IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 17, 2020, accepted April 28, 2020, date of publication May 6, 2020, date of current version May 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991752

An Evolutionary Algorithm for Multi
and Many-Objective Optimization
With Adaptive Mating and
Environmental Selection

VIKAS PALAKONDA', (Student Member, IEEE), AND
RAMMOHAN MALLIPEDDI 2, (Member, IEEE)

!School of Electronics Engineering, Kyungpook National University, Daegu 41566, South Korea
2Department of Artificial Intelligence, School of Electronics Engineering, Kyungpook National University, Daegu 41566, South Korea

Corresponding author: Rammohan Mallipeddi (mallipeddi.ram @ gmail.com)
This work was supported by the Institute of Information and Communications Technology Planning and Evaluation (II'TP) Grant funded by

the Korean Government (MSIT) (Development of Intelligent Interaction Technology Based on Context Awareness and Human Intention
Understanding), under Grant 2016-0-00564.

ABSTRACT Multi-objective evolutionary algorithms (MOEAs) have received immense recognition due
to their effectiveness and efficiency in tackling multi-objective optimization problems (MOPs). Recently,
numerous studies on MOEAs revealed that when handling many-objective optimization problems (MaOPs)
that have more than three objectives, MOEAs encounter challenges and the behavior of MOEAs resembles
a random walk in search space as the proportion of nondominated solutions increases subsequently. This
phenomenon is commonly observed in most classical Pareto-dominance-based MOEAs (PDMOEAs) such
as NSGA-II, SPEAII, as these algorithms face difficulties in guiding the search process towards the
optimal Pareto front due to lack of selection pressure. From the literature, it is evident that incorporating
sum of normalized objectives into the framework of MOEAs would enhance the converging capabilities.
Hence, in this work, we propose a novel multi-objective optimization algorithm with adaptive mating and
environmental selection (ad-MOEA) which effectively incorporates the concept of sum of objectives in the
mechanisms of mating and environmental selection to control the convergence and diversity adaptively.
To demonstrate the effectiveness of the proposed ad-MOEA, we have conducted experiments on 26 test
problems that includes DTLZ, WFG and MaOP test suites. Along with the benchmark problem, we have
analyzed the performance of the proposed approach on real-world problems. The experimental results
demonstrate the effectiveness of the proposed method with respect to the state-of-art methods.

INDEX TERMS Evolutionary computation, multi-objective optimization, many-objective optimization,

Pareto-dominance, sum of normalized objectives, crowding distance.

I. INTRODUCTION

Multi-objective optimization problems (MOPs) refer to the
optimization problems with more than one objective that are
conflicting in nature and are optimized simultaneously [1].
The concept of multi-objective optimization is often investi-
gated in the real-world applications, such as software engi-
neering [2], power distribution networks [3] and industrial
scheduling [4]. The conflicting behavior of the objectives in
MOPs, leads to obtaining a set of nondominated solutions,
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termed as Pareto optimal set (PS) that refers to Pareto
Front (PF) in objective space [1], [5]. In the literature,
it is evident that multi-objective evolutionary algorithms
(MOEAs) are effective in solving MOPs due to their ability
to obtain the Pareto optimal set in a single individual run.
The main aim of MOEAs when solving the MOPs is to
obtain balance between the convergence (refers to closeness
of the obtained Pareto front to the true Pareto front) and
diversity (refers to uniform distribution of the population
in the obtained Pareto front) [1], [S]. The ability of pro-
viding the trade-off between convergence and diversity in
MOEASs mainly depends on the employed selection strategy.
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In literature, a variety of selection strategies were pro-
posed based on which MOEAs are broadly classified as:
Pareto-dominance based MOEAs (PDMOEAs) [6]-[12],
decomposition-based MOEAs [13]-[17] indicator-based
MOEAs [17]-[20], reference-set based MOEAs [8], [21],
preference-based MOEAs [22], [23] and Hybrid
MOEAs [24], [25]. Among them, the Pareto-dominance
MOEAs are popular as the output of the MOEA is a set
of nondominated solutions and PDMOEAs have the capa-
bility to provide the set of well-distributed nondominated
solutions [7].

However, most of the classical Pareto-dominance based
MOEAs (PDMOEAs) perform better on the MOPs but
fail drastically to handle the problems with more than
three objectives termed as many-objective optimization prob-
lems (MaOPs) [1], [5]. In other words, the performance
of PDMOEAs deteriorate drastically when solving the
many-objective optimization problems as they encounter dif-
ficulties in achieving the trade-off between convergence and
diversity. The main factor responsible for the degradation
in the performance of PDMOEAs is the quantity of non-
dominated solutions increase progressively in accordance
to the objectives. This phenomenon decreases the selection
pressure and fails to guide the search process towards the
convergence [6], [8]. In other words, due to the increasing of
dimensionality objective space, the behavior of the MOEAs
adopts a random search as most of the individuals become
incomparable with respect to the Pareto-dominance [7].

Moreover, as the number of objectives increases, to obtain
a trade-off between diversity and convergence becomes a
daunting task. In other words, arbitrarily large populations
cannot be used in the evolution of MOEAs as the population
size used in MOEAs is limited due to the computational
complexity issues. Hence, due to the limited population size,
the individuals will be eventually far away from each other
in the high dimensional space resulting in the inefficiency
of offspring generation [8]. Finally, the visualization and
representation of the trade-off surface are the challenges
faced by MOEAs, which are not directly effecting the evo-
lutionary process, but causes problems in decision-making.
To overcome these difficulties, additional diversity metrics
are employed along with Pareto-dominance in PDMOEAs
that provides importance to the dominance resistant solutions
in the mating and environmental selections. However, the pri-
oritization of dominance resistant solutions in the selection
process cannot strengthen the selection pressure toward the
Pareto Front, and may even impede the evolutionary process
to a certain extent [8].

In literature, to improve the performance of PDMOEAs
in tackling MaOPs, various modifications have been pro-
posed that can be classified as: a) relaxing dominance rela-
tion [26]-[34], b) Pareto-dominance in conjunction with
additional metrics [6], [7], [35]-[37] and c) combining domi-
nance and decomposition-based approaches [38], [39]. In the
first class of algorithms, the definition of the conventional
Pareto-dominance is modified to enhance the comparability
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of two candidate solutions [26]-[34]. In the second class
of approaches, along with the Pareto-dominance relation an
additional selection criterion is employed in the PDMOEASs
to preserve convergence and diversity [6], [7], [35]-[37]. The
last category focus on effectively combining the dominance
and decomposition based approaches to benefit from the
mutual advantages of two approaches [38], [39].

In this paper, we propose a novel multi-objective evolu-
tionary algorithm with adaptive mating and environmental
selections (ad-MOEA) in which the concept of sum of nor-
malized objectives (SoNB) is incorporated into the mating
and environmental selections. Along with the sum of nor-
malized objectives, the crowding distance metrics (CWD) is
employed to promote the diversity. The proposed approach
falls into the second category mentioned above where the
Pareto-dominance in conjunction with additional metrics
namely sum of normalized objectives (SoNB) and crowding
distance (CWD) is employed. The main motivation of com-
bining sum of normalized objectives and crowding distance
is that if sum of normalized objectives is alone adopted as
secondary selection metric, the algorithm will experience
loss of diversity and by adapting crowding distance alone as
the secondary selection, the algorithm will suffer from the
degradation in the performance of the convergence. In other
words, employing sum of normalized objectives exclusively
would result in a final solution set concentrated on a single
region of the PF whereas employing crowding distance metric
would result in a set of solutions that are far away from the
true PF. Moreover, the solutions that promote convergence
are found in the most crowded regions and preserving them
in the initial generations would enhance the selection pressure
of the algorithm towards the PF. Hence, in the proposed
work, to preserve the solutions that accelerate convergence
in the initial stages, we assign more preference to the sum
of normalized objectives in the early generations and as the
evolution progresses the more importance is assigned to the
crowding distance.

In addition, the application of SoNB and CWD is adaptively
controlled to achieve a proper balance between convergence
and diversity depending on the characteristics of optimiza-
tion problem. The sum of objective concept in the proposed
ad-MOEA approach is entirely different from the weighted
sum concept which is included in popular decomposition
based approach, MOEA-D [13]. In MOEA-D approach,
the MOPs are converted into several single-objective prob-
lems (SOPs) with the help of weighted sum. To evaluate the
weighted sum, there is necessity for initializing weights and
updating them as the evolution progress. The sum of nor-
malized objectives concept adopted in the proposed approach
is entirely different from the weighted sum concept, where
the objective function are first normalized in the range of
[0, 1] and then the summation of normalized objective values
is determined. The sum of normalized objectives doesn’t
require the initialization of weights and updating weights.

The main contributions of this paper are summarized as
follows:
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a) In the proposed ad-MOEA the concept of sum of
normalized objectives is employed in the mating
and environmental selections in conjunction with
Pareto-dominance and crowding distance to adaptively
emphasize the converging capabilities by prioritizing
the individuals that improve convergence.

b) In mating selection, the concept of weighted rank is
employed so that depending on the stage of the evolu-
tion (exploration or exploitation) the appropriate solu-
tions can be assigned probability to participate in the
offspring population. In other words, each solution
in the population will be ranked with respect to the
convergence and diversity criteria and a weighted rank
is assigned using a self-adaptive parameter ‘w’ that
emphasis convergence or diversity depending on the
state of evolution.

¢) In environmental selection, after the employing the
Pareto-dominance criteria, the solutions are chosen
until the critical front. Then, in the critical front, at first,
the solutions are selected based on the sum of nor-
malized objectives with a certain probability and then
the remaining solution are selected based on crowding
distance. The probability with which the individu-
als are selected based on sum of normalized objec-
tives is determined by the self-adaptive parameter ‘w’.
To adapt the parameter ‘w’, the information related to
the number of nondominated solutions in the popula-
tion is used as the final aim of MOEAs is to obtain a set
of nondominated solutions that spread over the entire
Pareto-front.

The rest of this paper is organized as follows. In Section II,
we have presented the preliminaries, related work and moti-
vation behind the proposed method and a brief description
of the ad-MOEA is presented in the Section III. Simulation
results with discussion is presented in Section IV and finally,
Section V concludes the paper

IIl. PRELIMINARIES AND RELATED WORK

In this section, basic definitions related to the multi-objective
optimization are presented in the preliminaries along with the
related work.

A. PRELIMINARIES
Without loss of generality, a multi-objective optimization
problem can be formulated as follows:

min f(x) = (fi(x), 2(x), ..., fu(x))
s.t. xeS C R" (D

where x represents n-dimensional decision vector in space
and M is the number of objectives. When M > 3 Ratios can
be represented as then the problem represents a MaOP.

Definition 1: For any two different solutions, x and yeS,
iftvm =1,2,...,M,f(x) < fu(y), i =1,2,...,M, and
fi(x) < fi(y) then the solution x dominates the solution y
denoted as x < y.
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Definition 2: A decision vector, xeS C R”", can be consid-
ered as a Pareto-optimal, if and only if there exists no other
decision vector, x*¢S C R" that dominates x i.e., x < x*.

Definition 3: The set consists of all the Pareto-optimal
solutions is termed as the Pareto-optimal set (PS) and the
set of all the Pareto-optimal objective vectors is called as the
Pareto-optimal Front.

Definition 4: To evaluate, sum of normalized objectives,
at first, the objective values are converted into ratios, using
the best and worst objective values of each objective function
in the current population [40]. Then, for a solution i, the sum
of normalized objectives can be calculated as the summation
of ratios.

Mathematically, the Ratios can be represented as the

(£ = min(f(x)
fie) = <maX(f(x)) - min(f(x))> @
M
Fronp(@D) =Y f(x) 3)

i=1
where M denotes the number of objectives. The main advan-

tage of the sum of normalized objectives concepts is that it
removes the range-dependence of the solutions.

B. RELATED WORK

In this section, a detailed review on the various modifications
proposed for PDMOEAs in the literature to enhance the
performance of PDMOEAs in handling MaOPs is presented.
The proposed modifications to the PDMOEAS can be divided
into three categories, a) relaxation of dominance relation;
b) Pareto-dominance in conjunction with additional met-
rics; ¢) combining dominance and decomposition-based
approaches.

1) RELAXATION OF DOMINANCE RELATION
The first category of ideas focus on relaxing the dominance
relation, which refers to modifying the definition of conven-
tional Pareto-dominance by introducing new dominance rela-
tions. The main intention of introducing modified dominance
relation is to enhance the probability of two individuals being
comparable on MaOPs. In [26], a novel method to control the
dominance area of individuals (CDAS) in order to enhance
the performance of the MOEAs was proposed. By controlling
the dominance area, CDAS algorithm induces appropriate
ranking for the individuals and enhance the selection process.
This approach employs an external user—defined parameter S
that effectively controls the degree of contraction and expan-
sion of the dominance area of the individuals [26]. In [27],
a modified version to CDAS approach that self-adapts exter-
nal parameter S and self-controls the dominance area for each
individual (S-CDAS) was proposed to tackle MaOPs. The
main improvement that was proposed in S-CDAS algorithms
is that a fine-grained ranking is employed in S-CDAS that
includes the extreme solutions always in the top front [27].
In [28], a generalized Pareto-optimality (GPO) to deal with
the scalability issues of PDMOEAs was proposed. The main
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idea of the GPO is that the dominance area of the solutions
expands progressively as the dimensionality of the prob-
lem increases. The generalized Pareto optimality approach
is associated with a parameter called as expanding angle
that controls the degree of expansion of dominance area.
In [29], a fuzzification of the Pareto-dominance relation was
proposed and its applicability in design of MOEAs is ana-
lyzed. Along with that, a generic ranking scheme is depicted
which allocates any set of vectors with dominance degrees
in a set-dependent, nonsymmetrical and scale-independent
manner [29]. In [30], a new fitness evaluation mechanism
was introduced that differentiates solutions continuously
into different degrees of optimality. Along with the fitness
evaluation mechanism, based on the fuzzy logic, a fuzzy
Pareto-dominance (FD) was proposed and integrated into the
popular NSGA-II and SPEA2 to analyze the performance on
MaOPs [30]. In [31], a new dominance relation based on
the reference solution termed as r-dominance that can create
strict partial order among Pareto-equivalent solutions was
proposed.

