. 1, theHDS is composed of
a hose, a drogue at the end of the hose, and a set of active con-
trol surfaces (elevators) mounted on the drogue. The active
control surfaces were developed in the last decade [2], to
restrain the vibration of the HDS by generating additional
aerodynamic force. It is noteworthy that the vibration of the
HDS is ineluctable due to the intrinsic flexible nature of the
HDS [3], and this phenomenon lengthens the docking pro-
cess as well as increasing the risk of docking failure [4]–[6].
Therefore, vibration suppression is mandatory for the HDS to
work effectively.

In the last few decades, vibration suppression of flexi-
ble systems has been vastly investigated, and a plethora of
research advances have been documented [7]–[12], [16]. For
instance, an overhead crane with flexible cable was studied
based upon a backstepping-approach-based controller [7].
Two control schemes respectively based on active disturbance
rejection control and sliding mode control were proposed for
a one-dimensional Euler-Bernoulli beam equation, to cope
with the external disturbance flowing to the control end [8].
In three-dimensional space, an effective control strategy was
developed for nonlinear slender beams with large transla-
tional and rotational motions [9]. A boundary controller
for an axially moving string was proposed to suppress the
vibration of the system [10]. And the boundary control of
a robotic aircraft with articulated flexible wings was inves-
tigated in [11]. With respect to the HDS investigated in this
paper, Liu et al. established a novel dynamic model by uti-
lizing the partial differential equation (PDE), and developed

FIGURE 1. The hose and drogue system.

several control strategies to suppress the vibration of the
HDS as well as achieving additional objectives [12]–[15].
However, it is noteworthy that the model developed by
Liu et al. does not consider how the active control sur-
faces (elevators) generate the control force. Furthermore, the
uncertainties of the HDS are also neglected in the above
model which will influence the control performance of the
closed-loop system [16]–[18], [34]–[36]. Accordingly, chal-
lenges still remain regarding vibration suppression of the
HDS.

The dead-zone or backlash usually appears in the actuator
of mechanical equipment, the HDS is no exception [13], [23].
These nonlinearities degrade the control performance of
mechanical equipment, and there have been amounts of
control schemes developed to handle them [19]–[25]. For
dead-zone nonlinearity, the control problem of uncertain sys-
tems with actuator dead-zone was investigated [19], and the
effect of dead-zone nonlinearity was eliminated by design-
ing a novel smooth dead-zone inverse. Further, two con-
trol schemes were developed by utilizing the fuzzy control
method, in which both schemes compensate the dead-zone
in the actuator successfully [20], [21]. A neural-network-
based control strategy was presented to cope with actuator
dead-zone for a vibrating string system [22]. For backlash
nonlinearity, an adaptive backlash inverse scheme was devel-
oped for a known linear plant with unknown backlash in
the actuator [23]. Furthermore, two smooth backlash inverses
were employed to cope with unknown backlash for nonlin-
ear systems [24], [25]. However, it is noteworthy that the
above works do not involve actuator saturation, which is also
a common actuator nonlinearity that degrades the control
performance of mechanical equipment [26], [27], [36]–[39].
Accordingly, it is meaningful to study the control scheme
which can cope with actuator dead-zone and saturation or
actuator backlash and saturation simultaneously.

In this paper, two novel control schemes are presented for
the uncertain HDSwith actuator nonlinearities. The contribu-
tions of this paper are summarized as follows.

1) Compared with the traditional model presented
in [12], [13], our extended model considers how the active
control surfaces (elevators) generate the aerodynamic force
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to suppress the vibration of the HDS, which increases the
design difficulty of the controller. The unknown aerodynamic
coefficients of the extended model are estimated by the
parameter projection method, which will improve the control
performance of the closed-loop system.

2) Compared with the traditional control schemes, our
first control scheme will handle the actuator nonlinearities of
dead-zone and saturation simultaneously. Furthermore, it is
noted that the output efficiency of the actuator will decline
if we handle the two aforementioned actuator nonlinearities.
To address it, a novel dead-zone approximate function is
constructed, such that our first control scheme will improve
the output efficiency of the actuator while handling the two
aforementioned actuator nonlinearities simultaneously.

3) Compared with the traditional control schemes, our
second control scheme will handle the actuator nonlinearities
of backlash and saturation simultaneously. It is noteworthy
that the two aforementioned actuator nonlinearities affect
each other, thus the control difficulty here is how to cope
with them simultaneously. To overcome it, a novel smooth
backlash inverse is constructed, based upon which our second
control scheme will resolve this problem properly.

The remainder of this paper is organized as follows: the
extended model of the HDS is established in Section II,
Section III designs the novel dead-zone approximate function
which is the basis of our first control scheme. And then our
two control schemes are developed in Section IV, followed by
illustrative examples in Section V. Conclusions are drawn in
Section VI.

II. PROBLEM FORMULATION
In this paper, we only investigate the vibration of the HDS in
the vertical plane, and its axial motion is ignored, as advo-
cated in [2], [12].

TheHDS is illustrated in Fig. 1. The Earth-fixed coordinate
system is (O0XY ). The air-tanker keeps a level flight with a
constant velocity V0. The HDS is released from the wings of
the air-tanker [1], and (O1ZW ) is the body-fixed coordinate
system attached to the HDS. θ0 is the constant angle between
X axis and Z axis,w(z, t) is the transverse displacement of the
HDS. The elevators mounted on the drogue are the actuator of
the HDS, θ (t) is the elevators’ angle, A(t) is the aerodynamic
force generated by the elevators. Let p(t) = [pX (t), pY (t)]T

be the position vector of (O1ZW ) relative to (O0XY ), r(z, t) =
[rX (z, t), rY (z, t)]T be the position vector of the HDS relative
to (O0XY ), and can be expressed as:

r(z, t) =
[
zcosθ0 + w(z, t)sinθ0 + pX (t)
−zsinθ0 + w(z, t)cosθ0 + pY (t)

]
. (1)

A. TRADITIONAL MODEL
The traditional model of the HDS presented in [12], [13] is
expressed as [30]:

ρẅ(z, t) =
[
P(z)w′(z, t)

]′
+ Q, (2)

Q = fn − ρgcosθ0, (3)

and the boundary conditions of (2) are obtained as:

mẅ(L, t) = −mgcosθ0 − P(L)w′(L, t)

+ fdrogsinθ0 + A(t)+ dL1 (t), (4)

w(0, t) = 0, (5)

where ρ is the linear density of the hose, g is the acceleration
of gravity, m is the mass of the drogue and elevators, L is the
length of the hose, dL1 (t) is the disturbance, P(z) is the tension
of the HDS expressed as [12], [28], [29]:

P(z) = [m+ ρ(L − z)]gsinθ0 + ft + fdrogcosθ0, (6)

ft = Cftρair (V0cosθ0)
2πdh/2, (7)

fdrog = CfdrogρairV
2
0 πd

2
drog/8, (8)

fn = Cfnρair (V0sinθ0)
2dh/2, (9)

ft is the skin friction drag of the hose, fdrog is the drag of
the drogue, fn is the pressure drag of the hose in the normal
direction, Cft , Cfdrog , and Cfn are the corresponding coeffi-
cients, ρair is the air density, dh and ddrog are the diameters
of the hose and drogue, respectively. Furthermore, P(z) in (6)
satisfies the following property.
Lemma 1: For any z ∈ [0,L], there exist constants Pmin,

Pmax , and P′min such that the following inequalities hold:

0 ≤ Pmin ≤ P(z) ≤ Pmax ,

P′min ≤ P′(z) ≤ 0. (10)
Proof: Notice that V0 is a constant parameter, thus

from (6)–(8), we derive that (10) holds. This completes the
proof. �

B. EXTENDED MODEL
We found that the traditional model (2)–(5) regards the aero-
dynamic force A(t) as the input, and neglects how A(t) is
generated. From Fig. 1, it is seen that A(t) is generated by the
elevators, thus we can utilize the linearization approach [31]
to obtain the following equations:

A(t) = Fθθ (t)+ A0 + dL2 (t),

θ (t) = Sat(N(u(t))), (11)

where Fθ > 0 and A0 are the unknown coefficients of the
aerodynamic force A(t), dL2 (t) is the disturbance induced
by linearization, θ (t) is the actuator output (i.e., eleva-
tors’ angle), u(t) is the actuator input (i.e., controller to be
designed), Sat(∗) is the actuator saturation defined as:

Sat(∗) =


θ̄ , ∗ > θ̄

∗, θ ≤ ∗ ≤ θ̄

θ , ∗ < θ

(12)

−θ , θ̄ are positive constants, N is the actuator nonlinearity
which can be dead-zone or backlash, the expression ofN can
be found in the following subsection.

