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ABSTRACT The increasing use/abuse of psychotropic drugs is an alarming social phenomenon with
repercusions in many areas, especially in reliability engineering. The aim of this paper is to present a method
developed by a multidisciplinary team composed of ergonomists, psychiatrists, information technologists,
and reliability engineers to quantitatively consider the impact of psychotropic drugs on the assessment of
human reliability of Operation and Maintenance (O&M) personnel of a hydroelectric plant. To achieve the
proposed objective, the first step was the identification of drugs that affect the psychic-cognitive/sensory and
motor functions as a side effect and the frequency (probability of occurrence) of the effect. This was done
mining public and private drug databases. A qualitative (symbolic) scale later translated into numerical values
was used to quantify the impact of each drug on the affected functions. At the same time, O&M tasks were
broken down into observable activity sequences, recording the frequency of each activity on each task (Task
Analysis). Then, the relationship between each activity and the sensory- cognitive-motor psychic functions
was established, based on the knowledge and experience of the team involved. Again a qualitative (symbolic)
scale was defined and later transformed into a numerical scale. As a result, the first version of a drug
effect - task knowledge database (KDB) was built with the symbolic and numerical values assigned to all
relationships between the different model elements. Although the KDB needs to be systematically reviewed
and updated by a broader network of ergonomists and psychiatrists, it has served as proof of concept and a
starting point for the development of a human risk management tool for hydroelectric power plants. The last
step was to calculate a new Performance Shaping Factor (PSF) due to Psychotropic Drugs Use (PDU), for
each drug in each of the O&M tasks. In a preliminary assessment of the inclusion of PDU-PSF with three
common methods of Human Reliability Assessment (HRA), we found an increased risk of human failure
ranging from approximately 15% to 35%, depending on the HRA method. The case study used to illustrate
the method considered a routine operator inspection task using an antidepressant drug. The proposed method
can be updated for new drugs and can be refined/customized for other high-risk human activities such as oil
and gas and petrochemical industries, nuclear power plants, aviation, and surgery, among others.

INDEX TERMS Human error analysis, reliability, task analysis, psychotropic drugs, human reliability.

I. INTRODUCTION

In operation and maintenance (O&M) of industry, work-
ers are exposed to many different and sometimes con-
flicting natural and constant stressors. As a consequence,
it is increasingly common for them to use psychotropic
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drugs [1], [2]. However, many, if not all tasks require
concentration, attention, quick reflexes, speed, dexterity,
accuracy, visual-spatial coordination, and decision-making
abilities that can be affected by drugs taken before and during
service [3].

Human Reliability Assessment (HRA) methods estimate
the Human Error Probability ( (HEP) taking into account
factors in the work environment, the work task and the

VOLUME 8, 2020


https://orcid.org/0000-0001-9487-0178
https://orcid.org/0000-0002-6449-3313
https://orcid.org/0000-0002-2673-9909

C. L. S. F. Filho et al.: Effect of Psychotropic Drugs as a PIF on HRA

IEEE Access

PSYCHIATRY / FARMACOLOGY (COGNITIVE) ERGONOMICS
Psychic Disorders/Conditions O&M Tasks
\ have )
treat / /
r i
PsychotropicDrugs feies
have / require/%
l §
Side Effects Psycho-Cognitive/Motor Functions
- A |

RELIABILITY ENGINEERING

FIGURE 1. Entity-Relationship Diagram of the Scope of the Project.

worker itself that influence human performance, called either:
Performance Influencing Factors (PIFs) [4], Performance
Shaping Factors (PSFs)1 [5], [6], Error Producing Condi-
tions (EPCs) [7], [8] and Human Error Inducing Factors
(HEIF)] [9]. Company aspects, the personal characteristics of
the worker and his/her qualification/training, the complexity
of the tasks under existing environmental conditions (temper-
ature, noise, lighting, smells, etc.) and the human-machine
interface are some of the PSFs normally considered [5], [6],
[10]-[13].

Tasks are often broken down into simpler activities in a pro-
cess called Task Analysis, which is common in the ergonomic
subarea of the production engineering, while in the medical /
pharmacological literature, there is comprehensive informa-
tion on the side effects of psychotropic medications [14]-[16]
as well as the negative influence on the skills required for
certain activities, such as driving vehicles [17]. Figure 1
shows the Entity-Relationship Diagram (ERD) [18], [19]
of the problem addressed. According to IT nomenclature,
Entities (underlined) are objects characterized by their stored
data, and relationships (italic) are verbs that establish how
data objects are interconnected.

This diagram has two parts. The left part belongs to the area
of psychiatry and pharmacology, having as central entity the
Psychotropic Drugs. Psychotropic medications treat Psychic
Disorders / Conditions, but also have Side Effects. The right
side belongs to Classical and Cognitive Ergonomics, having
as main entity O&M tasks. The O&M task has Activities, and
Activities in turn require Psycho-cognitive / Motor Functions
to be performed.

Therefore, to be able to consider in the analysis of human
reliability the risk arising from the use of psychotropic drugs,
it is necessary to relate the left part with the right part. This
can be done by establishing that the Side Effects on the left
affect the Psycho-cognitive/motor Functions on the right as

IDenomination adopted in this article.
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FIGURE 2. 4-layer hierarchical network model generating input for HRA
methods. The areas of expertise that define the factors of connection
between the layers are indicated as: P - Psychiatry, E - Ergonomics and R -
Reliability Engineering.

shown with a dashed line in Figure 1. We use different types
of lines for relationships in order to visualize what is new
(dashed lines) and what was already known or relatively easy
to obtain (solid lines).