In [32], a modification to the conventional Pareto-
dominance, called g-dominance was proposed that can be
incorporated in the design of any MOEA. The g-dominance
utilizes the information that is incorporated in a reference
point and without the help of any scalarizing function approx-
imates the efficient set around the most preferred area. In [33],
the authors have proposed ¢-MOEA that employs a new
variant of Pareto-dominance, e-dominance along with archiv-
ing/selection strategies to improve the search towards the
Pareto-optimal set. The ¢e-MOEA algorithms preserve an
archive of nondominated solutions of finite-size and updates
the archive iteratively based on e-dominance when a new
solution is generated. In [34], the authors have proposed
strengthened dominance relation (SDR), a new modification
to Pareto-dominance relation that employs a niching method
based on the angles between the individuals. In each niche,
the SDR maintains the best converged solution and size of
each niche is determined adaptively by the distribution of
the individuals which is measured by the angles between
them [34]. However, the PDMOEAs with modified domi-
nance relationships demonstrated improved performance in
handling MaOPs but tends to get trapped in the sub-regions
of the Pareto front.

2) PARETO-DOMINANCE IN CONJUNCTION

WITH ADDITIONAL METRICS

This category of ideas focus on employing an additional
metrics in conjunction with Pareto-dominance to promote
convergence in PDMOEAs. Recently, many works have
concentrated on developing effective additional metrics to
provide proper equilibrium between the convergence and
diversity. In [6], a knee-point driven evolutionary algo-
rithm (KnEA) was proposed that employs the concept of
knee-points and weighted distance to promote convergence
and diversity simultaneously. In order to find the knee-points,
an adaptive strategy is employed in KnEA that identifies the
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knee-points in small neighborhood. In the mating selection
and environmental selection of KnEA, more importance is
given to the knee-points [6]. The main reason for prioritizing
the knee-points in KnEA is that they provide bias towards the
larger hypervolume and promotes convergence and achieves
diversity simultaneously. However, in identifying the knee-
points, to determine the size of neighborhood, a parameter
T is required which has to be designed manually [6]. In [8],
the authors have proposed a MOEA (NSGA-III) that gen-
erates a set of uniformly distributed reference points and
the nondominated solutions with least perpendicular distance
from the reference points are given priority so as to maintain
diversity. In other words, in NSGA-III, preservation of diver-
sity mechanism is aided by a set of reference points that are
well distributed. In the environmental selection of NSGA-III,
each individual of the combined population is associated with
a reference point and the solutions with the least distance to
the reference points will be selected [8].

In [35], the authors have introduced a diversity mechanism,
shift-based density estimation (SDE) metrics that aims to
maintain diversity without the loss of convergence. The basic
idea in SDE is to estimate the density of a candidate solution,
by shifting the positions of other individuals with respect
to the convergence comparison on each objective. As a
result, the individuals with poor convergence performance
will have high-density values [35]. In [7], Pareto-dominance
based MOEA with ranking methods was proposed in which
each candidate solution in the population is assigned a rank
referred to as priority rank. The priority rank is assigned to
each candidate solution in accordance to — a) Pareto rank
of solutions that is obtained through nondominated sorting;
b) sum of normalized objectives or sum of average ranks; and
¢) niche radius. The individuals with the least priority rank
are preferred during the mating and environmental selection
as they commendably accelerate the convergence towards the
Pareto front and simultaneously maintains diversity. In [41],
an extension to this work was reported, in which both the
average rank and sum of normalized objectives are incor-
porated into a unique framework of PDMOEA to exploit
mutual advantages of sum of normalized objectives and sum
of average ranks on a common platform.

In [36], the authors have proposed a vector angle-based
EA for MaOPs that employs Pareto-dominance in combina-
tion with the maximum-vector-angle-first principle. Along
with these metrics, a worse-elimination principle was also
adopted which replaces the worse solutions in accordance to
convergence (determined by the sum of normalized objec-
tives) conditionally with the other candidate solutions. On the
other hand, the maximum-vector-angle-first principle con-
centrates on achieving the distribution of the solution set [36].
In [37], based on favorable convergence (FC) and directional
diversity (DD), a many-objective evolutionary algorithm
(MOEA-DDFC) was proposed. In MOEA-DDFC, favor-
able convergence and directional diversity were incorporated
to promote both the convergence and diversity simultane-
ously. In the mating selection, along with Pareto-dominance,
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favorable convergence was adopted to generate offspring
population from the well-converged individuals [37]. In the
environmental selection, after the Pareto-dominance, FC and
DD are combined in a tournament like manner in order to pro-
vide good trade-off between convergence and diversity [37].

3) COMBINING DOMINANCE AND DECOMPOSITION-
BASED APPROACHES

The third category focus on combining the dominance
based approaches with the decomposition-based algorithms.
In [38], the authors have proposed a unified paradigm in
which the dominance-based approach is combined with
the decomposition-based approach to tackle the MaOPs
(MOEA-DD). In MOEA-DD, a set of weights are used to
segregate the objective space into different sub-regions and
each weight vector defines a sub-problem for fitness evalua-
tion [38]. However, the parent population is updated through a
steady-state evolution where at a time only one offspring indi-
vidual is considered. In the steady-state evolution, efficient
non-domination level update approach [42] was adopted to
update the parent population’s nondomination level structure
after inclusion of offspring solution. In [39], a bi-criterion
evolution (BCE) framework was proposed that combines
the Pareto-criterion (PC) methods with non Pareto-criterion
(NPC) approaches to enhance the convergence and diversity.
The bi-criterion approach attempts to combine the advantages
of PC and NPC approaches through a collaborative manner
with ample exchange of information to facilitate each other’s
evolution. On the other hand, the bi-criterion evolution tries
to compensate for each other’s weaknesses [39].

Ill. PROPOSED ad-MOEA

In this section, a detailed explanation of the general frame-
work of ad-MOEA is presented. From the literature, it is
evident that sum of normalized objectives improves the con-
verging capabilities of the algorithm. Hence, in the proposed
approach, we aim to utilize the advantage provided by sum
of the normalized objectives by incorporating in mating and
environmental selection along with Pareto-dominance and
crowding distance to balance the convergence and diversity
adaptively.

A. GENERAL FRAMEWORK OF PROPOSED ad-MOEA

The general framework of the proposed algorithm is similar
to classical NSGA-II [12]. In proposed approach, an ini-
tial parent population of size N is randomly generated and
evaluated. After Initialization, Pareto rank and sum of the
normalized objectives (SoNB) as described in section 2 and
crowding distance (CWD) are obtained. Then, based on these
criteria a weighted rank for each candidate solution is calcu-
lated. Then mating selection procedure is performed where
two parent solutions are randomly selected and compared
based on the weighted rank, and one solution with least
weighted rank is chosen for the offspring generation. After
mating selection, an offspring population of size N is gener-
ated with the help of mutation and recombination operators.
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The offspring population is then combined with the parent
population and for each individual in the combined pop-
ulation, Pareto rank and sum of the normalized objectives
(SoNB) for each candidate solution are obtained. In the
environmental selection procedure, after Pareto-dominance,
the individuals are chosen until the critical front.

In the critical front, with a certain probability, candidate
solutions are selected based on sum of objectives and the
remaining candidate solutions will be selected based on
crowding distance. The probability for selecting the candi-
date solutions is determined by a self-adaptive parameter
‘w’. Initially, the value of the parameter ‘w’ is set to one,
as convergence is necessary in the initial generations. Then
depending on the characteristics of the problem, the value of
parameter ‘w’ is self-adapted. However, the value of ‘w’ is
expected to decrease as the evolution reaches the final stages
where diversity needs to be enhanced. Therefore, in initial
generations more preference is assigned to the individuals
that promote convergence and as the evolution progress, the
focus adaptively shift towards the individuals that are diverse.
The framework of the proposed approach is depicted in the
figure 1.

Algorithm 1 Mating_Selection (P, F, SoNB, CWD)
Require: P (population)

: Calculate Weighted Rank (WR) for each individual

S <0

: while |S| < N do

: randomly choose x and y from P

1if WR (x) < WR(y) then

S <« SU {x}

: else if WR(y) < WR(x) then

S <« SU {y}

Ne)

: else

10: if rand (1) < 0.5 then
11: S <« SU {x}
12: else

13: S <« SU {y}
14: end if

15: end if

16: end while

17: return S

B. MATING SELECTION

The mating selection procedure plays an important role in
the evolution of the MOEAs; as producing, the promising
offspring solutions would improve the performance of the
algorithms over the generations. In the proposed ad-MOEA,
the concept of weighted rank is employed in the mating selec-
tion to prioritize the better solutions to generate offspring
population. The procedure of the mating selection is depicted
in the algorithm 1. To obtain the weighted rank, at first,
individuals are sorted based on the Pareto rank and sum of
normalized objectives in ascending order, and each individual
is assigned with a rank in accordance to the sorted order.
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FIGURE 1. Framework of proposed NSGA-II* (# SoNB - Sum of Normalized Objectives & # CWD - Crowding Distance).
TABLE 1. Example to demonstrate the sorting procedure in mating selection.
Instance #1 Instance #2
# PR SoNB CWD Sorting based on PR and SoNB Sorting based on PR and CWD
PR SoNB Sorted order PR CWD Sorted order
S 2 0.11 0.48 1 0.09 S, 1 0.77 Ss
S, 1 0.09 0.28 1 0.13 Ss 1 0.69 Sio
Ss 1 0.74 0.37 1 0.74 S; 1 0.56 Ss
Sy 3 0.29 0.61 1 0.8 ) 1 0.37 S3
Ss 1 0.9 0.77 1 0.9 Ss 1 0.28 S,
Ss 3 0.42 0.95 2 0.11 M 2 0.78 S;
S; 2 0.56 0.78 2 0.48 Sy 2 0.65 Sy
Ss 1 0.13 0.56 2 0.56 S7 2 0.48 M
Sy 2 0.48 0.65 3 0.29 Sy 3 0.95 Ss
Sio 1 0.8 0.69 3 0.42 Ss 3 0.31 Sy
# S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Assigned Rank with
respect to Instance #1 (r;) 6 ! : 9 . — ¢ z U &
Assigned Rank with
respect to Instance #2 (r,) 8 3 4 10 ! 0 6 3 ’ 2

# PR—Pareto Rank; # SoNB—Sum of Normalized Objectives; # CWD—Crowding Distance

The individuals are sorted again according to the Pareto rank
and crowding distance in ascending and descending order
respectively and another rank is assigned to each individual.
The sorting procedure for each individual is demonstrated
with the example presented in the Table 1.

In the Table 1, we presented an example that considers
the Pareto rank, sum of normalized objectives and crowding
distance of each individual. As shown in the Table 1, the solu-
tions S2, S3, S5, S8 and S10 belong to the first S10 belong
to the first nondominated front and has Pareto rank ‘1°, the
solutions S1, S7 and S9 belong to second front and has Pareto
rank ‘2’ and finally, the solutions S4 and S6 belongs to third
front and has Pareto rank ‘3’. From Table 1, we can observe

82786

that the sorted order of solutions according to the Pareto
rank and sum of normalized objectives is S2, S8, S3, S10,
S5, S1, S9, S7, S4 and S6. Then, each solution is assigned
with a rank with respect to the sorted order of Pareto rank
and sum of normalized objectives. Similarly, the solutions
are again sorted according to Pareto rank in ascending order
and crowding distance in descending order respectively. From
the Table 1, we can observe that the sorted order of solutions
according to the Pareto rank and crowding distance is S5, Sio,
Ss, 83, 82, 87, S9, S1, S4 and Sg. The main motivation behind
sorting the solutions based on Pareto rank and sum of normal-
ized objectives in one instance and Pareto rank and crowding
distance is to assign preferences to each solutions according
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to convergence and diversity. For example, from Table 1,
we can that the solutions S», S3, S5, Sg and Sio has Pareto
rank ‘1°, and hence to establish preferences between them,
we sorted the solutions according to both convergence and
diversity criteria. Then, the weighted rank for each candidate
solution is determined with the help of parameter ‘w’. The
parameter ‘w’ is self-adaptive and is communicated through
the environmental selection. The process for calculating the
weighted rank is depicted in algorithm 2.

Algorithm 2 Weighted Rank
Input: F (Front Number), SoNB (Sum of normalized
objectives), CWD (Crowding Distance)
Output: Weighted Rank (WR)
1: Sort the solutions based on F and SoNB in ascending
order
2: Assign rank to each individual according to the sorted
order.
3: Sort the solutions based on F and CWD in ascending
order and descending order respectively.
4: Assign another rank to each individual according to the
sorted order
5: Let a solution #, have ranks r; and r, corresponding to
case 1 and case 2 and w be the weight.
6: weighted rank of the solution i is calculated as

WRG =rix(1—w)+rmxw

7: return WR

Weighted Rank: To calculate the weighted rank, let us
assume the rank obtained for a solution i with respect to sorted
order of Pareto rank and sum of normalized objectives be ry.
The rank obtained in accordance with the sorted order of
Pareto rank and crowding distance be r;. Then the weighted
rank for the solution, i can be calculated as

WR) =ri*(1—w)+r*xw @)

The main aim of the weighted rank is to concentrate more
on convergence in the initial stages and to promote diversity
as the evolution progress. The self-adaptive parameter ‘w’
assists in promoting the convergence in early stages and
diversity in the later stages. The process for obtaining the
weighted rank is depicted in the algorithm 2.