Then substitute (11) into (4), we can derive the extended
model of the HDS as:

ρẅ(z, t) =
[
P(z)w′(z, t)

]′
+ Q,
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ẇ1 = w2,

ẇ2 =
[
− mgcosθ0 − P(L)w′(L, t)+ A0
+fdrogsinθ0 + Fθθ (t)+ dL(t)

]
/m,

θ (t) = Sat(N(u)),

w(0, t) = 0, (13)

where w1 = w(L, t), w2 = ẇ(L, t), dL(t) = dL1 (t) + dL2 (t)
and satisfies the following assumption.
Assumption 1: The disturbance dL(t) in (13) satisfies 0 ≤
|dL(t)| ≤ d̄L , where d̄L is a positive constant.
Remark 1: Compared with the traditional model (2)–(5),

the extendedmodel (13) considers how the aerodynamic force
A(t) is generated, as described by (11). The accompanying
unknown parameters Fθ , A0 and disturbance dL2 (t) increase
the controller design difficulty, which will be handled in
Section IV.

C. ACTUATOR NONLINEARITIES
In this paper, we consider the following two nonlinearities in
the actuator:

1) DEAD-ZONE
The dead-zone nonlinearityN(x) is described as [13]:

N(x) =


γNr (x − aNr ), x ≥ aNr

0, aNl < x < aNr

γNl(x − aNl), x ≤ aNl

(14)

where x is the actuator input, γNr , γNl , aNr , and aNl are the
unknown constant slopes and breakpoints of N(x), respec-
tively. Besides, x(t) is a function of t , here we write only x for
brevity of notation. In the following equation, x(t) is written
as x for the same reason.

2) BACKLASH
The backlash nonlinearityN(x) is described as [24]:

N(x) =


ζ (x − hr ), if ẋ > 0 and N = ζ (x − hr )
ζ (x − hl), if ẋ < 0 and N = ζ (x − hl)
N(t−), otherwise

(15)

where x is the actuator input, ζ is the unknown constant slope
of N(x), hr , hl are the unknown constant parameters, N(t−)
denotes that there is no change inN.

The parameters in the above two actuator nonlinearities
satisfy the following assumption.
Assumption 2: There exist known positive constants γ , γ̄ ,

ār , ζ , ζ̄ , and h̄ as well as known negative constant al such
that γNr , γNl , aNr , aNl , ζ , hr , and hl satisfy

γNr , γNl ∈ [γ , γ̄ ], aNr ∈ [0, ār ], aNl ∈ [al, 0], (16)

ζ ∈ [ζ , ζ̄ ], hr ,−hl ∈ [0, h̄]. (17)
The control objective of this paper is that design controller

u(t) such that the closed-loop system of (13) is stable subject
to the actuator dead-zone (14) and saturation (12) or actuator
backlash (15) and saturation (12). Furthermore, w(z, t) is
uniformly ultimately bounded.

III. DEAD-ZONE APPROXIMATE FUNCTION
To develop the control scheme handling actuator dead-zone
and saturation, a novel dead-zone approximate function and
its properties are presented in this section.

Our control scheme for actuator dead-zone and saturation
requires differentiability of actuator dead-zone (14), which
obviously cannot be satisfied. Thus we need to design a
differentiable function N (x) to approximate actuator dead-
zone (14). The differentiable function N (x) is designed as:

N (x) =



[
γr − (γr − ηγ )e

−
x
¯̂ar
][
x − [ar − (ar

−ηa1ηa2 ¯̂ar )e
−

x
¯̂ar ]tanh(

x

ηa2 ¯̂ar
)
]
, x ≥ 0[

γl − (γl − ηγ )e
−

x
âl
][
x + [al + (−al

+ηa1ηa2âl)e
−

x
âl ]tanh(

−x
ηa2âl

)
]
, x < 0

(18)

where ηγ , ηa1, ηa2 are positive constants, ¯̂ar and âl are
constants satisfying ¯̂ar > ār , âl < al ; γr , γl , ar , al are
unknown parameters denoted as:

γr = γNr , γl = γNl,

ar =

{
aNr , aNr ≥ ar
ar , 0 ≤ aNr < ar

al =

{
āl, āl < aNl ≤ 0
aNl, aNl ≤ āl

(19)

ar , āl are small known constants.
Remark 2: It is noteworthy that the actuator dead-

zone (14) equals a linear function minus a saturation func-
tion, and can be approximated by a linear function minus
a hyperbolic tangent function. Inspired by this property, the
differentiable function (18) is designed to approximate the
dead-zone nonlinearity (14).

The following lemma presents the properties of the differ-
entiable function (18).
Lemma 2: Assume that (16)–(17) hold, then N (x) satis-

fies:
(i) N (x) is differentiable in R.
(ii) There exists a constant δ̄N > 0 such that

|δN(x)| ≤ δ̄N, ∀x ∈ R, (20)

where

δN(x) , N(x)− N (x). (21)
Proof: (i) With the expression of N (x) in (18), it is

apparent N (x) is differentiable in R.
(ii) From (14) and (18), one can rapidly find that (20)

can be ensured if lim
x→∞
|δN(x)| is bounded. Then notice that

lim
x→∞
|δN(x)| ≤ γ̄max{ar ,−āl}, thus (20) holds. This com-

pletes the proof. �
It is noteworthy that (18) is an unknown function, we can-

not utilize it to design our control scheme directly. To address
this problem, let γ̂r (t), γ̂l(t), âr (t), âl(t), γ̂rar (t), and γ̂lal(t)
be the estimates of the unknown parameters γr , γl , ar , al ,
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γrar , and γlal , respectively. Then we can present the follow-
ing piecewise function to estimate N (x):

N̂ (x) =


b1rx − b2r tanh(

x

ηa2 ¯̂ar
), x ≥ 0

b1lx − b2l tanh(
−x
ηa2âl

), x < 0
(22)

where

b1r = γ̂r (1− e
−

x
¯̂ar )+ ηγ e

−
x
¯̂ar ,

b2r = (ηγ âr + ηa1ηa2 ¯̂ar γ̂r )e
−

x
¯̂ar (1− e

−
x
¯̂ar )

+ γ̂rar (1− e
−

x
¯̂ar )2 + ηγ ηa1ηa2 ¯̂are

−
2x
¯̂ar ,

b1l = γ̂l(1− e
−

x
âl )+ ηγ e

−
x
âl ,

b2l = (−ηγ âl − ηa1ηa2âl γ̂l)e
−

x
âl (1− e

−
x
âl )

− γ̂lal(1− e
−

x
âl )2 − ηγ ηa1ηa2âle

−
2x
âl . (23)

It is seen that N̂ is a function of seven arguments: x, γ̂r , γ̂l ,
âr , âl , γ̂rar , and γ̂lal , but we denote it as N̂ (x) for brevity of
notation. Similarly, we omit the independent variable t of γ̂r ,
γ̂l , âr , âl , γ̂rar , and γ̂lal .

To proceed, we define

�= [γ̂ , ¯̂γ ]2 × [0, ¯̂ar ]× [âl, 0]× [0, ¯̂γ ¯̂ar ]× [ ¯̂γ âl, 0], (24)

where ¯̂γ , γ̂ are positive constants satisfying [γ̂ , ¯̂γ ] ⊃ [γ , γ̄ ],
¯̂ar , âl are defined below (18). Then the properties of the novel
dead-zone approximate function (22) can be presented in the
following lemma.
Lemma 3: (i) N̂ (x) is differentiable respect to x in R.

(ii) For any (x, γ̂r , γ̂l, âr , âl, γ̂rar , γ̂lal) ∈ R×�, if positive
constants ¯̂γ , γ̂ , ηγ , ηa1, ηa2 satisfy:

ηa1 < 1, ηγ < γ̂ , (25)

2 ¯̂γ /γ̂ < ηa2(1+ ηa1 − ηγ /γ̂ ), (26)

(1+ ηa2 − 2ηa1ηa2)ηγ /γ̂ < ηa2 − ηa1ηa2, (27)

then we can have

∂N̂ (x)
∂x

> 0.

(iii) Define Ñ (x, γ̃r , γ̃l, ãr , ãl, γ̃rar , γ̃lal) as (for brevity of
notation, we write only Ñ (x) in the remainder of this paper):

Ñ (x) = N (x)− N̂ (x), (28)

then the following equation always holds:

Ñ (x) =
∂Ñ
∂γ̃r

γ̃r +
∂Ñ
∂γ̃l

γ̃l +
∂Ñ
∂ ãr

ãr +
∂Ñ
∂ ãl

ãl

+
∂Ñ
∂γ̃rar

γ̃rar +
∂Ñ
∂γ̃lal

γ̃lal, (29)

where γ̃r (t) = γr−γ̂r (t), γ̃l(t) = γl−γ̂l(t), ãr (t) = ar−âr (t),
ãl(t) = al− âl(t), γ̃rar (t) = γrar − γ̂rar (t), γ̃lal(t) = γlal−
γ̂lal(t).