The purpose and contribution of this paper is to provide
a viable methodological framework for considering a new
PSF that seriously affects human performance and that has
become commonplace and is increasingly common in indus-
try work environments: the use of psychotropic drugs (PDU)
by the O&M staff. To illustrate its use, an example application
was conducted using three HRA methods in a routine task in
hydroelectric plants.

The developed model makes it possible to quantitatively
estimate how much it would contribute to the increased like-
lihood of human failure while performing an O&M task when
an operator has taken a particular controlled psychotropic
drug. In this way, plant manager at the beginning of each
work session can decide how to go about minimizing human
error in order to increase operational reliability. For example,
it may deny the operator’s assumption of service, relocate
staff among the intended tasks, or allocate another operator
to assist the operator who used the drug, among other alter-
natives.

The model developed is structurally and functionally simi-
lar to a multilayer network without feedback, such as those
used in deep learning, (see Figure 2) differing only in the
way in which the weights of connections between neurons are
estimated. In deep machine learning, the weights that connect
the neurons of the various cascaded layers are computation-
ally obtained [20]-[22] to obtain the best match between
the data presented in the first layer (types of drugs used by
the operators before and during work) and those presented
in the last layer (occurrence of incidents / accidents while
performing O&M tasks). In our approach these weights are
estimated by human experts. Importantly, our approach to
using human experts to set weights has two motivations:
(1) There is no data to apply the machine learning version,
nevertheless, the problem already exists in plant operation
personnel and therefore needs to be addressed. (2) Even when
there is sufficient data for machine learning, it is essential
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to have a model created by human experts that can serve
as a reference. Reference is needed for controlling machine
learning, which is not always correct, and for correcting
expert estimates, generating feedback for a reverse (human)
learning process, every time the knowledge database built on
this project is updated.

Following the established practice in the HRA field, we use
expert estimates in all areas involved: psychiatry, ergonomics
and human reliability. A multidisciplinary team produced
their best weight estimates and stored in the first version of
a parameterized knowledge database called the Psychotropic
Drugs Impact on Human Reliability (PDIHR). We believe
that, in matters related to risk control, it is better to apply
some control method that depends on subjective factors, than
not to apply any method for lack of more reliable values of
those factors. Even though we know that the current PDIHR
version serves only as proof of concept and as a starting point,
the description and analysis of the current version of PDIHR
will be published in an upcoming article.

Intra-layer connections may be the subject of future devel-
opments in order to take into account drug interactions
[23] and dependencies between functions [24], activities and
tasks [12]. Similarly, consideration of the dose and time since
drug ingestion [25] may be additional elements to consider in
the future.

For now, the proposed methodological framework was
implemented in a computational tool ( SARO - Sistema de
Avaliacdo do Risco Operacional - Operational Risk Assess-
ment System) currently in use in eight hydroelectric plants in
Brazil. The tool purpose is collecting data of human errors
in operation committed with and without psychotropic drug
intake that will allow future validation and adjustment of the
developed KDB-based inference model.

The knowledge database built, beyond the weights that
define the interactions between the model components in a
hierarchical form, was designed to store relevant metadata for
human reliability studies, such as (i) active compounds and
combinations of them in different drugs, (ii) the frequency
of use of each drug and each active ingredient, (iii) average,
maximum and minimum dosages, among other data relevant
to the psychiatric field. Similarly, human error events will be
logged, including (i) the task in which it occurred, (ii) the pro-
file of the operator(s) who made the error, (iii) environmental
conditions, (iv) time stamp (time, day of the week, month and
year), (v) physical and psychological examination of those
involved after the event, (vi) use of psychotropic medications
and (vii) summary of the incident clearance interview, among
other data.

The article is structured as follows: In section I we provide
a brief review on related subjects in the fields of human
reliability, ergonomics and psychiatry, called here cogni-
tive dimensions of the problem addressed. In section III we
describe the method, again differentiating the three knowl-
edge dimensions, including the description of the specificities
of three HR A methods used in the case study. In section IV we
describe the case study and in section V its results. The article
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ends with a discussion of the results (section V1), followed by
the conclusions (section VII).

Il. BACKGROUND

According to data published in MHIDAS (Major Hazard
Incident Data Service) [26], approximately 22% of refinery
accidents are related to human failures, but this percentage
grows to 41% in pipeline companies. In both cases 81% of
human failures occurred in O&M activities.

In the Failure and ACcidents Technical information Sys-
tem - FACTS (www.factsonline.nl) which contains data of
more than 26,000 (industrial) accidents (incidents) involving
chemicals from 1597 to 2014, has 33,042 listed causes, 9,379
(28.38 %) of them unknown. The three main known causes
(among the 23,663 identified causes) are management failure
(9,978 / 42.16 %), human failure (7,176 / 30.32 %) and tech-
nical failure (5,454 /23,05 %). Considering that management
failure is a type of human failure, the human versus technical
failure ratio is approximately 3.04.

In power plants accidents involving chemical substances
are not very frequent and only 34 such accidents were found
in FACTS from 1979 to 2006. Of these accidents 13 (38.23%)
have unknown causes, 12 (35.29%) occurred due to technical
failure, 5 (14.7%) due to human error and 4 (11.76%) for
management failure. This means that in this specific scenario
(power plants and chemical accidents) human failures were
responsible for 42.86% of accidents. Data on accidents of
other nature in power plants could not be accessed in this
research.