After calculating the weighted rank, to generate the off-
spring population, the solutions with least weighted rank
are preferred. A binary tournament selection procedure is
adopted in the mating selection where weighted rank is used
as ametric to select parent population for generating offspring
population. In other words, two individuals A and B are
randomly chosen from the parent population. If weighted
rank of solution A is less than that of solution B then solution,
then solution A is chosen. If both the solutions A and B have
same weighted rank, then one solution is chosen is randomly.

C. ENVIRONMENTAL SELECTION
The main aim of the environmental selection is to preserve
the elite solutions for the next iterations as parent population.
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In the environmental selection, at first, the offspring popula-
tion obtained after mating selection is combined with the par-
ent population. Then Pareto-dominance procedure is adopted
on the combined population and the individuals are assigned
to different nondominated fronts. Along with the Pareto-
dominance, sum of the normalized objectives and crowding
distance for each candidate solution is obtained. At first,
the individuals from the first nondominated front (F) are
selected and if (|F|| > N), then the front is considered as
critical front and the solutions in F'| are selected based on the
adaptive approach that consider sum of normalized objectives
(SoNB) and the crowding distance (CWD). If the size of solu-
tion of individuals in the front (F) is less than N, (|F{| < N),
then, solutions are selected based from second nondominated
front F». If (|F; U F3| > N), then front (F»);s considered as
critical front and adaptive approach is employed to select the
solutions in the second nondominated front (F,). The same
procedure that is followed until a population of size N with
elitist solutions is obtained for the following generations.

Adapting the Weight Parameter (w) Based on Sum of Nor-
malized Objectives and Crowding Distance:

In the critical front, to select the candidate solutions,
an adaptive approach is adopted in this work. To select the
individuals in the critical front, the parameter ‘w’ is employed
which is self-adaptive. To adapt the parameter, the infor-
mation regarding the number of nondominated solutions in
the combined population is utilized. The parameter ‘w’ is
self-adopted as follows

Nr w
w = (0.99"w,_1) + 0.01* <1 — (V) ) (@)

where w; denotes the current generation value of ‘w’ and w;_1
represents the value of ‘w’ in previous generation and M is
number of objectives. Nr denotes number of nondominated
solutions in the population and N denotes population size.
At first, all the solutions in the critical front are sorted based
on the sum of the normalized objectives and a percentage
(w * 100) of required solutions are chosen based on sum
of the normalized objectives. For the remaining solutions,
we obtain crowding distance and the remaining solutions are
chosen based on crowding distance. In other words, let k
be the size of solutions in critical front and [/ be the size
of solutions to be selected from the critical front. At first,
the k solutions in the critical front are sorted according to
the sum of normalized objectives in ascending order and
(w™* 100)% of [ solutions are selected according to the sorted
order. Let the size of solutions selected based on sum of
objectives be t. The selected solutions are ignored and for
the remaining solutions of size (k - t), crowding distance
is determined. The remaining (k - t) solutions are sorted
according to crowding distance in descending order and the
required (/ - ¢) solutions be selected based on the sorted order.
During the evolution of MOEA, the parameter ‘w’ plays a
key role in environmental selection in adaptively switching
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Algorithm 3 Environmental Selection
Input: N (Population size), Q (Combined Population)
Output: P (Population)
1: (F1, F3...FL) < Nondominated_sort (Q)
22P <« @,i <« 1
3: Calculate sum of normalized objectives (SoNB) and
crowding distance (CWD) for each individual
4: while |PU F;| < N do
5: P« PUF; i< i+1
6: end while
7:if |PU F;| = N then

8: P« PUF;
9: else
10: P <~ PUF;_4

11: Adaptively determine the parameter ‘w’

12: K < (N — |PUF;_1|) // * Solutions to be selected
from last front F;*//

13: Sort the solutions in front F; based on SoNB in ascend-
ing order.

14: Select ((w*100)%) of K solutions in the sorted order of
SoNB

16: Determine the crowding distance for the remaining
solutions

15: Sort the remaining solutions based on CWD in descend-
ing order

16: Select ((1-w)*K) solutions in the sorted order of CWD
17: end if

18: return P

the focus from the convergence to diversity. The procedure
for the environmental selection is presented in the algorithm.

IV. EXPERIMENTS SETUP AND DISCUSIONS

In this section, an overview of the experimental design along
with the discussion on results is presented which includes
the description of algorithms considered for comparison,
benchmark problems, general parameters employed and per-
formance evaluation metrics. The simulation results reported
in this study are conducted on a PC with 3.40 GHz Intel
Core 17-2600QM CPU and Windows 10 SP1 64-bit oper-
ating system with MATLAB 2019b version. All the algo-
rithms that are considered for comparison and the proposed
approach are simulated with the help of MATLAB software.
In this section, to investigate the performance of the pro-
posed ad-MOEA, nine popular MOEAs such as KnEA! [6],
RVEA [21], S-CDAS? [27] NSGA-II [12], r-NSGAII [31],
g2-NSGAII [32], NSGAII-SDR [34] and NSGA-III [8] and
MOEA-D [13] are considered for comparison. The exper-
iments are performed on 26 test problems which includes
three benchmark test suites DTLZ [43], WFG [44] and

IThe code for KnEA and RVEA are downloaded from http://www.soft-
computing.de/jin-pub_year.html

2The code for S-CDAS, NSGA-II, r-NSGAII, g-NSGAII, NSGAII-SDR,
NSGAII and MOEA-D are downloaded from https://github.com/
BIMK/PlatEMO
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MaOPs [45]. For the DTLZ and WFG benchmark problems
2-, 4-, 6-, 8-, 10- objectives are considered and for MaOP
benchmark problems 4-, 6-, 8-, 10- objectives are considered.
For a fair comparison, the number of function evaluations
allocated for the algorithms under comparison are maintained
identical. The population size varies with respect to the objec-
tives. In other words, the population sizes for 2-, 4-, 6-, 8-,
10- objectives are maintained as 100, 120, 132, 156, and
274 respectively. All the algorithms are simulated for 30 times
each and the population obtained at the final iteration are
saved for comparison. To generate the offspring population,
we have employed the simulated binary crossover (SBX) and
polynomial mutation as variation operators with distribution
indices n, = 20 and n,, = 20. The mutation probability
and crossover probability used are p,, = 1/D and p. = 1.0
respectively, where D is the number of decision variables.
In the MaOP problems, for the KnEA algorithm, the param-
eter ‘T’ is set to 0.5 and the rest of the parameters of the
algorithms in comparison are maintained according to the
original publication.

The DTLZ problem suite consists of seven test problems
(DTLZ1-DTLZ7) [43], WFG problem suite consists of nine
test problems (WFG1-WFG9) [44], and MaOP problem suite
consists of ten test problems (MaOP1- MaOP10) [45] respec-
tively. The DTLZ problem set possess different character-
istics and test different capabilities of the MOEAsMainly,
the problems, DTLZ1, DTLZ3 and DTLZ6 are multimodal
in nature and assess the converging ability of the MOEAs
by introducing a large number of local Pareto-optimal fronts.
Due to the presence of local Pareto fronts, MOEAs encounter
difficulties to converge to the global Pareto-optimal front.
The remaining problems such as DTLZ2, DTLZ4-DTLZ7
assess the capability of MOEAs in tackling the problems
with different shapes. The WFG benchmark problems are
associated with the Pareto-optimal fronts that possess char-
acteristics such as convex, concave, linear, multi-modal,
degenerated, biased, and disconnected; and therefore test the
different capabilities of MOEAs. The MaOP problem test
suite introduces the problems with difficult features such as
complicated Pareto-set, objective scalability, disconnected,
biased and degeneracy to test the performance of MOEAs.
The characteristics and settings for the benchmark problems
along with the number of iterations adopted for each problem
are presented in the Table 2. In the current work, we have
employed the hypervolume indicator (HV) [46] to evaluate
the performance of the algorithms. The hypervolume indi-
cator have the ability to evaluate the converging abilities
and diversity performances of the MOEAs. To calculate the
hypervolume indicator, a reference point is required.

In our experimental setup, we have adopted different ref-
erence point techniques for the three-benchmark problem
suites, DTLZ, WFG and MaOP. For the DTLZ problems,
the final obtained populations of each individual run for all
the algorithms that are considered for comparison on a given
test instance are combined. Then, from the combined set,
we identified the nondominated solutions and the maximum
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TABLE 2. Characterisitcs and settings of benchmark problem suites.

Characteristics and settings of DTLZ problem suite
Problem M Para[r{neter Number z)g)\/ ariables Generations Characteristics
DTLZ1 2,4,6,8,10 5 M—-1+k 700 Linear, Multimodal
DTLZ2 2,4,6,8,10 10 M-1+k 250 Concave
DTLZ3 2,4,6,8,10 10 M—-1+k 1000 Concave, Multimodal
DTLZ4 2,4,6,8,10 10 M—-1+k 250 Concave, Biased
DTLZ5 2,4,6,8,10 10 M-1+k 250 Degenerate
DTLZ6 | 2,4,6,8,10 10 M—1+k 250 Multi-modal, Degenerate,
Disconnected
Mixed, Disconnected,
DTLZ7 2,4,6,8,10 20 M—-1+k 250 Multimodal, Scaled
Characteristics and settings of WFG problem suite
Problem M Parameter quber of Generations Characteristics
K L Variables (D)
WFGI1 2,4,6,8,10 10 I+k 1000 Mixed, Biased, Scaled
For M~ 2; C Di ted, Multi
k=4 onvex, Disconnected, Multi-
WFG2 2,4,6,8,10 10 [+k 250 modal, Non-separable, Scaled
Linear, Degenerate, Non-
WFG3 2,4,6,8,10 Foyl;[\:[; 4; 10 I+k 700 separable, Scaled
WFG4 2,4,6,8,10 B 10 I +k 250 Concave, Multi-modal, Scaled
WFG5 2,4,6,8,10 For M = 6; 10 I+k 250 ancave, D;ceptlve, S;:jled
WFG6 2,4,6,8,10 k=10 10 I+k 250 oncave, ~on-separable,
Scaled
WFG7 2,4,6,8,10 10 I+k 250 Concave, Biased, Scaled
ForM=38; C Biosed N
WFGS 2,4,6,8,10 k=7 10 I+k 250 oneave, Blasee, ~on
separable, Scaled
For M = 10- Concave, Biased, Multi-modal,
WFG9 2,4,6,8, 10 ”’k P 10 I+k 250 Deceptive, Non-separable,
Scaled
Characteristics and settings of MaOP problem suite
Number of . ..
Problem M Variables (D) Generations Characteristics
MaOP1 4,6,8,10 20 250*M Inverse of simplex, Objective scales, Multi-modal
MaOP2 4,6,8,10 20 250*M Complicated PS
MaOP3 4,6,8,10 20 250*M Complicated PS, Biased
MaOP4 4,6,8,10 20 250*M Complicated PS, Biased
MaOP5 4,6,8,10 20 250*M Complicated PS, Degeneracy
MaOP6 4,6,8,10 20 250*M Complicated PS, Degeneracy
MaOP7 4,6,8,10 20 250*M Complicated PS, Local degeneracy
MaOP8 4,6,8,10 20 250*M Complicated PS, Local degeneracy
MaOP9 4,6,8,10 20 250*M Complicated PS, Local degeneracy
MaOP10 4,6,8,10 20 250*M Complicated PS, Local degeneracy

values in each objective are considered as reference point. For
the WFG and MaOP problem suites, the range of each objec-
tive varies and hence each objective is normalized into a uni-
form range [0,1] and the reference point considered for WFG
and MaOP s (1, 1... 1) . To normalize the objective values of
WEG and MaOP problems, approximated ideal point (z*4¢?)
and approximated nadir point ("“") are obtained from the
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nondominated solution set of the populations combined from
each algorithm on a given test instance. The ideal point, 74
and the nadir point, 244" are the minimum and maximum
values in each objective of the obtained nondominated solu-
tion set. To approximate the hypervolume indicator, Monte
Carlo method is employed where 1,000,000 sampling points
are used. The algorithm with larger hypervolume is referred
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TABLE 3. Mean and standard deviation values of Hypervolume results of proposed method with state of art algorithms on DTLZ problems.