Proof: (i) Property (i) is apparent.

(ii) Owing to the proofs of x ≥ 0 and x < 0 are similar,
we only discuss the case of x ≥ 0.
From (22), ∂N̂ (x)

∂x can be denoted as

∂N̂ (x)
∂x
= b1r −

b2r
ηa2 ¯̂ar

1
cosh2( x

ηa2 ¯̂ar
)
+ ηa2 ¯̂ar

∂b1r
∂x

x

ηa2 ¯̂ar

−
∂b2r
∂x

tanh(
x

ηa2 ¯̂ar
). (30)

Thus ∂N̂ (x)
∂x > 0 can be ensured by the following inequalities:

ηa2 ¯̂ar
∂b1r
∂x

>
∂b2r
∂x

, (31)

ηa2 ¯̂arb1r
∣∣
x=0 > b2r

∣∣
x=0, (32)

∂b1r
∂x

> 0, b1r
∣∣
x=0 > 0. (33)

According to (23), one has

∂b1r
∂x
=

e
−

x
¯̂ar

¯̂ar
(γ̂r − ηγ ), (34)

b1r
∣∣
x=0 = ηγ , b2r

∣∣
x=0 = ηγ ηa1ηa2

¯̂ar . (35)

Then in view of (γ̂r , γ̂l, âr , âl, γ̂rar , γ̂lal) ∈ � and (24),
we can derive that (32) and (33) are ensured by (25).

Define81 =
¯̂ar

e
−

x
¯̂ar

(ηa2 ¯̂ar
∂b1r
∂x −

∂b2r
∂x ). Then from (23), (31)

can be ensured if the following inequality holds:

81 = 2γ̂rar (e
−

x
¯̂ar − 1)+ ηγ âr (1− 2e

−
x
¯̂ar )

+ ηa1ηa2 ¯̂ar γ̂r (1− 2e
−

x
¯̂ar )+ ηa2 ¯̂ar γ̂r

− ηγ ηa2 ¯̂ar + 2ηγ ηa1ηa2 ¯̂are
−

x
¯̂ar > 0. (36)

In view of (36), one derives

∂81

∂γ̂r
≥ 2ηa1ηa2 ¯̂ar (1− e

−
x
¯̂ar ), (37)

∂81

∂γ̂rar
= 2(e

−
x
¯̂ar − 1), (38)

∂81

∂ âr
= ηγ (1− 2e

−
x
¯̂ar ). (39)

Next, consider the following two cases.
1) 0 ≤ x < −¯̂ar ln(0.5):
From (37)–(39), it is apparent that 81 is monotonous

increase respect to γ̂r , and monotonous decrease respect to
âr and γ̂rar . Then recalling (γ̂r , γ̂l, âr , âl, γ̂rar , γ̂lal) ∈ �
and (24), we can have that (36) holds if the following inequal-
ity holds:

82 = 2
[
¯̂γ /γ̂ − (1− ηa1ηa2)ηγ /γ̂ − ηa1ηa2

]
e
−

x
¯̂ar

− 2 ¯̂γ /γ̂ + (1− ηa2)ηγ /γ̂ + ηa1ηa2
+ ηa2 > 0. (40)

Next, consider the following two subcases.
1.1) ¯̂γ /γ̂ − (1− ηa1ηa2)ηγ /γ̂ − ηa1ηa2 > 0:
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In this subcase, 82 is monotonous decrease respect to x.
Notice that 0 ≤ x < −¯̂ar ln(0.5), so we can deduce that (40)
holds if the following inequality holds:

¯̂γ /γ̂ < ηa2(1− ηγ /γ̂ + ηa1ηγ /γ̂ ), (41)

which can be ensured by (26) and the following inequality

ηa2(1+ ηa1 − ηγ /γ̂ ) ≤ 2ηa2(1− ηγ /γ̂ + ηa1ηγ /γ̂ ). (42)

If ηγ /γ̂ > 0.5, then (25) implies that

ηa2(1− ηγ /γ̂ )+ ηa1ηa2(2ηγ /γ̂ − 1) ≥ 0. (43)

This confirms (42).
If ηγ /γ̂ ≤ 0.5, then in view of (25), it is apparent that

either ηa1 ≤ 0.5 or ηa1 > 0.5, the following inequality

ηa2[1− ηa1 + ηγ /γ̂ (2ηa1 − 1)] ≥ 0 (44)

always holds, which means that (42) always holds.
1.2) ¯̂γ /γ̂ − (1− ηa1ηa2)ηγ /γ̂ − ηa1ηa2 ≤ 0:
In this subcase, 82 is monotonous increase respect to x.

Then notice 0 ≤ x < −¯̂ar ln(0.5), we can have that (40) can
be ensured by (27).

2) x ≥ −¯̂ar ln(0.5):
From (37)–(39), 81 is monotonous increase respect to

γ̂r and âr , and monotonous decrease respect to γ̂rar . Then
recalling (γ̂r , γ̂l, âr , âl, γ̂rar , γ̂lal) ∈ � and (24), we can
derive that (36) holds if the following inequality holds:

82 = 2
[
¯̂γ /γ̂ + ηa1ηa2ηγ /γ̂ − ηa1ηa2

]
e
−

x
¯̂ar

− 2 ¯̂γ /γ̂ − ηa2ηγ /γ̂ + ηa1ηa2 + ηa2 > 0. (45)

If ¯̂γ /γ̂+ηa1ηa2ηγ /γ̂−ηa1ηa2 > 0, then82 is monotonous
decrease respect to x. Notice that x ≥ −¯̂ar ln(0.5), thus (45)
can be ensured by (26).

If ¯̂γ /γ̂+ηa1ηa2ηγ /γ̂−ηa1ηa2 ≤ 0, then82 is monotonous
increase respect to x. Notice that x ≥ −¯̂ar ln(0.5), thus (45)
can be ensured by (41). From the above proof in subcase 1.1),
it has been proven that (41) can be ensured by (25) and (26).

Thus we conclude that ∂N̂ (x)
∂x > 0 if (25)–(27) hold.

(iii) From (18), (22), and (23), we can have (29) readily.
This completes the proof. �
Remark 3: It is seen that (25)–(27) are always feasible

if ηa1 > 0.5 and ηa2 is sufficiently large. Nevertheless, a
excessively large ηa2 may deteriorate the performance of the
closed-loop system. Thus ηa2 should be chosen properly.
Remark 4: Constructing a dead-zone approximate func-

tion which can satisfy the property of ∂N̂ (x)
∂x > 0 is the design

difficulty in this section. Due to the unknown parameters of
the dead-zone nonlinearity, the designed dead-zone approx-
imate function must have time-varying estimate parameters,
which will increase the difficulty proving the aforementioned
property.

IV. CONTROL SCHEMES DESIGN
In Subsection IV.A, the control scheme coping with actu-
ator dead-zone and saturation is developed based upon
the dead-zone approximate function (22). Then the control
scheme handling actuator backlash and saturation is designed
in Subsection IV.B. Besides, the following two lemmas are
useful for our proof.
Lemma 4 [32]: For any constants ε > 0 and η ∈ R, the

following inequality always holds,

0 ≤ |η| − ηtanh(η/ε) ≤ kpε = 0.2785ε, (46)

where tanh(∗) is the hyperbolic tangent function.
Lemma 5 [33]: Given function φ(t), constants φ0, φl , φr

satisfying φl < φr , nonempty set 5 satisfying 5 ⊂ [φl, φr ].
Then the projection operator (47) defined at the bottom of the
next page has the following properties:
(i) φ(t) remains in [φl, φr ], if φ̇(t) = Proj(τ (t), φ(t), φl, φr )
and φ(0) ∈ [φl, φr ],
(ii) −[φ0 − φ(t)] · Proj(τ (t), φ(t), φl, φr ) ≤ −[φ0 − φ(t)] ·
τ (t), ∀φ(t) ∈ [φl, φr ], φ0 ∈ 5.
Lemma 6 [41]: Given function φ(z, t) ∈ R with (z, t) ∈

[0,L] × [0,+∞), and it satisfies φ(0, t) = 0. Then the
following inequality always holds:

φ2 ≤ L
∫ L

0
φ′2 dz.

A. CONTROL SCHEME FOR ACTUATOR DEAD-ZONE AND
SATURATION
The control scheme is developed by utilizing the backstep-
ping method. Thus we introduce the change of coordinate as:

we1 = w1 = w(L, t),

we2 = w2 = ẇ(L, t),

we3 = N̂ (u(v))− α, (48)

where

α = F̂θinv(t)α0, (49)

α0 = mgcosθ0 + P(L)w′(L, t)− fdrogsinθ0 − Â0(t)

−
mβ2L
β1

ẇ′(L, t)− k1(ẇ1 +
β2L
β1

w′(L, t))

− tanh
(β1d̄L(ẇ1 +

β2L
β1
w′(L, t))

δdL

)
d̄L , (50)

β1, β2, k1, and δdL are positive constants, F̂θinv(t) and Â0(t)
are estimates of 1/Fθ and A0, respectively.