These statistics demonstrate the high incidence of human
failure in accidents and high risk incidents in O&M activities
in industries in general and in power plants in particular.

In the following sections, we present the context of the
research, providing concepts and describing methods used
to address the analysis of human factors in socio-technical
systems from three different but complementary points of
view, which we call problem dimensions: human reliability,
ergonomics, and psychiatry.

A. HUMAN RELIABILITY CONTEXT
According to [27]:

“Human Reliability Analysis (HRA) is a method by which
human reliability is estimated. In carrying out an HRA, it is
necessary to identify those human actions that can have an
effect on system reliability or availability...The person in
a system may not only fail to do what he is supposed to
do, or fail to do it correctly, but he may also do something
extraneous that could degrade the system. The latter is the
weak link in HRA. It is not possible to anticipate all unde-
sirable extraneous human actions. The best anyone can do
is to identify those actions having the greatest potential for
degrading system reliability and availability. The assignment
of probability estimates to extraneous actions is difficult and
uncertain. Often the best one can do is to estimate very broad
ranges of probabilities of human errors that one believes
include the true probability”.
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Human reliability is an input for engineers to build reliable
systems. HRA methods are designed to assess the probability
of a human-originated system failure, commonly referred
to as Human Error Probability (HEP). There is a long list
of HRA methods including THERP [27]-[30], SLIM [31],
CREAM [32], [33], ATHEANA [34], [35], IDAC [36],
HEART [37], [38] SPAR-H [39] and HERA [40].

Although more than 50 HRA methods and variants
have been identified in the literature review, we have
selected to illustrate the use of the method described
in this article, the THERP, SLIM, and HEART meth-
ods [33], [41]-[43] because they are best suited for power
plants.

Most input data for HRA methods are provided by Human
Factor Methods (HFM) intended to describe human perfor-
mance under actual operating conditions [30], [32], [35],
[44]-[46]. The HFMs were developed to analyze systems
with humans and equipment, integrating the technical, indi-
vidual, collective and organizational (social) processes [12],
[47] that happen concomitantly and intrinsically related in
what is called the socio-technical system [4], [5]. The influ-
ence of such factors is represented as PSFs. In summary,
HEM allows specialists to identify and characterize PSFs
and convert them to a numeric scale for use in the HRA
method. [9], [31], [42], [48]. Reliability engineers have set
HEP nominal values [49] and consider PSFs as multipliers
greater or smaller than one if the effect is detrimental or
positive, respectively [44], [S0]-[52].

Therefore, to perform an HRA, the analyst needs spe-
cific knowledge of the fundamentals of human performance,
in particular human cognition, PSFs, and organizational influ-
ences on the behavior of task performers. There are four main
challenges in this procedure:

1) Identify the PSFs,

2) Mapping all the factors contributing to each PSF,

3) Based on the factors acting in an event to attribute a
numeric value (normally between 0 and 10) to each
PSF, and

4) Translate each PSF into a multiplier of the nominal
HEP.

To illustrate the diversity of PSFs considered, the method
SPAR-H [39] developed for a Nuclear Power Plant (NPP)
context considers 11 PSFs:

1) Available time

2) Stress and stressors

3) Complexity

4) Experience and training

5) Procedures (including job aids)

6) Ergonomics and human-machine interface

7) Fitness for Duty

8) Planning / Scheduling

9) Supervision / Management

10) Conduct of Work

11) Problem Identification & Resolution / Corrective
Action Plan

VOLUME 8, 2020

TABLE 1. Number of contributing factors (CFs) to PSFs in HERA.

PSF CFs Example CF
Available Time 3 Inapproprlate balange bet_ween
available and required time
Stress & Stressors 1 High stress
Complexity 20 Demands to track and

memorize information
Individual knowledge problem
Document technical content
less than adequate
Displays less than adequate
Unfamiliar work cycle

Experience & Training 12
Procedures & 4

Reference Documents
Ergonomics & HMI 7
Fitness for Duty/Fatigue 7
4

Planning/Scheduling Inadequate staff/task allocation
Supervision/Management 11 Frequent task re-assignment
Conduct of Work 35 Failure to apply knowledge
Problem Ident./Resol. & .
Corrective Action Plan 16 Evaluation less than adequate
Communication 5 Communication not timely

Environment 8 Lighting less than adequate
Team Dynamics & 3 Team interactions less
Characteristics than adequate
TOTAL 136

but the Human Event Repository Analysis (HERA) [40]
database and system includes three more PSFs adopted from
Good Practices for Implementing HRA [53]:

12) Communication
13) Environment
14) Team Dynamics / Characteristics

Most HRA methods, including SPAR-H and HERA, have
been developed to identify the causes of accidental or even
risky events. To do this, each event is subdivided into
subevents and for each subevent is investigated which of
the various definite and verifiable contributing factors (CFs)
belonging to each PSF previously contributed to the occur-
rence of the subevent. In other words, ‘“‘the PSF contribu-
tiong factors selected for a subevent should not describe the
subevent in question, but should identify factors that con-
tributed to the subevent under analysis™ [40].

To illustrate the complexity and level of detail of the
socio-technical system model in the HERA method we show
in Table 1 the number of CFs considered for each PSF along
with the description of a single but representative CF due to
space constraints. More detail can be seen in the reference
cited.

In addition, to evaluate the 16 CFs of the above Prob-
lem Identification and Resolution / Corrective Action Plan
PSF, a two-part HERA Human Cognition Model (HCM) is
used.” HERA’s HCM first part considers four steps of Human
Information Processing (HIP) ocurring in the human decision
making process:

1) Detection: Recognition of a problem,

2) Interpretation: Understanding the causes and conse-
quences of the problem,

3) Planning: Structuring a response to the problem,

4) Action: Executing the planned response.