# [M]  KnEAj] RVEA [21] S-CDAS [27] | NSGA-I[12] | r-NSGAII[31] | gNSGAN [32] | NSGAII-SDR [34] | NSGA-II[8] | MOEA-D[13] | ad-MOEA
2 | 0.4900(0.0065)+ | 0.4946(0.0006)- | 0.4934(0.0007)= | 0.4933(0.0006)= | 0.4935(0.0008)= | 0.4931(0.0008)= 0.2042(0.0712)+ | 0.4948(0.0004)- | _0.0000(0.0000)+ | 0.4927(0.0007)
<[4 [0.6415(0.1292)+ | 09123(0.0004)- | 0.8644(0.1020)+ | 0.7437(0.2704)* | 0.8372(0.1798)+ | 0.0000(0.0000y+ | 0.8492(0.0237)+ | 09121(0.0005)- | 0.0225(0.0686)+ | 0.8844(0.0047)
2 [[6 [ 0519301018 | 09806(0.0002)- | 0.1097(0.2322)+ | 0.1671(0.2962)+ | 0.1751(0.2967)+ | 0.0000(0.0000)+ 0.8749(0.0399) | 0.9803(0.0003)= | 0.0000(0.0000)+ | 0.9647(0.0020)
2 [8 | 0.3259(0.1058)+ | 0.9948(0.0001)- | 0.0000(0.0000)+ | 0.0000(0.0000)+ | 0.0000(0.0000)+ | 0.0000(0.0000)+ 0.9021(0.0291)+ | 0.9405(0.1728)+ | 0.0000(0.0000)+ | 0.9554(0.0183)
10 | 0.5169(0.2190)+ | 0.9990(0.0000)* | 0.0000(0.0000)+ | 0.0000(0.0000y* | 0.0000(0.0000)+ | 0.0000(0.0000)+ 0.9244(0.0243)- | 0.9216(0.1697)- | 0.0000(0.0000)+ | 0.9026(0.0438)
2 | 0.1723(0.0151)r | 0.2091(0.0010)- | 0.2094(0.0005)- | 0.2093(0.0004)- | 0.1055(0.0053)+ | 0.1702(0.0003)+ 0.01020.0163)+ | 0.2094(0.0007)- | 0.2055(0.0032)+ | 0.2075(0.0005)
1 [[4]05594(0.0044)- | 0.5886(0.0005)- | 0.4812(0.0094)+ | 0.4802(0.0100)* | 0.0746(0.0012)+ | 0.0483(0.0108)F | 0.1071(0.1167y+ | 0.5875(0.0009)- | 0.4593(0.0169)+ | 0.4870(0.0127)
2 [6_[ 09328(0.0024)- | 09434(0.0002)- | 0.3403(0.1082)+ | 0.3808(0.1494)+ | 0.0749(0.0045)+ | 0.0038(0.0030)+ 0.8637(0.0744)+ | 0.9427(0.0003)- | 0.9023(0.0152)- | 0.8872(0.0083)
A [ 8 [ 0.9980(0.0002)- | 0.9984(0.0000)- | 0.4076(0.1224)+ | 0.4124(0.1098)+ | 0.0710(0.0061)+ | 0.0084(0.0026)+ 0.9974(0.0022)- | 0.9980(0.0008)- | _0.9969(0.0003)- | 0.9674(0.0165)
10 | 0.9990(0.0007)- | 1.0000(0.0000)- | 0.6583(0.0768)+ | 0.6620(0.0977)+ | 0.0792(0.0075)+ | 0.0162(0.0023)+ 1.0000(0.0000)- | 0.9999(0.0001)- | _0.9999(0.0000)- | 0.9613(0.0205)
2 | 0.0565(0.0097)+ | 0.2081(0.0014)= | 0.2084(0.0011)= | 0.2082(0.0014)= | 0.2081(0.0014)= | 0.1439(0.0588)+ 0.0254(0.0238)+ | 0.2080(0.0014)= | _0.0000(0.0000)+ | 0.2079(0.0008)
Q 4 0.44270.0835)+ | 0.6243(0.0052)- | 0.5226(0.0995)+ | 0.5417(0.0159)= | 0.5464(0.0122)= | 0.0000(0.0000)+ 0.1509(0.0213)+ | 0.6124(0.0653)- | 0.0000(0.0000)+ | 0.5469(0.0100)
2 [[6_[ 0.9967(0.0032)+ | 1.0000(0.0000)- | 0.8351(0.1371)+ | 0.8402(0.1622)+ | 0.8204(0.2968)+ | 0.0000(0.0000)+ 1.0000(0.0000)- 1.0000(0.0000)- | 0.3042(0.2810) | 0.9996(0.0009)
A [ 8 [ 0.8073(0.3770)+ | 1.0000(0.0000)- | 0.5108(0.1472)+ | 0.5677(0.1486)+ | 0.8276(0.3309)+ | 0.0000(0.0000)+ 1.0000(0.0000)- 1.0000(0.0000)- | 0.9993(0.0019) | 0.9999(0.0003)
10 | 0.9998(0.0010)- | 1.0000(0.0000)- | 0.4789(0.1014)+ | 0.4777(0.1071)+ | 0.7752(0.3721)- | 0.0000(0.0000)+ 1.0000(0.0000)- 1.0000(0.0000)- | _1.0000(0.0001)-_| 0.9993(0.0006)
2 | 0.1583(0.0807)= | 0.2095(0.0009)- | 0.1326(0.1026)+ | 0.1396(0.1004)+ | 0.1137(0.0460)+ | 0.1646(0.0311)- 0.1250(0.0626)+ | 0.1371(0.0999)+ | 0.1805(0.0621)- | 0.1453(0.0967)
&[4[ 05780(0.0053)- | 0.6022(0.0005)- | 0.5033(0.0067)+ | 0.4893(0.0927)+ | 0.I116(0.0062)+ | 0.1118(0.1346)+ 0.0965(0.0721)+ | 0.4622(0.1201)+ | 0.4778(0.0701)+ | 0.5185(0.0068)
2 [6_ | 09934(0.0003)- | 0.9930(0.0047)- | 0.7556(0.1469)+ | 0.7126(0.1329)+ | 0.2210(0.0100)+ | 0.6082(0.1082)+ 0.8613(0.1475)+ | 0.9824(0.0118)+ | 0.9874(0.0103)+ | 0.9885(0.0017)
A [ 78 [ 1.0000(0.0000)- | 1.0000(0.0000)- | 0.8924(0.0323)+ | 0.9014(0.0353)+ | 0.4649(0.0163)+ | 0.9346(0.0187)+ 0.9946(0.0142)+ | 1.0000(0.0000)- | _1.0000(0.0000)- | 0.9996(0.0002)
10 | 1.0000(0.0000)- | 1.0000(0.0000)- | 0.9507(0.0171)+ | 0.9492(0.0105)+ | 0.4248(0.0157)+ | 0.9659(0.0193)+ 0.9996(0.0013)=__ | 1.0000(0.0000)- | _1.0000(0.0000)- | 0.9989(0.0009)
2 | 0.1717(0.0155)+ | 0.2090(0.0009)- | 0.2094(0.0005)- | 0.2094(0.0005)- | 0.1039(0.0050)+ | 0.1703(0.0004)+ 0.0110(0.0152)+ | 0.2093(0.0021)- | 0.2057(0.0012)+ | 0.2076(0.0005)
@ [[4_]0.7675(0.0052)+ | 0.7545(0.0030)+ | 0.7794(0.0008)+ | 0.7795(0.0016)+ | 0.1343(0.0083)+ | 0.0861(0.0002)+ 0.7762(0.0014)+ | 0.7722(0.0018)+ | 0.7588(0.0282)+ | 0.7809(0.0014)
2 [[6_| 0.8662(0.0040)- | 0.8442(0.0090)+ | 0.8391(0.0083)+ | 0.8399(0.0083)% | 03159(0.0187)+ | 0.0440(0.0126)+ 0.8569(0.0048)= | 0.8353(0.0074)+ | 0.8326(0.0133)+ | 0.8592(0.0042)
2 [ 8 | 0.8760(0.0037)- | 0.8396(0.0086)+ | 0.8224(0.0173)+ | 0.8274(0.0136)+ | 0.3567(0.0242)" | 0.0189(0.0046)+ 0.8749(0.0037)- | 0.8523(0.0072)* | 0.8452(0.0155)+ | 0.8565(0.0068)
10 | 0.8800(0.0032)- | 0.8564(0.0080)= | 0.8341(0.0131)+ | 0.8292(0.0165)+ | 0.3621(0.0439)+ | 0.0069(0.0012)+ 0.8827(0.0037)+ | 0.8768(0.0061)- | 0.8694(0.0082)- | 0.8594(0.0077)
2 | 0.1263(0.0135)+ | 0.2101(0.0004)- | 0.2089(0.0004)- | 0.2091(0.0005)- | 0.1875(0.0077)+ | 0.1703(0.0004)+ 0.1925(0.0224)+ | 0.1890(0.0123)* | 0.1997(0.0377)+ | 0.2078(0.0004)
g [[4_[0.9284(0.0079)+ | 0.9282(0.0025)+ | 0.8973(0.0433)+ | 0.8925(0.0560)+ | 0.2310(0.0059)+ | 0.0359(0.0189)+ 0.9287(0.0011)+ | 0.9355(0.0005)- | 0.9116(0.0259)+ | 0.9323(0.0011)
2 [[6_| 09872(0.0029)-_| 0.9792(0.0033)+ | 0.5763(0.0773)+ | 0.5485(0.0653)+ | 0.5889(0.0867)+ | 0.0692(0.0186)+ 0.9726(0.0032)+ | 0.9868(0.0028)- | 0.9672(0.0085)+ | 0.9815(0.0023)
2 [ 78 [ 0.9884(0.0024)- | 0.9831(0.0027)+ | 0.5503(0.0469)+ | 0.5270(0.0460)+ | 0.6124(0.1784)F | 0.0831(0.0148)+ 0.9822(0.0018)= | 0.9888(0.0027)- | 0.9781(0.0064)+ | 0.9829(0.0027)
10 | 0.9897(0.0012)- | 0.9827(0.0121)= | 0.5789 (0.0417)+ | 0.5918(0.0511) | 0.6674(0.1649)+ | 0.0653(0.0112)+ 0.9835(0.0012)+ | 0.9890(0.0015)= | 0.9845(0.0028)= | 0.9853(0.0024)
2 | 0.1401(0.0007)= | 0.1335(0.0022)+ | 0.1414(0.0004)= | 0.1398(0.0090)= | 0.0343(0.0117)+ | 0.0829(0.0003)+ 0.1404(0.0005)= | 0.1410(0.0003)= | 0.0968(0.0422)+ | 0.1393(0.0088)
5[4 [ 0.1917(0.0090)- | 0.1643(0.0040)- | 0.1567(0.0043)+ | 0.1552(0.0060)+ | 0.0061(0.0036)+ | 0.0218(0.0008)+ 0.1866(0.0028)- | 0.1880(0.0020)- | 0.0713(0.0380)+ | 0.1619(0.0042)
= [[6 [ 0.1746(0.0108)- | 0.1081(0.0202)= | 0.0393(0.0107)+ | 0.0409(0.0130)+ | 0.0012(0.0002)+ | 0.0025(0.0005)+ 0.1694(0.0037)- | 0.1413(0.0105)- | 0.0153(0.0177)+ | 0.1141(0.0079)
A [ 8 [ 0.0696(0.0225)- | 0.0762(0.0142)- | 0.0005(0.0005)+ | 0.0008(0.0009)+ | 0.0001(0.0000)+ | 0.0000(0.0000)+ 0.1191(0.0080)- | 0.0995(0.0215)- | 0.0023(0.0044)+ | 0.0574(0.0093)
10 | 0.2505(0.1593)+ | 0.6033(0.0055)- | 0.0240(0.0092)+ | 0.0230(0.0115)+ | 0.0000(0.0000)+ | 0.0001(0.0000)+ 0.5853(0.1530) | 0.4612(0.1259)+ | 0.0062 (0.0129y+ | 0.5968(0.0032)
/= 15/2/18 8/4/23 29/3/3 28/4/3 31/3/1 33/1/1 21/4/10 | 9/4/22 ] 26/1/8

as the better performing algorithm when compared with other
algorithms. In addition, to assess the statistical significance
between two algorithms the Wilcoxon’s rank sum test is
adopted.

A. COMPARISON OF ALGORITHMIC PERFORMANCE

ON DTLZ PROBLEMS

In this section, we have presented the experimental results
of the ad-MOEA with state-of-art algorithms on the DTLZ
problems. We have reported the mean and standard devia-
tion results of hypervolume indicator obtained for the algo-
rithms in comparison in Table 3. We have also conducted
the significance tests for each algorithm and presented the
comparison of proposed approach with the algorithms under
consideration with the help of signs (‘+’°, ‘=", ‘=’). The
sign ‘4’ indicates that the proposed approach is better than
the corresponding algorithm, the sign ‘=’ indicates that
the proposed ad-MOEA performs significantly equivalent
to the corresponding algorithm and the sign ‘-’ indicates that
the proposed approach is performing worse than the corre-
sponding algorithm respectively on a specific test instance.
From the results presented in Table 3, we can witness that
the ad-MOEA when compared with KnEA, out of 35 test
instances of DTLZ problems, performs better than KnEA
in 15 instances and equal performance in two instances and
worse performance in 18 instances. The proposed approach
outperforms KnEA in the problems DTLZ1 and DTLZ3,
performs competitive in DTLZ5 and DTLZ6 problems, and
performs worse in DTLZ2, DTLZ4 and DTLZ7 problems.
However, in KnEA, the parameter that controls the number of
knee points needs to be tuned for each problems depending
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on the characteristics of the problem and number of
objectives.

The ad-MOEA algorithm is outperformed by the RVEA
algorithm in terms of DTLZ problems as the proposed
approach performs better, equal and worse than RVEA
in eight, four and 23 instances respectively. RVEA algo-
rithm performing consistently better in the DTLZ1, DTLZ2,
DTLZ3, and DTLZ4 problems when compared to the
ad-MOEA, worse on DTLZ5 and DTLZ6 and competitively
on DTLZ7 problems. The performance of the ad-MOEA
is consistently better when compared with the algorithms
S-CDAS, NSGA-II, r-NSGAII and g-NSGAII. The proposed
approach performs better, identical and worse in 29, three
and three instances respectively when compared with the
S-CDAS. Except for the 2-objective case, the better perfor-
mance of ad-MOEA can be observed in all the DTLZ prob-
lems when compared with the S-CDAS. When compared with
the NSGA-II, ad-MOEA performs better in 28 instances and
equal performance in four instances and worse performance
in three instances. Similar to the algorithm S-CDAS, the
NSGA-II performs better in the 2-objective case and performs
worse in the remaining for the entire DTLZ problem suite.