1) STEP 1
Consider the following Lyapunov function candidate:

V1 =
β1m
2

(ẇ1 +
β2L
β1

w′(L, t))2. (51)

Then from (13), one has

V̇1 = β1
[
ẇ1 +

β2L
β1

w′(L, t)
][
− mgcosθ0 + A0
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−P(L)w′(L, t)+ fdrogsinθ0 + dL(t)

+
mβ2L
β1

ẇ′(L, t)+ FθSat(N(u))
]
. (52)

To proceed, we choose controller u (i.e., actuator input) as:

u(v) =


θ̄

γ̄
tanh(

γ̄

θ̄
v(t)), v(t) ≥ 0

θ

γ̄
tanh(

γ̄

θ
v(t)), v(t) < 0

(53)

where v(t) will be designed later. Then, we obtain the follow-
ing lemma.
Lemma 7: Consider controller (53), thenN(u) satisfies

Sat(N(u)) = N(u). (54)
Proof: In light of (53), one deduces

θ

γ̄
< u(t) <

θ̄

γ̄
, (55)

then in view of (14) and (16), one has

θ = γ̄
θ

γ̄
< N(u(t)) < γ̄

θ̄

γ̄
= θ̄ , (56)

finally, recalling (12), (56) yields (54). This completes the
proof. �

Now substitute (53) into (52). Then in light of Lemma 7
and (48), we deduce

V̇1 = β1
[
ẇ1 +

β2L
β1

w′(L, t)
][
− mgcosθ0 + A0

−P(L)w′(L, t)+ fdrogsinθ0 + dL(t)

+
mβ2L
β1

ẇ′(L, t)+ Fθ (δN(u)+ Ñ (u)

+we3 + α)
]
, (57)

where we have utilized the following equation based
upon (21) and (28):

N(u) = N̂ (u)+ δN(u)+ Ñ (u). (58)

To proceed, substitute (49)–(50) into (57). Then in view of
Assumption 1 and Lemma 4, we derive

V̇1 ≤ β1
[
ẇ1 +

β2L
β1

w′(L, t)
][
Ã0 + dL(t)

+Fθ (δN(u)+ Ñ (u)+ we3 − F̃θinvα0)

− tanh
(β1d̄L(ẇ1 +

β2L
β1
w′(L, t))

δdL

)
d̄L
]

− k1β1(ẇ1 +
β2L
β1

w′(L, t))2

≤ −k1β1(ẇ1 +
β2L
β1

w′(L, t))2 + kpδdL

+β1
[
ẇ1 +

β2L
β1

w′(L, t)
][
Ã0 + Fθ (δN(u)

+ Ñ (u)+ we3 − F̃θinvα0)
]
, (59)

where F̃θinv (t) = 1/Fθ − F̂θinv (t), Ã0(t) = A0 − Â0(t).

2) STEP 2
Consider the following Lyapunov function candidate:

V2 = V1 +
1
2
w2
e3 +

1
2
F̃2
θ +

1
2
Ã20 +

Fθ
2
(F̃2
θinv
+ γ̃ 2

r

+ γ̃ 2
l + ã

2
r + ã

2
l + γ̃rar

2
+ γ̃lal2), (60)

where F̃θ (t) = Fθ − F̂θ (t), F̂θ (t) is the estimate of Fθ . Then
differentiating V2, and in view of (48), we deduce

V̇2 = V̇1 + we3(
dN̂ (u)
dt
− α̇)− F̃θ

˙̂Fθ − Ã0
˙̂A0

−Fθ
(
F̃θinv
˙̂Fθinv + γ̃r ˙̂γr + γ̃l ˙̂γl + ãr ˙̂ar

+ ãl ˙̂al + γ̃rar ˙̂γrar + γ̃lal ˙̂γlal
)
. (61)

It is noteworthy that N̂ (u) presented in (22) has seven
arguments, thus from (53), we have

dN̂ (u)
dt
=
∂N̂
∂u

du
dv
v̇+

∂N̂
∂γ̂r

˙̂γr +
∂N̂
∂γ̂l

˙̂γl +
∂N̂
∂ âr
˙̂ar

+
∂N̂
∂ âl
˙̂al +

∂N̂
∂γ̂rar

˙̂γrar +
∂N̂
∂γ̂lal

˙̂γlal . (62)

Substituting (62) into (61), we deduce

V̇2 = V̇1 + we3
[∂N̂
∂u

du
dv
v̇+

∂N̂
∂γ̂r

˙̂γr +
∂N̂
∂γ̂l

˙̂γl +
∂N̂
∂ âr
˙̂ar

+
∂N̂
∂ âl
˙̂al +

∂N̂
∂γ̂rar

˙̂γrar +
∂N̂
∂γ̂lal

˙̂γlal − α̇
]

− F̃θ
˙̂Fθ − Ã0

˙̂A0 − Fθ
(
F̃θinv
˙̂Fθinv + γ̃r ˙̂γr + γ̃l ˙̂γl

+ ãr ˙̂ar + ãl ˙̂al + γ̃rar ˙̂γrar + γ̃lal ˙̂γlal
)
. (63)

To proceed, we design v(t) and update laws of γ̂r , γ̂l , âr , âl ,
γ̂rar , γ̂lal , F̂θ , Â0, and F̂θinv as:

v̇(t) =
(∂N̂ (u)
∂u

)−1(τv(t)− kvv(t)), (64)

Proj(τ (t), φ(t), φl, φr )=


[
1− sg(φr )

φ(t)2 − (φ2r − sg(φr )εr )
εr

]
τ (t), φ(t) > sg(φr )

√
φ2r − sg(φr )εr and τ (t) > 0[

1− sg(−φl)
φ(t)2 − (φ2l − sg(−φl)εl)

εl

]
τ (t), φ(t) < −sg(−φl)

√
φ2l − sg(−φl)εl and τ (t) < 0

τ (t), else
(47)

where εr , εl are positive constants satisfying [φl + εl, φr − εr ] = 5; sg(∗) = 1, if ∗ > 0, sg(∗) = −1, if ∗ ≤ 0.
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

˙̂γr = Proj(τγr , γ̂r , γ̂ , ¯̂γ ),
˙̂γl = Proj(τγl , γ̂l, γ̂ , ¯̂γ ),
˙̂ar = Proj(τar , âr , 0, ¯̂ar ),
˙̂al = Proj(τal , âl, âl, 0),
˙̂γrar = Proj(τγrar , γ̂rar , 0, ¯̂γ ¯̂ar ),
˙̂γlal = Proj(τγlal , γ̂lal, ¯̂γ âl, 0),
˙̂Fθ = Proj(τFθ , F̂θ , F̂θ ,

¯̂Fθ ),
˙̂A0 = Proj(τA0 , Â0, Â0,

¯̂A0),
˙̂Fθinv = Proj(τFθinv , F̂θinv , F̂θinv ,

¯̂Fθinv),

(65)

where τv(t) will be designed later, kv > 0 is a constant,

τγr = β1
∂Ñ
∂γ̃r

(ẇ1 +
β2L
β1

w′(L, t))− kγr (γ̂r (t)− γr0),

τγl = β1
∂Ñ
∂γ̃l

(ẇ1 +
β2L
β1

w′(L, t))− kγl (γ̂l(t)− γl0),

τar = β1
∂Ñ
∂ ãr

(ẇ1 +
β2L
β1

w′(L, t))− kar (âr (t)− ar0),

τal = β1
∂Ñ
∂ ãl

(ẇ1 +
β2L
β1

w′(L, t))− kal (âl(t)− al0),

τγrar = β1
∂Ñ
∂γ̃rar

(ẇ1 +
β2L
β1

w′(L, t))− kγrar (γ̂rar (t)

− γrar0),

τγlal = β1
∂Ñ
∂γ̃lal

(ẇ1 +
β2L
β1

w′(L, t))− kγlal (γ̂lal(t)

− γlal0),

τFθ = β1(ẇ1 +
β2L
β1

w′(L, t))we3 − kFθ (F̂θ (t)− Fθ0),

τA0 = β1(ẇ1 +
β2L
β1

w′(L, t))− kA0 (Â0(t)− A1),

τFθinv = −β1(ẇ1 +
β2L
β1

w′(L, t))α0 − kFθinv (F̂θinv (t)

−Fθinv0),

F̂θ and ¯̂Fθ are positive constants satisfying (F̂θ ,
¯̂Fθ ) 3 Fθ ;

F̂θinv ,
¯̂Fθinv , Â0, and

¯̂A0 are constants satisfying (F̂θinv ,
¯̂Fθinv ) 3

1/Fθ , (Â0,
¯̂A0) 3 A0; kγr , kγl , kar , kal , kγrar , kγlal , kFθ , kA0 ,

kFθinv , Fθ0, and Fθinv0 are positive constants, γr0, γl0, ar0, al0,
γrar0, γlal0, and A1 are constants. Then we can have the
following lemma.
Lemma 8: Consider controller (64) and update laws (65).