2 A recent review of cognitive models in human reliability analysis is done
in [54]
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In each subevent, each step of human information pro-
cessing can be evaluated as: (1) correct, (2) incorrect, or (3)
correct, but based on at least one previous step not correct.
Operators can make mistakes in any of these steps. For
example:

« Incorrect detection error: A problem is not recognized as
such and the necessary subsequent actions are not taken.

o Correct detection but misinterpretation: An observed
problem is misclassified and subsequent corrective
actions may be ineffective or counterproductive.

o Correct detection and interpretation, but incorrect plan-
ning: An incorrect plan can make the situation worse
or render the actions ineffective, ie the execution of the
planned actions is very unlikely to meet expectations.

o Correct Detection, Interpretation and Planning, but
Incorrect Action: Errors committed in the execution of
planned actions nullify the effect of all previously per-
formed actions, leading to the same or even worse risk
situation than before the problem was detected.

The second part of the human cognitive model considers
three levels of cognitive activities, known as Rasmussen’s
Skill/Rule/Knowledge Based cognitive levels [55]:

1) Skill-based: Activity performed during routine task
execution, performed almost automatically, with spo-
radic progress checks.

2) Rule-based: Activity performed during the execution of
a task that requires the conscious application of memo-
rized or written rules, constantly checking whether the
result is appropriate.

3) Knowledge-based: Activity performed during the exe-
cution of tasks that require a high level of abstraction,
prior knowledge and logical reasoning to solve prob-
lems, usually arising in new tasks or situations.

It is important to note that a person can perform all three
activities at the same time.

In this work we focused O&M tasks. According to HERA
“Task refers to the goal-driven activity performed by the
crew. Each task represents different activities and correspond-
ing different goals necessary to complete an action”. Since
the description and analysis of tasks pertain to ergonomics,
the next section is devoted to the ergonomic dimension of our
problem.

B. ERGONOMIC CONTEXT

Occupational ergonomics focuses primarily on work-related
health and safety aspects of a system to reduce the rate of
employee health problems. However, in recent years there
has been a growing interest in what we call system perfor-
mance ergonomics, both in the operation [56] and mainte-
nance [57] of industrial systems. Sobhani et al. [56] pro-
vide a road map for assessing the impact of work-related
risk factors, including physical and psychosocial aspects on
system performance. However, its focus was on assessing
the cost growth of a manufacturing system due to the low
ergonomic design of the workplace rather than human failure
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issues. Sheikhalishahi et al. [57] reviewed the current liter-
ature analyzing human factors in maintenance considering
three main categories: (1) error calculation / human relia-
bility, (2) human resource management and (3) workplace
design / macro ergonomics. They found that even though
most studies focus on macroergonomics, human factors in
maintenance are a pressing problem, as reported in the few
articles that dealt with ergonomic factors-induced human
errors in maintenance.

Most HRA methods require the classification of tasks
according to their specific activities, focusing on those in
which mental abilities are critical [28], [32]. This procedure is
based on the well known fact that most human errors are asso-
ciated with some cognitive, conscious or unconscious aspect
[55], [58]-[60], which is the subject of study of cognitive
ergonomics [54], [61], [62]. It is assumed that under favorably
working environment, with an appropriate time available to
perform a single task the likelihood of human failure depends
on the balance between operator’s competence and task
complexity.

A task is a unit of work prescribed by the organization,
a set of patterns of operations that, either alone or in con-
junction with other tasks, can be used to achieve a goal [58].
Human errors occur during task execution, so task analysis
is critical to HFM. Task analysis refers to how a task is
performed, including its characteristics (location, duration,
frequency, complexity, schedule, performers) and resources
(protective devices, instruments, tools), as well as descrip-
tion of manual and mental activities (perfomed through
operations within actions), required to perform a specific
task.

One of the key challenges for the expert observer who
performs the on-site real-time task analysis process is to
unambiguously classify the mental activities performed on
each task [36], [46], [63]. For example, it is very difficult
to differentiate just by looking at who performs the activ-
ity between monitoring, panning, scanning, verifying, and
cheking. Even though they seem synonymous, these activities
have some subtle differences related to the kind of mental and
physical (sensory) resources they require.

Note that the French ergonomics school adopts a different
definition for activity [64], [65]. Here, the term activity is
used as a subtask or a small part of a task, which may be
part of other tasks. Thus, our activity is synonymous with
action at the conceptual level. At the execution level, actions
= activities are transformed into operations that depend on
existing conditions when and where the action occurs. In this
case, we consider that for the execution of each operation a
certain combination of sensory, cognitive and psychomotor
functions of the operator are used, reason why the use of
psychotropic drugs (PDU) constitutes an element that shapes
the working conditions.

As the characterization of psychotropic drugs and analysis
of their therapeutic and side effects belongs to the area of
psychiatry, the next section is devoted to the psychiatric
dimension of our problem.

VOLUME 8, 2020
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C. PSYCHIATRIC CONTEXT

The balance between operator competence and task complex-
ity depends on the operator’s physical and mental state when
performing O&M tasks. However, this is poorly handled in
practice, even though most HRA methods make it possible
to consider operator status at the time of task execution as
a contributing factor to a PSF. For example, in the HERA
method, this can be taken into account when estimating the
PSF “Fitness for Duty”. However, there is no established
method for translating the operator’s psychic and physical
states into appropriate quantitative values of the associated
contributing factor.