The performance of the r-NSGAII and g-NSGAII are
even worse when compared to the proposed approach with
worse performance in 31 and 33 instances and equal per-
formance in three and one case and better performance
in one case each respectively. From the results presented
in the Table 3, we can notice a dominating performance
of the Ad-MOEA in all DTLZ problems when compared
with the r-NSGAII and g-NSGAII. When compared with the
algorithm, NSGAII-SDR, the proposed Ad-MOEA, performs
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TABLE 4. Mean and standard deviation values of Hypervolume results of proposed method with state of art algorithms on WFG problems.

# | M KnEA [6] RVEA [21] S-CDAS [27] NSGA-I [12] | r-NSGAI [31] | g-NSGAII[32] | NSGAII-SDR [34] | NSGA-II[8] | MOEA-D[13] | ad-MOEA
2 | 0.5746(0.0083)+ | 0.6170(0.0006)- | 0.6162(0.0005)= | 0.6161(0.0006)= | 0.4050(0.0052)+ | 0.6161(0.0008)= | _0.6141(0.0007)+ | 0.6168(0.0014)= | 0.6057(0.0056)+ | 0.6163(0.0006)
— [ 4 | 0.9695(0.0043)= | 0.9829(0.0003)- | 0.9724(0.0024)= | 0.9732(0.0019)= | 0.7888(0.0768)+ | 09727(0.0025)= | 0.9576(0.0040)+ | 0.9646(0.0491)+ | 0.9755(0.0028)- | 0.9703(0.0058)
2 [6 | 0.9864(0.0025)+ | 0.9932(0.0016)+ | 0.9953(0.0007)- | 0.9953(0.0005)- | 0.9691(0.0064)+ | 0.9953(0.0006)- 0.9734(0.0054)F | 0.9242(0.0833)+ | 0.9959(0.0006)- | 0.9949(0.0006)
= (T8 | 0.9879(0.0027)+ | 0.9916(0.0027)+ | 0.9987(0.0001)- | 0.9986(0.0002)- | 0.9888(0.0039)- | 0.9986(0.0002)- 0.9542(0.0279)y+ | 0.8615(0.0984)+ | 0.9976(0.0004)+ | 0.9982(0.0005)
10 | 0.9928(0.0026)+ | 0.9912 (0.0021)+ | 0.9991(0.0001)- | 0.9991(0.0001)- | 0.9975(0.0009)+ | _0.9992(0.0001)- 0.9654(0.0201)+ | 0.8714(0.1068)+ | 0.9985(0.0002)+ | 0.9988(0.0002)
2 | 0.4505(0.0006)- | 0.4426(0.0025)+ | 0.4503(0.0006)- | 0.4502(0.0004)- | 0.0449(0.0140)+ | 0.4502(0.0005)- 0.4475(0.0010)+ | 0.4350(0.0149)+ | 0.1310(0.0651)+ | 0.4497(0.0005)
o [ 4 | 05456(0.0231)+ | 0.3951(0.1256)+ | 0.5538(0.0163)+ | 0.5536(0.0191)+ | 0.5352(0.0370)+ | 0.5567(0.0164)+ | _0.3692(0.0487)+ | 0.5638(0.0217)= | 0.0000(0.0000)+ | 0.5631(0.0194)
2 [6 [ 04756(0.0305)+ | 0.3592 (0.1808)y+ | 0.5076(0.0324)+ | 0.5116(0.0203)+ | 0.5760(0.0286)- | 0.5095(0.0306)% | _0.3533(0.0344)+ _| 0.5331(0.0193)+ | 0.0000(0.0000)+ | 0.5449(0.0119)
= [T8 | 050350.0317)F | 0.3978(0.1693)+ | 0.5398(0.0232)+ | 0.5390 (0.0181)+ | 0.6511(0.0030)- | 0.5272 (0.0390)+ | _0.4773(0.0245)+ | 0.6014(0.0368)= | 0.0000(0.0000)+ | 0.5812(0.0097)
10 | 0.5444(0.0465)+ | 0.5068(0.0335)+ | 0.5193(0.0202)+ | 0.5192(0.0248)F | 0.6395(0.0029)- | 0.5171(0.0180)F | 0.4397(0.0176)+ | 0.5747(0.0143)= | 0.0035(0.0172)+ | 0.5634(0.0123)
2 | 0.4909(0.0036)= | 0.4792(0.0033)+ | 0.4912(0.0007)+ | 0.4909(0.0009)+ | 0.0041(0.0015)+ | 0.4913(0.0007)+ 0.4933(0.0006)- | 0.4639(0.0114)+ | 0.3552(0.0432)+ | 0.4920(0.0006)
o [ 4 | 0.2594(0.0034)- | 0.2244(0.0069)+ | 0.2570(0.0030)= | 0.2570(0.0024)= | 0.1125(0.0069)+ | 0.2569(0.0024)= | 0.2516(0.0036)+ | 0.2053(0.0527)+ | 0.1487(0.0303)+ | 0.2574(0.0021)
£ [6 | 0.14050.0121)+ | 0.1072(0.0192)+ | 0.1624(0.0068)+ | 0.1639(0.0071)+ | 0.0409(0.0159)+ | 0.1630(0.0067)+ | 0.1231(0.0198)+ | 0.0738(0.0238)+ | 0.0544(0.0240)+ | 0.1751(0.0041)
= [8 | 0.0897(0.0112)t | 0.0716(0.0212)+ | 0.1329(0.0088)+ | 0.1324(0.0084)r | 0.0391(0.0095)+ | 0.1335(0.0077)+ | _0.0898(0.0246)+ | 0.0403(0.0197)+ | 0.0494(0.0239)+ | 0.1543(0.0051)
10 | 0.0751(0.0121)+ | 0.0483(0.0238)+ | 0.1218(0.0059)+ | 0.1230(0.0056)+ | 0.0403(0.0058)+ | 0.1239(0.0053)+ | _0.1032(0.0177)+ | 0.0023(0.0036)+ | 0.0609(0.0275)+ | 0.1439(0.0038)
2 | 02534(0.0016)- | 0.2373(0.0031)+ | 0.2530(0.0008)- | 0.2524(0.0019)- | 0.1393(0.0096)+ | 0.2527(0.0013)- 0.2539(0.0008)- | 0.2505(0.0038)= | 0.2226(0.0129)+ | 0.2519(0.0009)
< [ 4 | 0.3745(0.0047)- | 0.3521(0.0108)- | 0.3087(0.0120)+ | 0.3010(0.0109)+ | 0.1941(0.0192)+ | 0.3082(0.0106)+ 03631(0.0047)- | 0.3270(0.0638)= | 0.2808(0.0169)+ | 0.3243(0.0092)
£ [6 | 0.3466(0.0144)- | 0.2548(0.0293)+ | 0.2255(0.0120)+ | 0.2300(0.0106)+ | 0.1654(0.0601)+ | 0.2290(0.0156)+ 0.3625(0.0075)- | 0.2327(0.0875)+ | 0.2515(0.0248)+ | 0.2921(0.0147)
= [T8 | 04186(0.0193)= | 0.4176(0.0363)= | 0.3459(0.0188)+ | 0.3387(0.0208)+ | 0.2104(0.0437)+ | 0.3351(0.0167)+ 0.5410(0.0093)- | 0.4474(0.0431)- | 0.3605(0.0242)+ | 0.4176(0.0125)
10 | 0.4468(0.0240)- | 0.4183(0.0315)= | 0.3257(0.0160)+ | 0.3213(0.0150)+ | 0.2156(0.0205) | 0.3195(0.0148)+ 0.5739(0.0086)- | 0.3819(0.1342)+ | 0.4077(0.0184)+ | 0.4106(0.0158)
2| 0.2740(0.0081)+ | 0.3011(0.0011)+ | 0.3046(0.0005)- | 0.3049(0.0006)- | 0.1203(0.0091)+ | 0.3015(0.0005)+ 0.3054(0.0004)- | 0.3060(0.0004)- | 0.2863(0.0038)+ | 0.3040(0.0007)
v [ 4 | 0.2608(0.0042)- | 0.2467(0.0022)- | 0.2329(0.0098)= | 0.2322(0.0065)+ | 0.0320(0.0054) | 0.0280(0.0006)+ 0.2669(0.0025)- | 0.2641(0.0036)- | 0.1715(0.0171)+ | 0.2377(0.0111)
£ [6 [ 0.1549(0.0186)+ | 0.1931(0.0049)— | 0.1776(0.0116)+ | 0.1824(0.0137)+ | 0.0000(0.0000)+ | 0.1797(0.0158)+ 0.2715(0.0018)- | 0.2423(0.0050)- | 0.1454(0.0139)+ | 0.1935(0.0131)
= 78 [ 0.1927(0.0179)= | 0.2183(0.0033)- | 0.1875(0.0154) | 0.1881(0.0159)+ | 0.0000(0.0000)~ | 0.1900(0.0157)= 0.3262(0.0029)- | 0.2718(0.0191)- | 0.1750(0.0161)+ | 0.1980(0.0162)
10 | 0.1751(0.0221)+ | 0.2096(0.0047)- | 0.1839(0.0172)= | 0.1799(0.0137)+ | 0.0000(0.0000)+ | 0.1843(0.0148)= 0.3374(0.0025)- | 0.2669(0.0276)- | 0.1665(0.0143)+ | 0.1899(0.0148)
2 | 03056 (0.0041)- | 0.2891(0.0043)+ | 0.3032(0.0032)= | 0.3040(0.0042)= | 0.0000(0.0000)+ | 0.2985(0.0042)* | _0.3053(0.0043)=_ | 0.3019(0.0041)= | 0.2558(0.0285)+ | 0.3029(0.0039)
o [ 4 | 02178(0.0213)+ | 0.2530(0.0132)- | 02167(0.0218)+ | 0.2134(0.0218)+ | 0.0000(0.0000)+ | 0.2142(0.0165)+ 02779(0.0122)- | 0.2630(0.0291)- | 0.1094(0.0165)+ | 0.2357(0.0141)
£ [6 [ 0.0924(0.0284)+ | 0.1772(0.0335)= | 0.1226(0.0291)+ | 0.1270(0.0273)+ | 0.0000(0.0000)+ | 0.1226 (0.0280)+ | _ 0.2330(0.0251)- | 0.2153(0.0386)- | 0.0816(0.0145) | 0.1698(0.0214)
Z [ 78 | 0.10490.0212)t | 0.1602(0.0287)=_ | 0.1183(0.0294)+ | 0.1190(0.0270)+ | 0.0000(0.0000)+ | 0.1250 (0.0324)+ | _0.2506(0.0241)- | 0.2126(0.0283)- | 0.0955(0.0243)+ | 0.1508(0.0347)
10 | 0.0823(0.0197)+ | 0.1520(0.0369)= | 0.1300(0.0235)= | 0.1139(0.0271)+ | 0.0000(0.0000)+ | 0.1142(0.0255)+ 0.2348(0.0247)- | 0.2049(0.0263)- | 0.0944(0.0226)+ | 0.1346(0.0287)
2 | 0.2804(0.0044)= | 0.2766(0.0027)+ | 0.2856(0.0005)- | 0.2858(0.0007)- | 0.1653(0.0245)+ | 0.2859(0.0006)- 0.2862(0.0005)- | 0.2151(0.0455)+ | 0.2763(0.0042)+ | 0.2814(0.0022)
= [ 4 | 0.4895(0.0037)- | 0.4812(0.0067)- | 0.4390(0.0059)= | 0.4412(0.0083)= | 0.2213(0.0267)+ | 0.4387(0.0103)= 0.4871(0.0042)- | 0.4205(0.0790)+ | 0.4183(0.0214)+ | 0.4402(0.0100)
2 [6 | 0.5415(0.0058)- | 0.5161(0.0212)- | 0.4655(0.0093)- | 0.4689(0.0103)- | 0.3920(0.0242)+ | 0.4643(0.0077)- 0.5325(0.0068)- | 0.4139(0.0846)+ | 0.4203(0.0274)+ | 0.4488(0.0210)
Z 78 [ 0.5789(0.0108)- | 0.5631(0.0147)- | 0.5070(0.0102)= | 0.5094(0.0087)= | 0.4664(0.0177)% | 0.5068(0.0107)= 0.5576(0.0098)- | 0.2823(0.1595)+ | 0.3752(0.0355)+ | 0.5046(0.0135)
10 | 0.5460(0.0374)= | 0.5805(0.0173)- | 0.5455(0.0084)= | 0.5457(0.0078)= | 0.5326(0.0110)+ | 0.5427(0.0098)= 0.5753(0.0112)- | 0.3158(0.1179)+ | 0.4009(0.0284)+ | 0.5475(0.0114)
2 | 0.5667(0.0179)= | 0.5041(0.0133)+ | 0.5913(0.0173)- | 0.5872(0.0113)- | 0.2157(0.0600)+ | 0.5278(0.0112)+ | 0.5519(0.0167)+ | 0.4336(0.0193)+ | 0.2236(0.0870)+ | 0.5739(0.0138)
o [ 4 | 0.0258(0.0186)+ | 0.0118 (0.0127)+ | 0.0811(0.0312)= | 0.0870(0.0290)= | 0.0056(0.0017)+ | 0.0000(0.0000)+ | 0.0951(0.0236)= | 0.1704(0.0209)- | 0.0075(0.0074)+ | 0.0928(0.0137)
2 [6 [ 0.02990.0113)+ | 0.0064(0.0191)+ | 0.0910(0.0260)= | 0.0780(0.0175)= | 0.0020(0.0020)+ | _0.0000(0.0000)+ 0.1143(0.0131)- | 0.1494(0.0140)- | 0.0014(0.0019)+ | 0.0829(0.0120)
= (T8 | 0.0353(0.0081)+ | 0.0713(0.0363)= | 0.0383(0.0166)+ | 0.0425(0.0143)+ | 0.0000(0.0000)+ | 0.0000(0.0000)+ 0.1367(0.0150)- | 0.1511(0.0147)- | 0.0057(0.0043)+ | 0.0780(0.0087)
10 | 0.0226(0.0056)+ | 0.0956(0.0327)- | 0.0283(0.0116)+ | 0.0297(0.0149)+ | 0.0000(0.0000)+ | 0.0000(0.0000)+ 0.1128(0.0106)- | 0.1200(0.0168)- | 0.0036(0.0029)+ | 0.0762(0.0091)
2 | 0.2138(0.0030)= | 0.2075(0.0041)+ | 0.2146(0.0021)= | 0.2144 (0.0021)=_| 0.1243(0.0084)+ | 0.2146(0.0025)= | _0.2161(0.0028)= | 0.2161(0.0023)= | 0.2015(0.0055)+ | 0.2144(0.0025)
o [ 4 | 0.5091(0.0243)- | 0.4667(0.0279)- | 0.4038(0.0153)+ | 0.4039(0.0141)+ | 0.2063(0.0389)+ | 0.3154(0.0129)+ 05114(0.0163)- | 0.4648(0.0353)- | 0.3544(0.0207)+ | 0.4490(0.0178)
£ [T6 | 0.5845(0.0331)- | 0.4521(0.0416)+ | 0.3816(0.0282)+ | 0.3787(0.0211)+ | 0.2200(0.0383)+ | 0.2752 (0.0147)+ | _ 0.5846(0.0264)- | 0.5468(0.0432)- | 0.3628(0.0209)+ | 0.4682(0.0219)
= (8 | 0.6234(0.0585)- | 0.5667(0.0694)- | 0.4481(0.0186)+ | 0.4513(0.0249)+ | 0.3003(0.0811)+ | 03175 (0.0136)+ | _0.7040(0.0710)- | 0.6648(0.0689)- | 0.4522(0.0343)+ | 0.5359(0.0406)
10 | 0.6324(0.0916)- | 0.5571(0.0912)+ | 0.5168(0.0195)+ | 0.5244(0.0189)+ | 0.4689(0.0462)+ | 0.3599(0.0172)+ 0.6979(0.0256)- | 0.7107(0.0546)- | 0.5055(0.0334)+ | 0.5824(0.0320)
/= 22/8/15 24/7/14 23/13/9 26/10/9 41/0/4 29/9/7 15327 | 19/8/18 43/012