If (25)–(27) and the following initial conditions

(γ̂r (0), γ̂l(0), âr (0), âl(0), γ̂rar (0), γ̂lal(0)) ∈ �. (66){
F̂θ (0) ∈ [F̂θ ,

¯̂Fθ ], Â0(0) ∈ [Â0,
¯̂A0],

F̂θinv (0) ∈ [F̂θinv ,
¯̂Fθinv],

(67)

hold, then we can have that
(i) Controller (64) exists for all t ≥ 0.
(ii) The estimate parameters satisfy

−F̃θ
˙̂Fθ − Ã0

˙̂A0 − Fθ
(
F̃θinv
˙̂Fθinv + γ̃r ˙̂γr

+ γ̃l ˙̂γl + ãr ˙̂ar + ãl ˙̂al + γ̃rar ˙̂γrar + γ̃lal ˙̂γlal
)

≤ −β1
[
ẇ1 +

β2L
β1

w′(L, t)
][
Ã0 + Fθ (Ñ (u)

− F̃θinvα0)+ we3F̃θ
]
+ c0, (68)

where

c0 = kFθ F̃θ (F̂θ − Fθ0)+ kA0 Ã0(Â0 − A1)

+Fθ
[
kFθinv F̃θinv (F̂θinv − Fθinv0)

+ kγr γ̃r (γ̂r − γr0)+ kγl γ̃l(γ̂l − γl0)

+ kar ãr (âr − ar0)+ kal ãl(âl − al0)

+ kγrar γ̃rar (γ̂rar − γrar0)

+ kγlal γ̃lal(γ̂lal − γlal0)
]
. (69)

Proof: See APPENDIX A. �
Now substitute (64)–(65) into (63). And in view of

Lemma 8 and (59), we can have

V̇2 ≤ −k1β1(ẇ1 +
β2L
β1

w′(L, t))2 + kpδdL + β1
[
ẇ1

+
β2L
β1

w′(L, t)
]
Fθ (δN(u)+ we3)+ we3

[du
dv

(τv(t)

− kvv(t))+
∂N̂
∂γ̂r

˙̂γr +
∂N̂
∂γ̂l

˙̂γl +
∂N̂
∂ âr
˙̂ar +

∂N̂
∂ âl
˙̂al

+
∂N̂
∂γ̂rar

˙̂γrar +
∂N̂
∂γ̂lal

˙̂γlal − α̇
]
− β1

[
ẇ1

+
β2L
β1

w′(L, t)
]
we3F̃θ + c0. (70)

Then we design τv(t) as

τv = U (χ )τv0, (71)

where U (χ ) is a Nussbaum function presented in [34], and
can be expressed as

U (χ ) = χ2cos(χ ), χ̇ = kχwe3τv0, (72)

τv0 = −β1(ẇ1 +
β2L
β1

w′(L, t))F̂θ − k2we3 + α̇

+ kv
du
dv
v−

∂N̂
∂γ̂r

˙̂γr −
∂N̂
∂γ̂l

˙̂γl −
∂N̂
∂ âr
˙̂ar

−
∂N̂
∂ âl
˙̂al −

∂N̂
∂γ̂rar

˙̂γrar −
∂N̂
∂γ̂lal

˙̂γlal, (73)

kχ > 0 and k2 > 0 are constants.
Now substituting (71) into (70), we deduce

V̇2 ≤ −k1β1(ẇ1 +
β2L
β1

w′(L, t))2 + kpδdL + β1
[
ẇ1

+
β2L
β1

w′(L, t)
]
FθδN(u)+

χ̇

kχ
(
du
dv
U (χ )− 1)

− k2w2
e3 + c0. (74)

Then we obtain the following result.
Theorem 1: Consider the uncertain HDS (13) satisfying

Assumptions 1 and 2, with controllers (49)–(50), (53), (64),
(71)–(73), and parameter update laws (65). Then if (25)–(27)
and (66)–(67) hold, the closed-loop system of (13) is stable
subject to the actuator dead-zone (14) and saturation (12).
Furthermore, w(z, t) is uniformly ultimately bounded.
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Proof: See APPENDIX B. �
Remark 5: The control scheme presented in this subsec-

tion can be summarized as follows: 1) For actuator dead-
zone: N(u) is firstly approximated and estimated by N̂ (u),
then N̂ (u) is transformed to dN̂ (u)

dt by the change of variables,

in the end, dN̂ (u)
dt is compensated by controllers (64) and (73).

2) For actuator saturation: Sat(N(u)) is firstly transformed
to N(u) by adopting controller (53), then the hyperbolic
tangent functions existed in controller (53) are handled by
controllers (71)–(73). 3) For unknown parameters and distur-
bance dL(t): They are resolved by parameter update laws (65)
and controller (50), respectively.
Remark 6: Compared with the Lyapunov functions in ordi-

nary differential equation (ODE) systems, the ones in PDE
systems do not need to include all states. For our system,
the Lyapunov function (103) does not comprise w(z, t), but
we can still obtain the stability of the closed-loop system by
invoking Lemma 6, as discussed in APPENDIX B.

B. CONTROL SCHEME FOR ACTUATOR BACKLASH AND
SATURATION
In this subsection, N(u) indicates the actuator backlash
expressed in (15), and u(t) is the corresponding controller that
will be designed later. Besides, we denote ζ̂ , ζ̂hr , ζ̂hl as the
estimates of the unknown backlash parameters ζ , ζhr , ζhl ,
respectively, and define a set �re as:

�re = [ζ̂ , ¯̂ζ ]× [ζ̂hr ,
¯̂
ζ h̄]× [−¯̂ζ h̄, ¯̂ζhl], (75)

where ζ̂hr < 0, ¯̂ζhl > 0 are constants with sufficiently small

magnitudes, ¯̂ζ , ζ̂ are positive constants which satisfy [ζ̂ , ¯̂ζ ] ⊃
[ζ , ζ̄ ] and the following assumption.
Assumption 3: The following inequality always holds:

ζ̄
¯̂
ζ h̄

ζ̂
< min{θ̄ ,−θ}. (76)

Now we can develop the control scheme for actuator back-
lash and saturation. It is also developed by using the backstep-
ping method. Thus we introduce the change of coordinate as:

we1re = w1 = w(L, t),

we2re = w2 = ẇ(L, t),

we3re = u1 − α, (77)

where u1 will be designed later, α is defined in (49).

1) STEP 1
Consider the Lyapunov function defined in (51), then
from (52), we have

V̇1 = β1
[
ẇ1 +

β2L
β1

w′(L, t)
][
− mgcosθ0 + A0

−P(L)w′(L, t)+ fdrogsinθ0 + dL(t)

+
mβ2L
β1

ẇ′(L, t)+ FθSat(N(u))
]
. (78)

To proceed, we design controller u (i.e., actuator input) as:

u =
1

ζ̂
[u1 + ζ̂hru2 − ζ̂hlu3], (79)

where

u1=



ζ̂ (θ̄ −
ζ̄
¯̂
ζ h̄

ζ̂
)tanh

(
ζ̄vre(t)

ζ̂ (θ̄ −
ζ̄
¯̂
ζ h̄

ζ̂
)

)
/ζ̄ , vre(t)≥0

ζ̂ (−θ −
ζ̄
¯̂
ζ h̄

ζ̂
)tanh

(
ζ̄vre(t)

ζ̂ (−θ −
ζ̄
¯̂
ζ h̄

ζ̂
)

)
/ζ̄ , vre(t)<0

(80)

u2=


1, v̇re(t) ≥

1
ku

1
2
sin(

π

2
kuv̇re(t))+

1
2
, −

1
ku
≤ v̇re(t) <

1
ku

0, v̇re(t)<− 1
ku

(81)

u3 = u2 − 1, (82)

vre(t) will be designed later, ku is a positive constant. Then
we can have the following lemma.
Lemma 9: Consider controller (79). Then if ζ̂ , ζ̂hr , and

ζ̂hl satisfy the following condition:

(ζ̂ , ζ̂hr , ζ̂hl) ∈ �re, (83)

the following properties always hold:
(i) N(u) satisfies

Sat(N(u)) = N(u). (84)