Worse still, previous use of psychotropic drugs by the
operation and maintenance staff, an increasingly common
daily practice, is neither monitored nor taken into account
when analyzing the causes of human error. The use of
sedatives, antidepressants and antipsychotics is growing
even among non-ill people due to self-medication and
easy access to various types of these drugs in Brazilian
drugstores.

A drug is a chemical designed to produce a therapeu-
tic (pharmacological) effect and thus causes desired func-
tional changes in the human body, but it can also cause side
effects. Therapeutic psychotropic drugs belong to a group
of medicines that work on the central nervous system but
may affect other systems. Each drug has a specific action
on one or more neurotransmitters or neuroreceptors in the
brain. They act by temporarily modifying a person’s neuro-
chemistry, which causes changes in a person’s perception,
cognition, mood, and behavior [66]-[68]. Of the 22 adverse
reactions to antidepressants at therapeutic doses listed in
the most current reference [16], 13 affect psychocognitive
and psychomotor functions, directly or indirectly, causing
from 2% to over 30% of patients one or more of the
following reactions: (1) Seizures, (2) Drowsiness/sedation,
(3) Excitement/hypomania, (4) Disorientation/confusion, (5)
Tremor, (6) Headache, (7) Asthenia/fatigue, (8) Gastrintesti-
nal distress, (9) Blurred vision, (10) Orthostatic hypoten-
sion/dizziness, (11) Tachycardia/palpitations, (12) ECG
changes and (13) Cardiac arrhythmia.

The mechanisms that determine the process of absorption,
distribution, biotransformation and elimination are the same
as other drugs [66]. The effect of the drug depends on the
dosage and in general, the higher the dosage, the greater
the effect. However, people react differently to each drug.
In general, at the beginning of treatment, medications can
directly affect important functions for task performance [67],
[69]. Instead, continued use tends to affect less [15]. The
conditions that justify the use of psychotropic medication
may also compromise functions, in particular coordination,
psychomotor coordination, cognition and attention when the
individual is not using the medication. Physicians’ decisions
should balance all these processes to get the best outcome
for the patient, but, in any case, it is a factor of influence
on the person’s performance, whether with or without drug
use.
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Authors did not find any publication in the Human Relia-
bility Assessment (HRA) field reporting practical experience
of considering the psychotropic drugs effects when assessing
the risk of human failure in O&M of industrial systems, nor
describing appropriate methods for this purpose.

Ill. MODELS AND METHODS

The methodology was applied to hydroelectric plants, sys-
tems composed of water reservoirs, dams, spillways, sluice
(often), hydro-turbines, electric generators and associated
equipment, such as transformers, circuit breakers, cool-
ing systems, water and oil motors and valves, auxiliary
power generators, fire extinguishing systems, among other
components.

A total of eight power plants had their layout inspected,
and operational and maintenance personnel were interviewed
about their work. At these interviews, employers are con-
ducted to express any kind of stressful condition and can send
a private message to the team if they want to. Some staff
members reported using psychotropic drugs occasionally, pri-
marily to treat stress and anxiety, all over 40 years old. Some
operators used antiepileptics regularly.

As commented in section II-A, HRA methods consider
several PSFs that need to be quantified to be used in esti-
mating HEP. To include the impact of psychotropic drug
use when quantifying PSFs, it was necessary to construct
a conceptual model and functional structure that combines
the results of the three areas of knowledge that participate
in the construction of the solution to the problem addressed:
(1) ergonomics - E, (2) psychiatry - P and (3) human reliabil-
ity engineering - R.

Figure 2 depicts the built model that consists of a four-layer
interaction network that links the use of psychotropic drugs
in the first layer to the fourth layer that returns a Contributing
Factor to be used to account for the impact of psychotropic
drug use through a suitable PSF, according to the HRA
method used. Each node represents a drug, a human function,
atask activity, and an O&M task in the first, second, third, and
fourth layers, respectively. We include a data conversion unit
that matches the output of our network to the input type of
the chosen HRA method. This is done considering that the
methods do not use the same scale for input PSFs.

Connections between nodes are established through
weights, as in neural networks, but these weights are esti-
mated by humans. Three multidisciplinary teams, one for
each dimension of the problem, interacted with the IT team.
All three teams followed a systematic approach consisting
of a consensus building methodology created by consultants,
which will be the subject of a future article. In summary,
each expert assigns two values (quantitative or qualifier)
for each weight. These values were used to calculate two
weighted averages (upper and lower) by the expert ranking.
Experts were ranked according to a ““guide” generated by
external experts, but their rankings were never reported. The
resulting highest and lowest weighted averages, as well as the
unweighted maximum and minimum values, were reviewed

80659



IEEE Access

C. L. S. F. Filho et al.: Effect of Psychotropic Drugs as a PIF on HRA

by all experts independently and later in a meeting to define
consensus. Prior to the meeting, the expert could change his
assessment, but this was taken into consideration to penalize
his ranking without his knowledge. At this meeting, consen-
sus values were assigned to all factors that were not rejected
by any exclusion criteria. Among the exclusion criteria, it was
defined that weights assessed by less than 60% of consultants
should be reevaluated in a next step by the Experts team. This
procedure was followed for all layers and the corresponding
weights were stored in PDIHR database. It took between two
and four evaluations, depending on the layers.

The description of the node definition of each layer as well
as the weights between nodes will be covered in the next
sections.