better in 21 instances and equal in four instances and worst
in 10 instances. The performance of proposed approach is bet-
ter in the problems DTLZ1 and DTLZ4 when compared with
the NSGAII-SDR and a competitive performance is observed
in the problems DTLZ2, DTLZ3, DTLZS5 and DTLZ6. The
NSGAII-SDR approach is performs better than the proposed
ad-MOEA approach on the DTLZ7 problem. The perfor-
mance of NSGA-III algorithm is better than the proposed
algorithm, ad-MOEA in 22 instances and with equal and
worse performance in four and nine instances respectively.
NSGA-III algorithm performs consistently better in DTLZ1,
DTLZ2, DTLZ3, DTLZ6 and DTLZ7 when compared to
the proposed approach. The proposed approach performs
better than NSGA-III in DTLZS problem and competitive
in DTLZ4 problem. The proposed approach ad-MOEA per-
forms better than MOEA-D approach on 26 instances, equal
performance in one instance and worse in eight instances. The
proposed approach performs better on DTLZ1, DTLZ3, and
DTLZ5-DTLZ7 problems and competitive on DTLZ2 and
DTLZ4 problems when compared with MOEA-D approach.

B. COMPARISON OF ALGORITHMIC PERFORMANCE

ON WFG PROBLEMS

In this section, we have presented the experimental results
of the ad-MOEA with state-of-art algorithms on the
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WEFG problems. The mean and standard deviation results of
hypervolume indicator for the WFG problems are reported
in Table 4. Similar to the DTLZ problems, significance
tests are conducted and the performance comparison of
proposed approach with the state-of-art algorithm are pre-
sented in Table 4. From the results presented in the
Table 4, we can witness that the performance of ad-MOEA
is better when compared with KnEA, RVEA, S-CDAS
and NSGA-II and outstanding when compared with the
r-NSGAII and g-NSGAII and competitive when compared
with NSGA-III and slightly underperforming when compared
with NSGAII-SDR. The performance of proposed approach
when compared with KnEA, out of 45 test instances of WFG
problems, performs better on 22 instances, competitive, and
worse on eight and 15 instances respectively. The perfor-
mance of ad-MOEA when compared with KnEA is better
in WFG1, WFG2, WFG3, WFG6 and WFGS8 problems and
competitive on WFGS5 problem. The KnEA algorithm per-
forms better in WFG4, WFG7 and WFG9 problems when
compared with proposed approach.

The performance of proposed approach is better
in 24 instances, identical in seven instances, and worse in 14.

The algorithm ad-MOEA exhibits a dominating perfor-
mance when compared with RVEA algorithm for the prob-
lems. WFG2 and WFG3 and slightly better performance on

82791



IEEE Access

V. Palakonda, R. Mallipeddi: Evolutionary Algorithm for Multi and Many-Objective Optimization

TABLE 5. Mean and standard deviation values of Hypervolume results of proposed method with State of art algorithms on MaOP problems.

# M KnEA [6] RVEA [21] S-CDAS [27] NSGA-II [12] r-NSGAII [31] [ g-NSGAII [32] | NSGAII-SDR [34] | NSGA-III [8] MOEA-D [13] ad-MOEA
— [ 4 [ 0.0255(0.0011)- | 0.0024(0.0011)+ | 0.0152(0.0017)+ | 0.0148(0.0021)+ | 0.0000(0.0000)+ | 0.0146(0.0019)= | _0.0039(0.0006)* | 0.0090(0.0018)+ | 0.0004(0.0013)+ | 0.0186(0.0011)
5 [ 6 | 9.604(0.9e4)- | 0.8c-4(03c-4yr | 4.6e4(0.6ed)yr | 4.5¢-4(0.7e-04)y | 0.0000(0.0000)+ | 4.5c-4(0.6e4)r | 6.7e-4(0Ac-d)= | 3.8¢-4(09e-d)yr | 1.7¢-5(03e-5)+ | 6.8c-4(0.8¢-4)
E [8 [ 32e5(07e5)- | 03e502e5)r | 1.7e-504e5)r | 19e-50A4e5)r | 0.0000(0.0000) | 1.8e-5(0.4e-5)+ 3.5¢-5(0.6¢-5)- 0.1e-5(0.1e-5)+ | 0.1e-5(0.1e-5)F | 2.6e-4(0.5¢-5)
10 | 2.0e-6(1.7c-6)= | 0.1e-6(04c-6)% | 1.0c-6(1.1c-6)- 0.9¢-6(0.9¢-6)=__ | 0.0000(0.0000)+ | 0.7¢-6(1.0e-6)= | 2.2¢-6(1.6c-6)= | 0.3c-7(02¢-6)* | 03¢-7(0.2c-6)+ | 1.7c-6(1.2¢-6)
|4 [ 09672(00117)- | 09767(0.0041)- | 0.8949(0.0483)= | 09042(0.0431)= | 0.9542(0.0188)- | 0.0000(0.0000y+ | 0.9165(0.0214)= | 0.9792(0.0066)- | 0.8488(0.0667)+ | 0.9183(0.0331)
& [ 6 [ 1.0000(0.0000)- | 0.9990(0.0005)+ | 0.9424(0.0720)+ | _0.9407(0.0735)+ | 0.7557(0.0442) | 0.0000(0.0000) | _0.9755(0.0112)+ | 0.9947(0.0064)+ | 0.9974(0.0034)+ | 0.9997(0.0004)
£ [ [ 1.0000(0.0000)= [ 0.9999(0.000D)+ | 0.9975(0.0008)+ | 0.9974(0.0008)+ | 0.9535(0.0126)+ | 0.8282(0.0040)+ | 0.9991(0.001)+ | 0.9994(0.0009)+ | 1.0000(0.0000)=_| 1.0000(0.0000)
10| 1.0000(0.0000)= | 1.0000(0.0000)= | 0.9999(0.0000)+ | _0.9999(0.0000)+ | 0.9989(0.0003)+ | 0.9943(0.0001)+ | _1.00000.0000)= | 1.0000(0.0000)= | _1.0000(0.0000)=_| 1.0000(0.0000)
4 [ 0.6258(0.0046)- | 0.6602(0.0034)- | 0.5128(0.0126)* | 0.5167(0.0115)+ | 0.0850(0.0010)+ | 0.0708(0.0034)+ | 0.2380(0.0127)+ | 0.6544(0.0011)- | 0.5574(0.0160)- | 0.5485(0.0110)
& [ 6 | 08560(0.0080) | 0.8811(0.0003)- | 0.4297(0.0989)+ | 0.4067(0.0816)+ | 0.0496(0.0026)+ | 0.0147(0.0014)y | 0.5405(0.0067)+ | 0.8762(0.0224)- | 0.7985(0.0113)- | 0.7372(0.0168)
£ [8 [ 09801(0.0014) | 0.9875(0.000)- | 0.5480(0.0376)+ | 0.5361(0.0412)+ | 0.0309(0.0016)+ | 0.4563(0.4109) | 0.9418(0.0282)- | 09827(0.0091)- | (0.9740(0.0028)- | 0.7735(0.0707)
10| 0.9986(0.0001)- | 0.9988(0.0000)- | 0.7349(0.0148)+ | 0.7410(0.0181)+ | 0.0232(0.0010)+ | 0.7754(0.1345)+ | _ 0.9986(0.0001)- | 0.9971(0.0035)- | 0.9974(0.0002)- | 0.8642(0.0169)
+ |4 [ 04083(0.0045)- | 0.3418(0.0326)+ | 0.3917(0.0068)- | 0.3936(0.0060)- | 0.3553(0.0299)+ | 0.0000(0.0000)+ | 0.4134(0.0027)- | 0.4022(0.0026)- | 0.3341(0.0640)+ | 0.3870(0.0088)
& [ 6 [0.7230(0.0393)+ | 0.8697(0.0041)- | 0.8172(0.0112)+ | 0.8143(0.0132)+ | 0.3735(0.0696)+ | 0.0083(0.0454)+ | 0.8735(0.0022)- | 0.8631(0.0464)- | 0.7817(0.1103)+ | 0.8223(0.0115)
£ [[8 [ 0.9999(0.0003)+ [ 1.0000(0.0000)=_| 0.9990(0.0011)+ | 0.9988(0.0014) | 0.7465(0.1325)+ | 0.0743(0.2362)+ | _1.0000(0.0000)= | 1.0000(0.0000)= | 0.9997(0.0017)+ | 1.0000(0.0000)
10| 0.5957(0.2129)+ | 1.0000(0.0000)- | 0.9850(0.0513)+ | 0.9971(0.0106)+ | 0.7857(0.1386)+ | 0.5611(0.4992)+ | _1.0000(0.0000)- | 0.9997(0.0011)+ | 1.0000(0.0000)- | 0.9999(0.0002)
4 [ 02024(0.0343)+ | 0.1565(0.0574)+ | 0.3022(0.0037)= | 0.3029(0.0024)= | 0.2148(0.1055)+ | 0.0022(0.0063) | 0.2492(0.0269)+ | 0.1749(0.0288)+ | 0.1906(0.0140)+ | 0.3027(0.0015)
& [ 6 [02296(0.0108)+ | 0.2901(0.0214)+ | 0.2882(0.0136)+ | 0.2921(0.0122)+ | 0.3664(0.0017)- | 0.0320(0.0261)+ | 0.2542(0.0224)+ | 0.3068(0.0404)= | 0.2129(0.0087)+ | 0.3268(0.0213)
£ [8 [05095(0.0070)+ | 0.5551(0.0136)= | 0.5418(0.0118)F | 05399(0.0128)+ | 0.5261(0.1723)+ | 0.0087(0.0220)+ | 0.5365(0.0123)+ | 0.5466(0.0210)+ | 0.4905(0.0044)+ | 0.5589(0.0076)
10| 0.8775(0.0640)+ | 0.9939(0.0001)+ | 0.9016(0.0787)+ | 0.9162(0.0712)+ | 0.9858(0.0265)+ | 0.5406(0.0706) | _0.9940(0.0001)+ | 0.9317(0.0788) | 0.7681(0.0005)+ | 0.9941(0.0001)
o |4 | 048740.0078) | 0.3181(0.0548)+ | 0.5097(0.0029)* | 0.5097(0.0034)+ | 0.5111(0.0025) | 0.0624(0.0131)+ | 0.4120(0.0292)+ | 0.3421(0.1543)+ | 0.3915(0.0706)+ | 0.5177(0.0055)
& [ 6 [ 08772(0.0096)~ | 09139(0.0083)- | 0.8864(0.0185)+ | 0.8886(0.0171)+ | 0.9280(0.0014)- | 04815(0.0569)+ | _0.9088(0.0077)+ | 0.8811(0.1209)+ | 0.7149(0.0628)~ | 0.9086(0.0097)
Z [ [0.79990.0227)+ [ 0.8951(0.0084)- | 0.7743(0.0402)+ | 0.7840(0.0373)+ | 0.9014(0.0042)- | 0.4101(0.0667)*+ | 0.8849(0.0314)- | 0.7334(0.2298)+ | 0.6893(0.0690)+ | 0.8679(0.0099)
10| 0.8849(0.0417)+ | 0.9769(0.0437)+ | 0.9822(0.0076)+ | 0.9830(0.0087)+ | 0.9311(0.0372)+ | 0.8475(0.0207)+ | _0.8950(0.0205)+ | 0.9598(0.0359) | 0.9417(0.0077)+ | 0.9876(0.0057)
|4 [ 03571(0.0061)= | 0.2895(0.0226)+ | 0.3583(0.0063)= | 0.3570(0.005D)= | 0.0096(0.0085)+ | 0.0007(0.0000)+ | 0.2856(0.0162)+ | 0.2717(0.0918)+ | 0.2416(0.0270)+ | 0.3573(0.0052)
5 [ 6 [02503(0.0121)+ | 0.0636(0.0210)+ | 0.2713(0.0030)+ | 0.2723(0.0034)+ | 0.0050(0.0036)+ | 0.0009(0.0000)+ | _0.2247(0.0210)+ | 0.1325(0.1009)+ | 0.2029(0.0202)+ | 0.2791(0.0056)
£ [8 [01777(0.0119) | 0.0346(0.0138)+ | 0.2180(0.0027)+ | 02186(0.0030)+ | 0.0052(0.0034)+ | 0.0010(0.0000)+ | 0.1978(0.0247)+ | 0.1550(0.0524)+ | 0.1886(0.0172)+ | 0.2223(0.0061)
10| 0.12870.0131)+ | 0.0324(0.0122)+ | 0.1898(0.0048)= | 0.1887(0.0051)= | 0.0053(0.0020)+ | 0.0011(0.0000)+ | _ 0.1960(0.0056)- | 0.0820(0.0522)+ | 0.1783(0.0139)+ | 0.1908(0.0073)
» |4 | 036700.0047)- | 0.3046(0.0241)* | 0.3595(0.0045)= | 0.3581(0.0050)+ | 0.0093(0.0088)+ | 0.0007(0.0000+ | 0.2835(0.0235)+ | 0.2730(0.0902)+ | 0.2389(0.0310)+ | 0.3609(0.0047)
S [ 6| 02673(0.0095)+ | 0.0750(0.0245)+ | 0.2792(0.0045)+ | _0.2795(0.0053)+ | 0.0050(0.0036)+ | 0.0008(0.0000)+ | 0.2355(0.0246)+ | 0.0982(0.099)+ | 0.2063(0.0209)+ | 0.2889(0.0048)
£ 8 [0.1898(0.0137)+ | 0.0302(0.0126)+ | 0.2259(0.0046)+ | 0.2245(0.0053) | 0.0043(0.0029)+ | 0.0009(0.0000)+ | 0.2166(0.0168)r | 0.1679(0.0645) | 0.1925(0.0172)+ | 0.2359(0.0049)
10| 0.1309(0.0150)+ | 0.0393(0.0123)+ | 0.1967(0.0050)+ | 0.1973(0.0059)+ | 0.0048(0.0019)+ | 0.0010(0.0000)+ | 0.2061(0.0043)= | 0.0972(0.0471)+ | 0.1833(0.0131)+ | 0.2063(0.0034)
o |4 [ 03796(0.0063)- | 0.3128(0.0448)+ | 0.3728(0.0066)- | 0.3751(0.0078)- | 0.0107(0.0108)+ | 0.0007(0.0000+ | 0.2992(0.0169)+ | 0.2968(0.0959)+ | 0.2673(0.0334)+ | 0.3694(0.0072)
& [ 6] 0277600.0110)+ | 0.0645(0.0235)% | 0.3028(0.0079)= | 0.3023(0.0051)= | 0.0049(0.0044) | 0.0009(0.0000)+ | 0.2386(0.0362)+ | 0.2574(0.1148) | 0.2261(0.0311)+ | 0.3002(0.0039)
£ 8 [0.185500.0193) | 0.0319(0.0157)+ | 02493(0.0084) | 02498(0.0062)- | 0.0043(0.0023)+ | 0.0011(0.0000)+ | 0.2265(0.0178) | 0.1585(0.0405)+ | 02075(0.0239)+ | 0.2421(0.0095)
10_| 0.0616(0.0198)+ | 0.0275(0.0109)+ | 0.2161(0.0074)= | 0.2157(0.0122)= | 0.0052(0.0018)+ | 0.0015(0.0000)+ | _ 0.2362(0.0080)- | 0.1298(0.0259)+ | 0.2108(0.0161)=_| 0.2159(0.0120)
_ |4 [ 038550.0056)- | 03237(0.0331) | 0.3794(0.0094)- | 03821(0.0084)- | 0.0112(0.0081)+ | 0.0007(0.0000)+ | 0.2979(0.0232y+ | 0.3408(0.0620)+ | 0.2618(0.0273y+ | 0.3743(0.0089)
= [ 6 | 02920(00107)+ | 0.0577(0.0206)+ | 0.3127(0.0073)- | 0.3099(0.0070)= | 0.0044(0.0035)+ | 0.0009(0.0000)+ | 0.2536(0.0287)+ | 0.2444(0.1154)+ | 0.2335(0.0238)+ | 0.3074(0.0077)
8 [8 [ 0.1962(0.0202)+ | 0.0301(0.0138)+ | 02590(0.0074)- | 0.2582(0.0077)- | 0.0039(0.0025)+ | 0.0012(0.0000)+ | 02359(0.0247)+ | 0.1700(0.0272)+ | 02212(0.0278)+ | 0.2522(0.0107)
= 770 [ 0.093500215)" | 0.0273(0.0093)F | 0.2297(0.0083)= | 0.22710.0091)= | 0.0060(0.0022) | 0.0016(0.0000)7 | 0.2402(0.0097)- | 0.1282(0.0383)* | 02128(0.0130)r | 0.2263(0.0100)
= 23/4/13 28/3/9 25/9/6 26/9/5 36/0/4 38/2/0 24/6/10 | 300377 32/3/5