(ii) Define δNre (u) as

δNre(u) = N(u)− u1 − ζ̃u+ ζ̃hru2 − ζ̃hlu3, (85)

where ζ̃ (t) = ζ − ζ̂ (t), ζ̃hr (t) = ζhr − ζ̂hr (t), ζ̃hl(t) =
ζhl − ζ̂hl(t). Then we have

|δNre(u)| ≤ δ̄Nre, (86)

where δ̄Nre is a positive constant.
Proof: See APPENDIX C. �

Now we suppose that (83) holds (this will be proved in
Lemma (10)). Then substituting (79) into (78), and in view
of Lemma (9) and (77), we have

V̇1 = β1
[
ẇ1 +

β2L
β1

w′(L, t)
][
− mgcosθ0 + A0

−P(L)w′(L, t)+ fdrogsinθ0 + dL(t)

+
mβ2L
β1

ẇ′(L, t)+ Fθ (δNre(u)+ ζ̃u

− ζ̃hru2 + ζ̃hlu3 + we3re + α)
]
. (87)

To proceed, using the similar procedures presented in Sub-
section IV.A.1, we deduce

V̇1 ≤ −k1β1(ẇ1 +
β2L
β1

w′(L, t))2 + kpδdL
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+β1
[
ẇ1 +

β2L
β1

w′(L, t)
][
Ã0 + Fθ (δNre (u)

+ ζ̃u− ζ̃hru2 + ζ̃hlu3 + we3re − F̃θinvα0)
]
. (88)

2) STEP 2
Consider the following Lyapunov function
candidate:

V2re = V1 +
1
2
w2
e3re +

1
2
F̃2
θ +

1
2
Ã20 +

Fθ
2
(F̃2
θinv

+ ζ̃ 2 + ζ̃hr
2
+ ζ̃hl

2), (89)

then differentiating V2re, and in view of (77) and (80), we
deduce

V̇2re = V̇1 − F̃θ
˙̂Fθ − Ã0

˙̂A0 − Fθ
(
F̃θinv
˙̂Fθinv + ζ̃

˙̂
ζ

+ ζ̃hr ˙̂ζhr + ζ̃hl ˙̂ζhl
)
+ we3re(

du1
dvre

v̇re − α̇). (90)

To proceed, we design vre as:

v̇re(t) = τvre (t)− kvvre(t), (91)

τvre = U (χ )τv0re, (92)

τv0re = −β1(ẇ1 +
β2L
β1

w′(L, t))F̂θ − k2we3re + α̇

+ kv
du1
dvre

vre, (93)

and design update laws of ζ̂ , ζ̂hr , ζ̂hl , F̂θ , Â0, and F̂θinv
as: 

˙̂
ζ = Proj(τζ , ζ̂ , ζ̂ ,

¯̂
ζ ),

˙̂ζhr = Proj(τζhr , ζ̂hr , ζ̂hr ,
¯̂
ζ h̄),

˙̂ζhl = Proj(τζhl , ζ̂hl,−
¯̂
ζ h̄, ¯̂ζhl),

˙̂Fθ = Proj(τFθ , F̂θ , F̂θ ,
¯̂Fθ ),

˙̂A0 = Proj(τA0 , Â0, Â0,
¯̂A0)

˙̂Fθinv = Proj(τFθinv , F̂θinv , F̂θinv ,
¯̂Fθinv),

(94)

where

U (χ ) = χ2cos(χ ), χ̇ = kχwe3reτv0re,

τζ = β1(ẇ1 +
β2L
β1

w′(L, t))u− kζ (ζ̂ (t)− ζ0),

τζhr = −β1(ẇ1 +
β2L
β1

w′(L, t))u2 − kζhr (ζ̂hr (t)− ζhr0),

τζhl = β1(ẇ1 +
β2L
β1

w′(L, t))u3 − kζhl (ζ̂hl(t)− ζhl0),

τFθ , τA0 , and τFθinv can be found below (65), kζ > 0, kζhr > 0,
kζhl > 0, ζ0, ζhr0, and ζhl0 are constants. Then we can have
the following lemma.
Lemma 10: Consider controllers (91)–(93) and update

laws (94). If (67) and the following initial condition

(ζ̂ (0), ζ̂hr (0), ζ̂hl(0)) ∈ �re (95)

hold, then we can have that
(i) Condition (83) always holds.

(ii) The estimate parameters satisfy

−F̃θ
˙̂Fθ − Ã0

˙̂A0 − Fθ
(
F̃θinv
˙̂Fθinv + ζ̃

˙̂
ζ

+ ζ̃hr ˙̂ζhr + ζ̃hl ˙̂ζhl
)

≤ −β1
[
ẇ1 +

β2L
β1

w′(L, t)
][
Ã0 + Fθ (ζ̃u− ζ̃hru2

+ ζ̃hlu3 − F̃θinvα0)+ we3reF̃θ
]
+ c0re, (96)

where

c0re = kFθ F̃θ (F̂θ − Fθ0)+ kA0 Ã0(Â0 − A1)

+Fθ
[
kFθinv F̃θinv (F̂θinv − Fθinv0)

+ kζ ζ̃ (ζ̂ − ζ0)+ kζhr ζ̃hr (ζ̂hr − ζhr0)

+ kζhl ζ̃hl(ζ̂hl − ζhl0)
]
. (97)

Proof: (i) Lemma 5(i) and (94)–(95) imply that (83)
holds.
(ii) The proof is omitted because it is similar to one of
Lemma 8(ii). This completes the proof. �

Now substitute (91)–(94) into (90). And in view of
Lemma 10 and (88), we can utilize the similar procedures
presented in Subsection IV.A.2 to obtain

V̇2re ≤ −k1β1(ẇ1 +
β2L
β1

w′(L, t))2 + kpδdL + β1
[
ẇ1

+
β2L
β1

w′(L, t)
]
FθδNre (u)+

χ̇

kχ
(
du1
dvre

U (χ )− 1)

− k2w2
e3re + c0re. (98)

Then we can obtain the following result.
Theorem 2: Under Assumptions 1–3, consider the uncer-

tain HDS (13) subject to the actuator backlash (15)
and saturation (12), with controllers (49)–(50), (79)–(82),
(91)–(93), and parameter update laws (94). Then if (67)
and (95) hold, the closed-loop system of (13) is stable. Fur-
thermore, w(z, t) is uniformly ultimately bounded.

Proof: The proof is omitted because it is similar to one
of Theorem 1. This completes the proof. �
Remark 7: It is noteworthy that actuator backlash and

saturation affect each other, for instance, the anti-windup
control cannot be adopted here because actuator backlash is
unknown. Thus the control difficulty in this subsection is how
to handle actuator backlash and saturation simultaneously.
In our control scheme, actuator backlashN(u) is firstly com-
pensated by constructing the smooth backlash inverse (79),
and then actuator saturation Sat(N(u)) is also handled by
adopting controllers (80) and (91)–(93), the unknown param-
eters and disturbance dL(t) are finally resolved by parameter
update laws (94) and controller (50), respectively.
Remark 8: In the end of Introduction, we claim that the

control scheme presented in Subsection IV.A can handle the
actuator nonlinearities of dead-zone and saturation simulta-
neously while improving the output efficiency of the actuator,
here is the explanation. Without the dead-zone approximate
function (22), we can utilize the similar idea in Subsection
IV.B to develop the proposed control scheme (for narrative
convenience, here we assume γNr = γNl = ζ , aNr = hr ,
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aNl = hl). In this way, we can use controller (79) to handle
the actuator nonlinearities (here (79) needs to be revised
slightly, the independent variable of u2 and u3 needs to be
turned into u1). Then, when |ζ̂hr | and |ζ̂hl | are small, the
maximum magnitude of controller (79) is close to (−θ −
ζ̄
¯̂
ζ h̄/ζ̂ )/ζ̄ or (θ̄ − ζ̄ ¯̂ζ h̄/ζ̂ )/ζ̄ . As a contrast, the maximum
magnitude of controller (53) is close to −θ/ζ̄ or θ̄/ζ̄ , which
is larger than the one of (79). Therefore, it is seen that the
output efficiency of the actuator is improved by the control
scheme presented in Subsection IV.A.
Remark 9: Based upon the computing approach presented

in [40], all the variables utilized in our control schemes can
be obtained by measuring or computing. It is noteworthy
that the measuring or computing errors of these variables
are ineluctable, which influences the performance of the
closed-loop system.

V. SIMULATION
In this section, two illustrative examples are presented to
demonstrate the effectiveness of our control schemes devel-
oped in Section IV. The two examples are defined as:

Case I : uncertain HDS (13) subject to actuator

dead-zone (14) and saturation (12),

Case II : uncertain HDS (13) subject to actuator

backlash (15) and saturation (12).

And they are simulated by utilizing the finite difference
method [42].