A. MODELING THE ERGONOMIC DIMENSION

In this section, we describe how the third and fourth layer
nodes in Figure 2 were defined and the weights between them
estimated. Six ergonomists and four reliability engineers
from six hydropower plants worked together for approxi-
mately two years to build the ergonomic part of our model,
following the consensus-building methodology.

1) STRUCTURE OF THE FOURTH FLOATLAYER (TASK LAYER)
In total, considering the eight hydropower plants, a total of
distinct 451 operational and maintenance tasks were iden-
tified in the Operation and Maintenance Manuals and con-
firmed in interviews with plant operators and managers.
Of these, 212 were considered frequent and were performed
at least once a week.

Based on the results of a reliability study conducted
by AES Tieté’s Department of Reliability and Operational
Excellence, we selected 29 of the most relevant tasks iden-
tified in the study, shown in Table 2, considering the impact
of a human failure and the frequency of these failures on the
considered plants.

In Table 2 is the list of selected tasks. After evaluating the
results of the methodology on the selected small set of tasks,
the remaining tasks are being gradually analyzed and added
to the database.

2) STRUCTURE OF THE THIRD LAYER (ACTIVITY LAYER)
Task analysis can be performed in two steps: (1) descriptive
step: consists of defining what leads to what, the parts that
make up the task and the order in which they need to be
performed, ie, what the job executor should do and (2) Ana-
lytical step: Find out what can go wrong and why [27]. In the
descriptive step we use the usual approach in ergonomics to
consider that all tasks can be broken down into a finite number
of standard cataloged actions, we called activities, and each
activity can even be performed more than once at different
stages of the task script. These activities specify physical and
mental processes, like the removal of a component or a simple
test of an electronic element.

Generally, most O&M procedures are available in the
Operation and Maintenance Manuals and can be used as the
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TABLE 2. O&M task selected at the first stage of the project.

[n ] Task [ System/Equipment |
1 Routine Operator Inspection Hydroelectric Power Plant
2 Release to Start Generating Unit
3 Post-Maintenance Regulation Generating Unit
4 Visual Inspection Electric Generator Radiator
5 Leak Inspection Electric Generator Radiator
6 Visual Inspection Speed Regulator
7 Visual Inspection Suction Tube

(Inspection Hatch)
8 Visual Inspection General Water Feed
Manual Valve
9 General Inspection Compressed Air Valve of the
Emergency Auxiliary Group
10 Functional Testing Pneumatic Starter of the
Emergency Auxiliary Group
11 Leak Inspection Hydraulic Safety Valve
12 Operation Check Inlet Pipe
Manual Valve Opening
13 External Mechanical Cleaning Inlet Pipe
Manual Valve Opening
General Inspection Generator Braking
14
System Valve
15 General Inspection Hydraulic System
Safety Valve
16 External Mechanical Cleaning Hydraulic Actuator
Servo Motor
17 Mechanical Reconditioning Drain Pump
18 Mechanical Review Drain Pump
19 Mechanical Inspection Electric Generator
Regulating Ring
20 Internal Mechanical Cleaning Electric Generator
Regulating Ring
21 Mechanical Inspection Turbine Head
22 | External Mechanical Cleaning Turbine Head
23 Leak Inspection Turbine Head
24 Alignment Exhaust Oil Box Pump
25 Mechanical Reconditioning Exhaust Oil Box Pump
26 Operational Check Exhaust Oil Box Pump
27 Mechanical Inspection Exhaust Oil Box Pump
28 Leak Inspection Turbine Cap Fixing Screw
29 Mechanical Inspection Turbine Cap Fixing Screw

basic source document for preliminary task analysis. The task
description is completed by interviews and in situ observa-
tions. Even when procedures are written, it is necessary to
talk to O&M staff to identify the differences between writing
and what is actually done to better understand the relevant
PSFs.

Figure 3 represents the decomposition of 7' tasks into A
activities, where n,; > 0, defined for all activities a =
1,2,...,A and all tasks t+ = 1,2,..., T, is the times an
activity a is performed on task 7.

After decomposing the 29 O&M tasks described in the
section above into 102 primary activities, a consolidation step
was made, merging highly similar primary activities into one.
This led to a set of 33 activities common to all tasks. From this
set, 18 activities were then chosen that depend significantly
on psychic functions, which are listed in Table 3.

3) RELATIONSHIP BETWEEN THE THIRD (ACTIVITY) AND
FOURTH (TASK) LAYERS

The first relationship between tasks and activities was
described in the previous section and is given by the times
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activity frequency

FIGURE 3. Decomposition of industrial tasks into activities. Here ng ; > 0
denotes the times an activity a is executed in task t.

TABLE 3. Activities highly dependent on psychic functions.

n Activity
1 Monitoring
2 Diagnosis
3 Adjustment
4 Inspection/Check
5 Repair
6 Test
7 Sampling
8 Maneuvers
9 Communication
10 Planning
11 Removal
12 Installation
13 Assembly
14 Counting
15 Measuring
16  Handling and Transportation
17 Administrative Services
18 Services

an activity is performed within a task, denoted as n, ;. Nev-
ertheless it is common sense to believe that an error in one
activity may have a greater or lesser impact on the failure
of the task as a whole than another activity. For this reason,
following the principle governing reliability and risk analysis,
according to which risk is the product of the frequency of the
failure / accident event multiplied by the expected damage /
loss caused by each failure / accident, we have established
that the relationship between the fourth (task) layer and the
third (activity) layer is given by the times an activity is
performed during the execution of a task multiplied by the
relevance of a single error in an activity in inducing the failure
of the entire task. To represent the impact of a failure in
an activity a to the failure of a task t we used the variable
rq: > 0, interpreted as relevance, foralltaskst = 1,2, ..., T
and all activities a = 1,2, ..., A. Thus the weight between
node a in the third layer and node ¢ in the fourth layer is
calculated as:

Wa,t = Ya,t Na,t- (D

Note that instead of using the frequency of the activity
we choose the times the activity is performed so that the
probability of failure of larger tasks is greater than that of
smaller tasks with the same type of activity. The difference
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TABLE 4. Times each activity listed in Table 3 is executed in the task
Routine Operator Inspection.