WFG1 and WFGS8 problems. The proposed approach per-
forms competitively on WFG4, WFG6 and WFG9 problems
and worse on WFGS5 and WFG7 problems when compared
with RVEA algorithm. The performance of the ad-MOEA
is better in 23 and equal in 13 and worse in nine instances
when compared to S-CDAS and better in 26 instances and
equivalent in 10 instances and worse in nine instances respec-
tively when compared with compared with the NSGA-IIL. The
performance of ad-MOEA when compared with S-CDAS
and NSGA-II, demonstrates better performance on WFG2,
WFG3, WFG4, WFG6 and WFG9, competitive performance
on WFG1, WFG7 and WFGS8 problems. The proposed
approach performs better on the problem WFGS5 when com-
pared to NSGA-II and performs competitive when compared
with S-CDAS algorithm. The ad-MOEA approach exhibits
dominating performance when compared r-NSGAII with bet-
ter performance in 41 instances, identical performance in zero
instance and worse in four instances.

From the comparisons presented in the Table 4, we can
notice that for the entire WFG problem suite, the ad-MOEA
completely dominates the performance of r-NSGAII algo-
rithm. The algorithm ad-MOEA when compared g-NSGAII
illustrates better performance on 29 instances, identical
performance in nine instances and worse performance in
seven instances. The proposed approach performs consis-
tently better on WFG2, WFG4, WFGS5, WFG6, WFG8 and
WFGY problems and competitive on WFG1, WFG3 and
WEFG9 problems. The performance of ad-MOEA is slightly
outperformed by NSGAII-SDR algorithm. The proposed
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approach depicts better performance in 15 instances and
equal performance in three instances and worse perfor-
mance in 27 instances. The ad-MOEA algorithm, when
compared with NSGAII-SDR algorithm performs better on
WFG1-WFG3 problems and exhibits worse performance on
WFG4-WFG9 problems respectively. When compared with
the NSGA-III, ad-MOEA is performing competitively with
better performance in 19 instances and equal performance
in eight instances and worse performance in 18 instances.
The proposed approach performs better on WFG1, WFG3
and WFG7 problems when compared with NSGA-III algo-
rithm and competitively on WFG2 and WFG4 problems.
NSGA-III algorithm performs better on the WFGS, WFG6,
WFG8 and WFG9 problems when compared with the pro-
posed approach. The proposed ad-MOEA performs better
than MOEA-D algorithm on 43 instances, competitive on
zero instances and worse on two instances. From the results
presented in the Table 4, we can demonstrate that the pro-
posed approach exhibits a dominating performance on entire
WFEFG test suite when compared with the MOEA-D algorithm.

C. COMPARISON OF ALGORITHMIC PERFORMANCE

ON MaOP PROBLEMS

In this section, experimental results of the ad-MOEA with
state-of-art algorithms on the MaOP problem suite are pre-
sented. The mean and standard deviation values of the
hypervolume indicator for the MaOP problems are reported
in Table 5. From the results presented in the Table 5, we can
witness that the proposed approach outperforms all the

VOLUME 8, 2020
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TABLE 6. Overall performance comparison of proposed method with state of art algorithms on benchmark problems.

Compared with

Problem Suite

KnEA [6]

RVEA [21]

S-CDAS [27]

NSGA-II [12]

r-NSGAII [31]

g-NSGAII [32]

NSGAII-SDR [34]

NSGA-III [8]

MOEA-D [13]

ad-MOEA
(+=1)

DTLZ

15/2/18

8/4/23

29/3/3

28/4/3

31/3/1

33/11

21/4/10

9/4/22

26/1/8

WFG

22/8/15

24/7/14

23/13/9

26/10/9

41/0/4

29/9/7

15/3/27

19/8/18

43/0/2

MaOP

23/4/13

28/3/9

25/9/6

26/9/5

36/0/4

38/2/0

24/6/10

30/3/7

32/3/5

Overall

60/14/46

60/14/46

7712518

80/23/17

108/3/9

100/12/8

60/13/47

58/15/47

101/4/15

Comparison

algorithms considered for comparison on MaOP problems.
The proposed approach when compared with the KnEA algo-
rithm on MaOP benchmark problems, out of 40 test instances
performs better in 23 instances and equal performance
in four instances and worse performance in 13 instances.
ad-MOEA performs better than the KnEA algorithm in
MaOP4-MaOP10 problems and competitive performance is
witnessed for the MaOP2 problem. KnEA algorithm per-
forms better than proposed approach in the MaOP1 and
MaOP3 problems. ad-MOEA in comparison with RVEA per-
forms better in 28 instances, identical in three instances and
worse in nine instances. The proposed algorithm performs
better in the MaOP1, MaOP5 and MaOP7-MaOP10 problems
when compared with the RVEA algorithm. The RVEA algo-
rithm when compared with the ad-MOEA performs better in
MaOP3 problem and competitive in the MaOP2, MaOP4 and
MaOP6 problems respectively.

When compared with the S-CDAS and NSGA-II
approaches, the proposed algorithm performs better in 25 and
26 instances, identical in nine and nine instances, and
worse in six and five instances respectively. The ad-MOEA
in comparison with S-CDAS and NSGA-II performs bet-
ter in MaOP1-MaOP6, MaOP8 problems and competitive
in the MaOP7, MaOP9-MaOP10 problems. The proposed
approach exhibits a dominating performance when compared
with the -NSGAII and gNSGA-II with better performance
in 36 and 38 instances and identical performance in zero
and two instances and worse performance in four and zero
instances respectively. The proposed approach when com-
pared with -NSGAII performs better on MaOP1-MaOP5 and
MaOP7-MaOP10 problems and competitive performance on
MaOP6 problem. The algorithm ad-MOEA in comparison
with g-NSGAII performs better on the entire MaOP problem
suite.

The proposed approach performs better than NSGAII-SDR
in 24 instances, identical in six instances, and worse in
10 instances. The proposed approach depicts better perfor-
mance on MaOP5, MaOP7-MaOP10 problems when com-
pared with NSGAII-SDR. The algorithm ad-MOEA performs
competitive on MaOP1, MaOP2 and MaOP6 problems and
worse performance on MaOP3 problems. When compared
with NSGA-III, ad-MOEA, performs better on 30 instances
and identical in three instances and worse on seven
instances. The performance of ad-MOEA when compared
with NSGA-III is competitive on MaOP2 and MaOP4 prob-
lems and worse on MaOP3 problem. ad-MOEA performs
better than NSGA-III on MaOP1, MaOP5-MaOP10 prob-
lems. The proposed approach perform better than MOEA-D
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algorithm on 32 instances, identical on three instances and
worse on five instances. The proposed approach outperforms
MOEA-D on MaOP1 and MaOP4-MaOP10 problems and
exhibits competitive performance on MaOP2 problem and
worse performance on MaOP3 problem.