The system parameters are given in Table 1 [12], [29].
The parameters of the unknown aerodynamic coefficients are
Fθ = 41.6, A0 = 0.1, F̂θ = 38.6, ¯̂Fθ = 44.6, F̂θinv = −1,
¯̂Fθinv = 1, Â0 = −1,

¯̂A0 = 1. The parameters of the
actuator dead-zone are γNr = 0.85, γNl = 0.9, aNr = 0.2,
aNl = −0.15, γ̄ = 1, γ = 0.7, ār = −al = 0.2,
ar = −āl = 0.01, ¯̂γ = 1.1, γ̂ = 0.6, ¯̂ar = −âl = 0.25,
ηγ = 0.4, ηa1 = 0.8, ηa2 = 60/17. It is apparent that the
above parameters satisfy (16) and (25)–(27). The parameters
of the actuator backlash are ζ = 0.85, hr = 0.1, hl = −0.09,
ζ̄ = 1, ζ = 0.8, h̄ = 0.1, ¯̂ζ = 1.1, ζ̂ = 0.7, ζ̂hr =

−0.01, ¯̂ζhl = 0.01. The parameters of actuator saturation
are: θ = −0.43, θ̄ = 0.45. It is apparent that the above
parameters satisfy (17) and (76). The disturbance is given as
dL(t) = −0.1sin(t).
Case I is discussed firstly. In this case, we choose the

control gains as: β1 = 0.995, β2 = 0.071, k1 = 289.350,
k2 = 0.1, kv = 0.001, kχ = 10−5, kFθ = kA0 = kFθinv =
kγr = kγl = kar = kal = kγrar = kγlal = 1, d̄L = δdL = 0.1.
And we choose the initial conditions as: w(z, 0) = −z/L,
ẇ(z, 0) = 0, F̂θ (0) = 41.1, F̂θinv (0) = 0.1, Â0(0) = 0,
γ̂r (0) = γ̂l(0) = 1, âr (0) = âl(0) = γ̂rar (0) = γ̂lal(0) = 0.

The simulation results are shown in Figs. 2–7. Fig. 2
displays the transverse displacement of the HDSwithout con-
troller. It is seen that owing to the disturbance, the vibration

TABLE 1. System parameters.

FIGURE 2. Transverse displacement of the HDS without controller.

FIGURE 3. Case I: transverse displacement of the HDS with the proposed
control scheme.

of the HDS is large, which may lead to docking failure in the
aerial refueling process.

The control performance of the HDS with our proposed
control scheme is shown in Figs. 3 and 6–7. We can see
that the vibration of the HDS is suppressed to a small neigh-
borhood of the desired position in the presence of unknown
aerodynamic coefficients as well as non-symmetrical actuator
dead-zone and saturation.

Compared with the proposed control scheme, most previ-
ous works only consider one of the two actuator nonlinear-
ities: dead-zone or saturation (for instance, [12], [13], [19],
[20]), and that may degrade the control performance of the
closed-loop system, as shown in Figs. 4–6.
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FIGURE 4. Case I: transverse displacement of the HDS with the control
scheme neglecting saturation [13].

FIGURE 5. Case I: transverse displacement of the HDS with the control
scheme neglecting dead-zone [12].

FIGURE 6. Case I: end point deflection of the HDS.

FIGURE 7. Case I: applied input of the HDS.

Nowwe discuss Case II. In this case, we choose the control
gains as: β1 = 0.995, β2 = 0.071, k1 = 289.350, k2 = 0.1,
kv = 1, kχ = 10−5, ku = 50, kFθ = kA0 = kFθinv = kζ =

FIGURE 8. Case II: transverse displacement of the HDS with the proposed
control scheme.

FIGURE 9. Case II: transverse displacement of the HDS with the control
scheme neglecting saturation [24].

FIGURE 10. Case II: transverse displacement of the HDS with the control
scheme neglecting backlash [12].

FIGURE 11. Case II: end point deflection of the HDS.

kζhr = kζhl = 1, d̄L = δdL = 0.1. And we choose the initial
conditions as: w(z, 0) = −z/L, ẇ(z, 0) = 0, F̂θ (0) = 41.1,
F̂θinv(0) = 0.1, Â0(0) = 0, ζ̂ (0) = 1, ζ̂hr (0) = ζ̂hl(0) = 0.
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FIGURE 12. Case II: applied input of the HDS.

The simulation results of Case II are shown in
Figs. 8–12. Figs. 8 and 11–12 display the transverse displace-
ment and applied input of the HDS with our proposed control
scheme, respectively. It is seen that the vibration of the HDS
is suppressed to a small neighborhood of the desired position
in the presence of unknown aerodynamic coefficients as well
as actuator backlash and saturation.

Compared to the proposed control scheme, most tra-
ditional control schemes usually neglect one of the two
actuator nonlinearities: backlash or saturation (for instance,
[12], [23]–[25]). The corresponding results can be found in
Figs. 9–11. Evidently, when we overlook backlash or satura-
tion, the vibration of the HDS becomes larger, which means
that the control performance of the HDS is degraded.

Therefore, the above simulation results demonstrate that
our proposed control schemes are valid for our control
problem.

VI. CONCLUSION
This paper investigated vibration control of the uncertain
HDS in the presence of actuator nonlinearities. Based upon
the linearization approach, a traditional model of the HDS has
been extended, to depict how the HDS generate the control
force to restrain the vibration of the HDS, while the unknown
aerodynamic coefficients of the model have been estimated
by invoking the parameter projection method. Subsequently,
for actuator dead-zone and saturation, a smooth dead-zone
approximate function has been constructed to design the
dead-zone compensation method, based upon which the pro-
posed control scheme can handle actuator dead-zone and sat-
uration simultaneously while improving the output efficiency
of the actuator. Next, for actuator backlash and saturation,
a smooth backlash inverse has been constructed, based upon
which the presented control scheme can cope with the both
actuator nonlinearities at the same time. Finally, the proposed
control schemes have also achieved the control objectives of
vibration suppression and external disturbance attenuation.
Additionally, since the excessive slack of the HDSmay cause
the damage of the equipment, our future work will focus on
the tension control of the HDS.

APPENDIX A
Proof: (i) Lemma 5(i) and (65)–(66) imply

(γ̂r , γ̂l, âr , âl, γ̂rar , γ̂lal) ∈ �. (99)

Then in light of Lemma 3(ii), and noticing that (25)–(27)
hold, we deduce

∂N̂ (u)
∂u

> 0, (100)

which guarantees the existence of controller (64).
(ii) Lemma 5(i), (65), and (67) imply{

F̂θ ∈ [F̂θ ,
¯̂Fθ ], Â0 ∈ [Â0,

¯̂A0],

F̂θinv ∈ [F̂θinv ,
¯̂Fθinv ].

(101)

Then in light of Lemma 5(ii), (65), (99), (101), and τγr ,
τγl , τar , τal , τγrar , τγlal , τFθ , τA0 , τFθinv which are defined
below (65), we deduce

−F̃θ
˙̂Fθ − Ã0

˙̂A0 − Fθ
(
F̃θinv
˙̂Fθinv + γ̃r ˙̂γr + γ̃l ˙̂γl

+ ãr ˙̂ar + ãl ˙̂al + γ̃rar ˙̂γrar + γ̃lal ˙̂γlal
)

≤ −β1
[
ẇ1 +

β2L
β1

w′(L, t)
][
Ã0 + Fθ (

∂Ñ
∂γ̃r

γ̃r +
∂Ñ
∂γ̃l

γ̃l

+
∂Ñ
∂ ãr

ãr +
∂Ñ
∂ ãl

ãl +
∂Ñ
∂γ̃rar

γ̃rar +
∂Ñ
∂γ̃lal

γ̃lal

− F̃θinvα0)+ we3F̃θ
]
+ c0. (102)

Finally, recalling (29), we can have (68). This completes the
proof. �

APPENDIX B
Proof: Consider the following Lyapunov function

candidate:

V3 = V2 +
β1

2

∫ L

0
ρẇ2(z, t)+ P(z)w′2(z, t) dz

+β2

∫ L

0
ρzẇ(z, t)w′(z, t) dz, (103)

where β1 and β2 satisfy the following inequality:

c1 , max{
β2L
β1

,
β2Lρ
β1Pmin

} < 1. (104)

It is proven in [12] that V3 − V2 is positive definite if (104)
holds, thus V3 is a proper Lyapunov function candidate.