Na,t fa,t(%)

Activity (times)  (frequency)
Monitoring 6 79
Diagnosis 22 29.0
Adjustment 0 0.0
Inspection/Check 28 36.8
Repair 0 0.0
Test 2 2.6
Sampling 0 0.0
Maneuvers 2 2.6
Communication 6 7.9
Planning 2 2.6
Removal 0 0.0
Installation 0 0.0
Assembly 0 0.0
Counting 2 2.6
Measuring 4 5.4
Handling apd 0 0.0
Transportation
Adm1n1§trat1ve 0 0.0
Services
General Services 2 2.6
TOTAL 76 100

bewteen times and frequency is shown in Table 4 for an
example task Routine Operator Inspection listed in Table 2.

Adding the frequencies of the inspection and diagnostic
activities, we see that they account for 65.8% of all activi-
ties in that task. Both activities require several physical and
mental functions, which will be commented on in the next
section. To perceive some subtle peculiarities of the activities,
the activity diagnostic occurs to solve new problems, ie,
without previous experience, or in situations where the human
mind is making a decision on a comparative basis and requires
different areas of mind to solve the problem. In the same
context, Monitoring is an activity that has several charac-
teristics similar to those of Inspection/Check, but requires a
time-dependent function to track the oscillation of a specific
parameter in a system and its is expected the operator to not
only observe but also act.

The result of the team’s work can be condensed into two
A x T = 18 x 29 size consensus matrices: r4x7 and ngxr,
as follows:

i 2 AW
.1 2 e nrT

FAXT = | . ) ) (2)
TA,1 A2 . YA, T

and

ng o ny2 ... nIT
mao o nm2 ... Mmr

AT = | . . ) 3)
na1  NnA2 ... NAT

containing the relevance and frequency of the activities in

the tasks, respectively. Generating the “r”’ relevance matrix
required four iterations of the consensus building process, and
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yet it was rejected in the final assessment because it did not
reflect consistent consensus. For this reason, all relevance was
set equal to 1 while a new study for its reevaluation is not
performed.

Looking at Eq. 1 it can be seen that the weights are
obtained as the convolution of matrices r4x7 and n4x7, that
is, the weights matrix relating Activities and Tasks is given
by:

WAXT = TAxT * BAXT. 4

Denoting the output at a task-node ¢ by y; and by x, the input
at an activity-node a it holds

A
Y=Y Waikar Vt=1,2,...,T. 5)
a=1

Here y; is a variable that quantifies the increase in the
contributing factor to failure of task ¢ due to the increased
probability of human failure performing the task’s activities,
represented here by the input variables x,, a = 1,2, ..., A.

According to the network architecture, the x, inputs are the
activity node (third) layer outputs that depend on the inputs
generated by the psychic function (second) layer. Calculating
the outputs of the second layer is one of the subjects of the
psychiatric dimension of the model, dealt with in the next
section.

B. MODELING THE PSYCHIATRIC DIMENSION

In this section, we describe how the first, second and third
layers in Figure 1 were defined and the weights between them
estimated. The estimates were done by a multidisciplinary
team consisting of five psychiatrists, three ergonomists and
three reliability engineers, following the consensus-building
methodology. At all, building the psychiatric dimension of
our model took over three years.

After the compilation of drugs registered to deal with
stress, depression and other psychic disorders, many drugs
were analyzed. However, only those that can cause significant
side effects affecting human performance were considered,
according to the opinion of psychiatrists based on extensive
literature review [14]-[17], [67], [70]-[73].

1) STRUCTURE OF THE FIRST LAYER (DRUGS)

It is well known that the use of sedative drugs such as ben-
zodiazepines, antiepileptics, some antipsychotics and some
antidepressants are described in the drug recommenda-
tion (labeling) as a risk condition for occupational accidents.
These medications have many side effects that can directly or
indirectly interfere with tasks. For this reason, an exhaustive
search on the two largest online drug databases [74], [75] was
conducted to select the psychotropic drugs to be considered.
The selection criterion was the nature and frequency of side
effects that could undermine the work performance of plant
operators as well as the frequency of prescription by Brazil-
ian psychiatrists. Table 5 shows the 16 psychotropics drug
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TABLE 5. Selected psychotropic drugs categories.

id Drug Category

1 Anti depressives

2 Tricycle

3 Selective serotonin reuptake inhibitor

4 Serotonin and noradrenaline reuptake inhibitors
5 Noradrenaline and dopamine reuptake inhibitors
6 Selective noradrenaline reuptake inhibitors

7 Antagonist 2 (serotonin and noradrenaline disinhibitor)
8 Antagonist/Inhibitor to serotonin reuptake

9 Inhibitor of monoamine oxidase

10 Agonist of the receptors de melatonin

11 Benzodiazepines of small action

12 Benzodiazepines of intermediate action

13 Benzodiazepines long action, Anticonvulsant

14 Antipsychotics typical

15 Antipsychotics no typical

16 Others — group of drugs frequently used in

medical practice

TABLE 6. List of selected psychic functions.

id  Psychic Functions

1 Surveillance

2 Attention/Concentration
3 Memory

4 Psychomotor/Equilibrium
5 Thinking

6 Orientation/Guidance

7 Conation

8 Intelligence

9  Pragmatism

10 Imagination
11 Language
12 Affectivity
13 Perception

categories selected according to the severity of the collateral
effects, which represent the first layer nodes.