D. OVERALL PERFORMANCE COMPARISON OF ad-MOEA

WITH RESPECT TO STATE-OF-ART ALGORITHMS

In this section, we present the overall comparison of
ad-MOEA algorithm with respect to the state-of-art algo-
rithms for DTLZ, WFG and MaOP test problems com-
bined. From the comparisons presented in the Table 6,
we can witness that ad-MOEA algorithm when compared
with the KnEA algorithm, out of 120-test instance per-
forms better in 60 instances, equal in 14 instances and
worse in 46 instances. The KnEA algorithm performs bet-
ter than ad-MOEA algorithm for DTLZ problems whereas
ad-MOEA approach outperforms KnEA algorithm in WFG
and MaOP problems. When compared to with RVEA algo-
rithm, the proposed approach performs better in 60 instances,
equal in 14 instances and worse in 46 instances. RVEA algo-
rithm outperforms the ad-MOEA in DTLZ problems whereas
the ad-MOEA algorithm outperforms RVEA algorithm for
WEFG and MaOP problems.

The proposed approach performs better than S-CDAS
and NSGA-II algorithms in 77 and 80 instances, equal
in 25 and 23 instances and worse in 18 and 17 instances
respectively. When compared with the r-NSGAII and
g-NSGAII algorithm, the proposed approach performs better
in 108 and 100 instances and equal in three and 12 instances
and worse in nine and eight instances respectively.. When
compared to NSGAII-SDR algorithm, the ad-MOEA algo-
rithm performs better in 60 instances and equal in 13 cases
and worse in 49 cases. The proposed approach performs
better than NSGAII-SDR in DTLZ and MaOP problems
and worse in the WFG problems. When compared with
NSGA-III algorithm, ad-MOEA approach performs better
in 58 instances, equal in 15 instances and worse in 47 cases.
The ad-MOEA algorithm outperforms NSGA-III algorithm
in MaOP problems and competitive performance of proposed
approach is observed in WFG problems. In comparison with
MOEA-D algorithm, the proposed approach perform better
in 101 instances, competitive on 4 instance and worst on
15 instances. The proposed approach exhibits a dominat-
ing performance on the DTLZ. WFG and MaOP problem
suites when compared with S-CDAS, NSGA-II, r-NSGAII,
g-NSGAII and MOEA-D algorithms.
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TABLE 7. Mean and standard deviation values of Hypervolume results of proposed method with state of art algorithms on real-world problems.

NSGAII-SDR
Problem KnEA [6] RVEA [21] S-CDAS [27] | NSGA-II[12] | r-NSGAII[31] | g-NSGAI [32] SGI3 4IS NSGA-III 8] | MOEA-D [13] 2d-MOEA
Car side impact design | 0.4062(0.0308)= | 0.3588(0.0310)+ | 0.4518(0.0079)- | 0.4523(0.0076)- | 0.1135(0.0316)+ | 0.2363(0.0178)+ | 0.3250(0.0177)+ | 0.4274(0.0143)= | 0.2383(0.0593)+ | 0.4134(0.0140)
C‘)“C"'g;z;f’;:"““"e 0.5183(0.0203)+ | 0.5350(0.0557)= | 0.5415(0.0086)= | 0.5444(0.0088)= | 0.4700(0.0017)+ | 0.5188(0.0163)+ | 0.5928(0.0165)- | 0.5206(0.0164)+ | 0.4702(0.0034)+ | 0.5393(0.0182)
Water resource planning | 0.7916(0.0043)- | 0.7573(0.0085)+ | 0.7666(0.0141)= | 0.7681(0.0148)= | 0.5750(0.0052)+ | 0.7131(0.0100)+ | 0.7540(0.0197)+ | 0.7988(0.0052)- | 0.7431(0.0621)+ | 0.7650(0.0119)
Car cab design 0.0487(0.0051)= | 0.0035(0.0025)+ | 0.0494(0.0031)= [ 0.0476(0.0031)= | 0.0485(0.0058)= | 0.0189(0.0027)+ | 0.0028(0.0008)+ | 0.0517(0.0031)= | 0.0064(0.0037)+ | 0.0483(0.0046)
Five degree of freedom |, 5 ¢76(( 0297)= | 0.2543(0.0387)+ | 0.2959(0.0225)= | 0.2917(0.0207)= | 0.2818(0.0267)= | 0.2886(0.0253)= | 0.2944(0.0172)= | 02941(0.0201)= | 03742(0.0058)- | 0.2920(0.0178)
vehicle vibration model
+=l- 1173 4/1/0 0/4/1 0/4/1 3210 4/1/0 311 1173 4/0/1
TABLE 8. Runtime comparison of proposed method with state of art algorithms on DTLZ2 benchmark problem.
. NSGAII-SDR
Problem M KnEA [6] RVEA [21] S-CDAS [27] | NSGA-II([12] | r-NSGAm [31] | ¢ 1"[2(;]“" 34] NSGA-III [8] | MOEA-D [13] 2d-MOEA
2 1.1674(0.1460) | 0.4509(0.0669) | 2.8463(0.6987) | 0.2702(0:0329) | 0.5492(0.0952) | 0.3202(0.0406) | 1.2903(0.1292) | 1.0322(0.1328) | 3.5953(1.4138) | 0.3309(0.0469)
4 2.1025(0.1868) | 0.7541(0.2103) | 2.9269(0.1621) | 0.4645(0.0843) | 0.7722(0.1134) | 0.5174(0.1201) | 1.2709(0.1510) | 1.2590(0.1630) | 5.9113(1.1005) | 0.6541(0.1043)
DTLZ2 6 2.8384(0.2350) | 0.8874(0.0567) | 3.1139(0.2355) | 0.5939(0.0807) | 1.0986(0.0885) | 0.5894(0:.0623)| 1.1529(0.0728) | 1.3955(0.1024) | 8.2410(2.3732) | 0.6574(0.0339)
8 3.7296(0.2924) | 1.0202(0.2842) | 3.4891(0.3717) | 0.9053(0.1393) | 14259(0.1325) | 0.6801(0.0310) | 1.4152(0.1485) | 1.8369(0.1761) | 10.5396(3.0257) | 0.9202(0.1312)
10 12.2751(0.8798) | 2.1555(0.3601) | 6.1790(0.3935) | 1.8282(0.1361) | 3.6231(0.2728) | 1.2739(0.0887) | 3.7384(0-2968) | 3.1105(0.2849) | 15.0900(3.8757) | 2.1555(0.3601)
Car side impact design | 2.9300(0.3029) | 1.0186(0.5261) | 1.8650(0.3855) | 0:6219(0:2153) | 0.7490(0.1664) | 1.1490(0.2285) | 1.0240(0.2938) | 1.5190(0.4855) | 3.4745(0.6127) | 0.7767(0.2496)
Conceptual marine design | 2.4391(0.3496) | 0.8367(0.2446) | 2.1511(0.6533) | 0.6838(0.1848) | 0.7511(0.2158) | 2.1390(0.4109) | 1.2276(0.4571) | 1.5055(0.2804) | 3.4898(0.8526) | 0.8420(0.2815)
Water resource planning | 5.4789(0.9391) | 0.9544(0.1529) | 2.0601(0.3068) | 0.8197(02193) | 1.1196(0.4190) | 1.6543(0.2905) | 1.4856(0.5947) | 1.8818(0.2957) | 4.6160(1.7507) | 0.8902(0.2091)
Car cab design 74168(1.2505) | 0.7736(0.1259) | 2.9521(0.6000) | 0.6559(0:1437) | 1.3966(0.4281) | 1.3405(04174) | 1.7197(0-2220) | 1.8531(0.2628) | 4.5577(0-4523) | 0.8622(0.2058)
E. COMPARISON OF ALGORITHMIC PERFORMANCE performs competitive with KnEA and NSGAIII algorithm

ON REAL-WORLD PROBLEMS
In this section, we present performance comparison of pro-
posed ad-MOEA algorithm with state-of-art algorithms on
real-world problems. The real world problems considered
in our study are Car side impact design [47], Conceptual
marine design [47], Water resource planning [47], Car cab
design [47] and Five degree of freedom vehicle vibration
model [48] problems. The Car side impact design problem
formulated in [47] consists of 4-objective functions with
7 decision variables that are continuous in nature. Conceptual
marine design problem [47] is a 4-objective problem with
6 design variables that are continuous in nature. The Water
resource planning [47] problem consists of 6-objective func-
tions with 3 decision variables with continuous in nature.
Car cab design [47] problem is a 9-objective problem with
7 continuous design variables. Five degree of freedom vehicle
vibration model [48] consists of 5-objective functions and
7 decision variables. The shape of the true PF is unknown
for all the problems considered in this study. The population
size and maintained for the Car side impact design [47],
Conceptual marine design [47], Water resource planning [47],
Car cab design [47], Five degree of freedom vehicle vibration
model [48] are 120, 120, 182, 210 and 100 respectively.
The number of iterations for the problems Car side impact
design [47], Conceptual marine design [47], Water resource
planning [47], Car cab design [47] are maintained as 100 and
for Five degree of freedom vehicle vibration model [48] prob-
lem, the number of iterations considered are 250. To analyze
the performance comparison of the proposed approach with
the state-of-art algorithms, we have presented the hypervol-
ume results for the real-world problems. The mean and stan-
dard deviation results for hypervolume indicator values are
presented in Table 7. To evaluate the hypervolume indicator
value, we followed the same procedure that is applied to cal-
culate the hypervolume value for WFG and MaOP problems.
From the results presented in Table 7, we can observe
that the proposed approach outperforms RVEA, r-NSGAII,
g-NSGAII, NSGAII-SDR and MOEA-D algorithms and
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and worse when compared with S-CDAS and NSGA-II
algorithms on Car side impact problem. While handling
the Conceptual marine design problem, the proposed ad-
MOEA performs better than KnEA, r-NSGAII, g-NSGAII,
NSGAIII and MOEA-D algorithm and competitive with
RVEA, S-CDAS and NSGAII algorithms and worse when
compared with the NSGAII-SDR algorithm. The pro-
posed approach outperforms RVEA, r-NSGAII, g-NSGAII,
NSGAII-SDR and MOEA-D algorithms while handling
Water resource planning problem and competitive with
S-CDAS and NSGA-II algorithms and performs worse
when compared with KnEA and NSGAIIl. While tack-
ling Car cab design problem, the proposed approach out-
performs RVEA, r-NSGAII, g-NSGAII, NSGAII-SDR and
MOEA-D algorithms and competitive on KnEA, S-CDAS,
NSGAII and NSGAIII algorithms. The proposed approach
outperforms RVEA algorithm on Five degree of freedom
vehicle vibration model problem and worse when com-
pared with MOEA-D algorithm and performs competitive
when compared with KnEA, S-CDAS, NSGA-II, r-NSGAII,
2-NSGAII, NSGAII-SDR and NSGAIIIL.

F. RUNTIME PERFORMANCE COMPARISON OF ad-MOEA
WITH RESPECT TO STATE-OF-ART ALGORITHMS

In this section, we have presented the runtime performance
comparison of the ad-MOEA algorithm with respect to state-
of-art algorithms for the DTLZ2 Problems for 2-, 4-, 6-, 8-, &
10- objectives. Along with that, we have also considered the
simulation timing analysis for real-world problems, Car side
impact design [47], Conceptual marine design [47], Water
resource planning [47], Car cab design [47]. For the fair
comparisons of the time, simulations for all the algorithms
PC with a 3.40 GHz Intel Core i7-2600QM CPU and Win-
dows 10 SP1 64-bit operating system with MATLAB 2019b
version. Based on the results presented in the Table 8, we can
witness that the proposed ad-MOEA approach requires less
computational time when compared with the rest of the
algorithms except NSGA-II and g-NSGAII on the DTLZ2
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problems for all the objectives. However, the proposed
ad-MOEA requires more computational time when compared
with the NSGA-II and g-NSGAII but in terms of the hyper-
volume results, the proposed approach outperforms the algo-
rithms NSGA-II and g-NSGAII. On the real world problems,
the proposed ad-MOEA requires less computational time
when compared with KnEA, S-CDAS, g-NSGAII, NSGAII-
SDR, NSGAIII and MOEA-D algorithms. The execution
time of the proposed ad-MOEA is competitive when com-
pared with -NSGAII and RVEA algorithm. In other words,
the proposed approach ad-MOEA require less time when
compared with RVEA on Car side impact and Water resource
planning problem and requires more time on Conceptual
marine design and car cab design problem. Similarly, when
compared with r-NSGAII algorithm, the proposed approach
requires less time on Water resource planning and Car cab
design problems and more execution time on Car side impact
and Conceptual marine design problems. When compared
with NSGAII algorithm, the proposed approach execution
time is more on the real-world problems.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed a novel multi-objective evo-
lutionary algorithm with adaptive mating and environmental
selections (ad-MOEA) to handle multi and many-objective
optimization problems. In the proposed approach, we have
incorporated the concept of the sum of the normalized objec-
tives into the mating selection and environmental selection
to achieve convergence and diversity simultaneously. In the
environmental selection, in the critical front, the solutions
are selected based on the sum of the objectives at first and
the remaining solutions are selected based on crowding dis-
tance. To select the solutions based on sum of normalized
objectives, we adopted a certain probability that is determined
by a self-adapted parameter. The self-adaptive parameter
employed in the current work, assists the evolution process
in promoting the convergence in initial stages and diver-
sity in the final stages. Initially, the self-adaptive parame-
ter is set to one in the initial generations, as the evolution
progress, the value of self-adaptive parameter is expected to
decrease. Hence, more importance is assigned to convergence
promoting individuals in initial stages and the focus shifts
towards diverse solutions as the evolution progress. There-
fore, in initial generations more preference is assigned to the
individuals that promote convergence and as the evolution
progress, the focus adaptively shift towards the individu-
als that are diverse. The experimental results demonstrate
that the proposed approach have improved the performance
when compared with the existing NSGA-II and competi-
tive performance when compared to the other state-of-art
algorithms.
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