Utilizing (13) and integration by parts, we can derive the
derivative of V3 as:

V̇3 ≤ V̇2 +
∫ L

0
β1ρẇ(z, t)ẅ(z, t)+ β1P(z)w′(z, t)ẇ′(z, t) dz

+β2ρ

∫ L

0
zẅ(z, t)w′(z, t)+ zẇ(z, t)ẇ′(z, t) dz

≤ V̇2 +
∫ L

0
β1ẇ(z, t)[(P(z)w′(z, t))′ + Q] dz

+β1P(L)ẇ1w′(L, t)

−

∫ L

0
β1[P(z)w′(z, t)]′ẇ(z, t) dz

+

∫ L

0
β2zw′(z, t)[(P(z)w′(z, t))′ + Q] dz
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+
β2

2
ρLẇ2

1 −
1
2

∫ L

0
β2ρẇ2(z, t) dz

≤ V̇2 +
∫ L

0
β1ẇ(z, t)Q dz

+

∫ L

0

β2

2
zP′(z)w′2(z, t)+ β2zw′(z, t)Q

−
β2ρ

2
ẇ2(z, t)−

β2

2
P(z)w′2(z, t) dz

+
β2L
2
P(L)w′2(L, t)+

β2ρL
2

ẇ2
1

+β1P(L)ẇ1w′(L, t)

≤ V̇2 −
1
2

∫ L

0
β2ρẇ2(z, t) dz−

1
2

∫ L

0

[
β2P(z)

−β2zP′(z)
]
w′2(z, t) dz

+

∫ L

0

[
β1ẇ(z, t)+ β2zw′(z, t)

]
Q dz

+
β21P(L)

2β2L
(ẇ1 +

β2L
β1

w′(L, t))2

−
1
2
(
β21P(L)

β2L
− β2ρL)ẇ2

1. (105)

To proceed, we employ Young’s inequality to obtain the
following inequalities:∫ L

0

[
β1ẇ(z, t)+ β2zw′(z, t)

]
Q dz ≤

∫ L

0
(
β1

2ε1

+
β2L
2ε2

)Q2
+
β1ε1

2
ẇ2(z, t)+

β2Lε2
2

w′2(z, t) dz, (106)

β1(ẇ1 +
β2L
β1

w′(L, t))FθδN(u)

≤
ε3

2
β21 (ẇ1 +

β2L
β1

w′(L, t))2 +
1
2ε3

F2
θ δ̄

2
N, (107)

F̃θ (F̂θ − Fθ0) ≤ −
1
2
F̃2
θ +

1
2
(Fθ − Fθ0)2, (108)∣∣∣∣∫ L

0
β2ρzẇ(z, t)w′(z, t) dz

∣∣∣∣
≤
β2Lρ
2

∫ L

0
ẇ2(z, t) dz+

β2Lρ
2

∫ L

0
w′2(z, t) dz, (109)

where ε1, ε2, ε3 are positive constants, and note that (108)
still holds if we replace Fθ with Fθinv , A0, γr , γl , ar , al , γrar ,
or γlal .
Then in view of (10), (74), and (105)–(108), we derive

V̇3 ≤ −
c2
2

∫ L

0
ẇ2(z, t) dz−

c3
2

∫ L

0
w′2(z, t) dz

−β1c4(ẇ1 +
β2L
β1

w′(L, t))2 − c5ẇ2
1 − k2w

2
e3

−
kFθ
2
F̃2
θ −

kA0
2
Ã20 − Fθ (

kγr
2
γ̃ 2
r +

kγl
2
γ̃ 2
l

+
kar
2
ã2r +

kal
2
ã2l +

kγrar
2
γ̃rar 2 +

kγlal
2
γ̃lal2

+
kFθinv
2

F̃2
θinv

)+ c+
1
kχ

(
du
dv
U (χ )− 1)χ̇ , (110)

where

c2 = β2ρ − β1ε1,

c3 = β2Pmin − β2Lε2,

c4 = k1 −
β1P(L)
2β2L

−
ε3

2
β1,

c5 =
β21P(L)

2β2L
−
β2ρL
2

,

c = (
β1

2ε1
+
β2L
2ε2

)LQ2
+

F2
θ

2ε3
δ̄2N +

kFθ
2

(Fθ − Fθ0)2

+
kA0
2

(A0 − A1)2 +
Fθ
2
[kFθinv (1/Fθ − Fθinv0)

2

+ kγr (γr − γr0)
2
+ kγl (γl − γl0)

2
+ kar (ar − ar0)

2

+ kal (al − al0)
2
+ kγrar (γrar − γrar0)

2

+ kγlal (γlal − γlal0)
2]+ kpδdL > 0.

Now choose appropriate constants β1, β2, k1, ε1, ε2, ε3
to ensure that (104) is feasible and c2, c3, c4, c5 are posi-
tive. Evidently, the appropriate constants always exist. Then
from (110) and the following inequality based upon (109):

|β2

∫ L

0
ρzẇ(z, t)w′(z, t) dz|

≤ c1
β1

2

∫ L

0
ρẇ2(z, t)+ P(z)w′2(z, t) dz,

we can derive that

V̇3 ≤ −cminV3 + c+
1
kχ

(
du
dv
U (χ )− 1)χ̇ , (111)

where cmin = min{ c6
c1+1

, 2c4m , 2k2, kFθ , kA0 , kFθinv , kγr ,
kγl ,kar , kal , kγrar , kγlal } > 0, c1 is defined in (104), c6 =
min{ c2

β1ρ
,

c3
β1Pmax

}.
In view of (111), we derive

V3(t) ≤
(
V3(0)−

c
cmin

)
e−cmint + cU , (112)

where cU = c
cmin
+

1
kχ

∫ t
0 (

du
dvU (χ ) − 1)χ̇e−cmin(t−s) ds. Then

from (112) and the Theorem 1 presented in [34], we deduce
that V3(t) is bounded.

Next, in light of Lemma 6, (10), (103), and the inequality
above (111), one can derive:

β1Pmin
2L

w2(z, t) ≤
β1

2

∫ L

0
P(z)w′2(z, t) dz ≤

V3
1− c1

,

and from (112), one has:

|w(z, t)| ≤

√
2L

β1Pmin(1− c1)

[(
V3(0)−

c
cmin

)
e−cmint + cU

]
.

With the above inequality and the boundedness of V3(t),
we can rapidly deduce that the closed-loop system of (13)
is stable subject to the actuator dead-zone (14) and satura-
tion (12).

Besides, the above inequality further indicates:

lim
t→∞
|w(z, t)| ≤

√
2LcU

β1Pmin(1− c1)
.
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Therefore, we can obtain that w(z, t) is uniformly ultimately
bounded. This completes the proof. �

APPENDIX C
Proof: (i) In view of (75), (81)–(83), and noticing that

the magnitudes of ζ̂hr and ¯̂ζhl are sufficiently small, we can
have

|ζ̂hru2 − ζ̂hlu3| ≤
¯̂
ζ h̄. (113)

Then from (76) and (80), we deduce

−ζ̂ (−θ −
ζ̄
¯̂
ζ h̄

ζ̂
)/ζ̄ < u1 < ζ̂ (θ̄ −

ζ̄
¯̂
ζ h̄

ζ̂
)/ζ̄ . (114)

Next, in light of (75), (79), (83), and (113)–(114), we obtain

θ

ζ̄
< u <

θ̄

ζ̄
. (115)

Finally, from (15), we derive

θ < N(u) < θ̄, (116)

which guarantees (84).
(ii) It is presented in [24] thatN(u) satisfies

N(u) = σ1(t)ζ (u(t)− hr )+ σ2(t)ζ (u(t)− hl)

+ σ3(t)N0, (117)

where

σ1 =

{
1, Ṅ > 0
0, Ṅ ≤ 0

(118)

σ2 =

{
1, Ṅ < 0
0, Ṅ ≥ 0

(119)

σ3 = 1− σ1 − σ2, (120)

N0 is a variable which is invariant and satisfies

N0/ζ + hl ≤ u(t) ≤ N0/ζ + hr (121)

when Ṅ = 0.
To proceed, from (79), we have

u1 = ζ̂u(t)− ζ̂hru2(t)+ ζ̂hlu3(t). (122)

Then in view of (85), (117)–(120), and (122), we deduce

δNre(u) = σ3(t)(N0 − ζu(t))− ζhr (σ1(t)− u2(t))

− ζhl(σ2(t)+ u3(t)). (123)

Next, consider the following three cases.
1) Ṅ > 0
In light of (81)–(82) and (118)–(120), we obtain

|δNre(u)| = | − ζhr (1− u2(t))− ζhlu3(t)|

= |ζ (hr − hl)u3(t)| ≤ ζ (hr − hl). (124)

2) Ṅ < 0
In view of (81)–(82) and (118)–(120), we obtain

|δNre(u)| = | − ζhl(1+ u3(t))+ ζhru2(t)|

= |ζ (hr − hl)u2(t)| ≤ ζ (hr − hl). (125)

3) Ṅ = 0
From (121), we have

−ζhr ≤ N0 − ζu(t) ≤ −ζhl, (126)

then in light of (81)–(82), (118)–(120), and (126), we deduce

|δNre(u)| = |ζhru2(t)− ζhlu3(t)+N0 − ζu(t)|

= |ζ (hr − hl)u2(t)+ ζhl +N0 − ζu(t)|

≤ ζ (hr − hl). (127)

Therefore, we conclude that (86) is feasible. This com-
pletes the proof. �
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