2) STRUCTURE OF THE SECOND LAYER (FUNCTIONS)

To set the second layer nodes it was done a criterious com-
pilation of applied neuroscience works. In particular, [76]
reviews the functions and mental processes ocurring in dif-
ferent cerebral zones. After analysis by the expert’s team
13 psychic functions, listed in Table 6, were identified as the
most relevant and frequent in O&M activities, as described
earlier in [77].

It is interesting to note that two functions above: Conation
and Orientation/Guidance, are not found in the literature
of human factors, so it deserves to be better studied by
the human reliability community, in particular, to see if the
impact of deficiencies in these two functions has already been
considered to be somehow integrated into a broader con-
cept/factor, or if they were simply neglected in all previous
studies and models.

3) RELATIONSHIP BETWEEN THE SECOND (PSYCHIC
FUNCTION) AND THIRD (ACTIVITY) LAYERS

Once the relevant psychic functions have been listed as well
as the activities that make up the range of O&M tasks in
the hydropower plants studied, it was time to establish the
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activity 1

function importance

FIGURE 4. Importance of Psychic Functions and Industrial Activities. if, =
importance of psychic function f to activity a.

TABLE 7. Psychic functions related to some activities.

Activity Psychic Functions

surveillance, attention/concentration,
perception, memory, thinking,
conation, pragmatism.

surveillance, attention/concentration,
perception, memory, thinking,
conation, pragmatism, language,
psychomotor.

surveillance, attention/concentration,
perception, memory, conation,
pragmatism, psychomotor,
orientation/guidance.
attention/concentration, intelligence,
language, memory, affectionateness.

Monitoring

Inspection/Check

Sampling

Communication

relationships between functions (second layer) and activities
(third layer), as shown in Figure 4. The weights that bind the
nodes of the second and third layers were denoted as ir , and
represent the importance, but based on the negative influence,
of deficiencies in the completion of a given psychic function
f during the execution of an activity a.

This way the output x, (introduced in Eq. 5) of the
third (activity) layer is given by

F
Xa=Y ifaz. Va=12,.. A, (©6)
f=l

where F is the number of psychic functions considered in the
model, which in our case is 13, and zy is the input at the second
(function) layer, generated at the first (drug) layer. The way
the 7y values were generated is addressed in the next section.

Table 7 shows the list of important psychic functions for
performing four of the 18 activities considered in our model.

According to the choice of the experts involved, it was
decided to use a qualitative scale to define the importance of
psychic functions in activities. This scale, shown in Table 8§,
has 4 levels.

As an example, Table 9 shows the consensus for the activity
Monitoring.

In our approach, once the importance of psychic functions
is established for a given activity, they will be the same for all
tasks in which that activity is performed, ie they do not change
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TABLE 8. Qualitative Scale to Assign Importances of the Psychic
Functions for the Activities.

Importance Symbol
Strong S
Moderate M
Moderate on some cases or Rare R
Weak W

TABLE 9. Ordered assigned importances to the 13 psychic functions in
the Monitoring activity.

Importance

Psychic Functi .
syehic Function to the activity

Surveillance
Attention/Concentration
Memory

Perception

Thinking

Conation

Pragmatism
Psychomotor/Equilibrium
Intelligence
Imagination

Language

Affectivity
Orientation/Guidance

EERFIFEZZZ000D

from one task to another. In all cases in which there was doubt
between two importances, the largest one was selected by
consensus, aiming to build a conservative model.

As can be seen, Eq. 6 is not able to operate with qual-
itative variables. To solve this inconsistency, a quantitative
(numeric) scale was associated with the qualitative scale
established for the importance of psychic functions. This is
discussed in the section III-C.

4) RELATIONSHIP BETWEEN THE FIRST (DRUG) AND
SECOND (PSYCHIC FUNCTION) LAYERS
The links between the first and second layers is due to the
negative effect of psychotropic drugs on psychic functions.
The general interaction is shown on Figure 5. The strength of
the known negative effect’ of a drug d on a psychic function
f is represented by the variable e4 s, which is the weight that
relates node d in the first layer to node f in the second layer.
This way the output z¢ (introduced in Eq. 6) of the second
(psychic function) layer is given by

D
g =Y eifus. Yf=12..F, 7
d=1
where D is the number of psychotropic drug types considered
in the model, which in our case is 16, and u; is the output
generated at the first (drug) layer. In the current approach, uy
is a binary indicating whether an operator took drug d within
the corresponding drug period of effect. This is recorded at
the moment the operator fills in the job start sheet (in the

3Note that the positive (desired) effects of psychotropic medications are
not considered in our approach. The positive effect is not supposed to
increase the individual’s psychocognitive abilities, but only to leave it in the
normal condition of any operator with the same experience.
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function 1

drug effect

FIGURE 5. Effect of psychotropic drugs on psychic functions. ey = effect
of psychotropic drug d to psychic function f.

TABLE 10. Qualitative scale to evaluate drugs effects on psychic
functions.

Symbol Description
(++) Relatively common or Strong
(+) Can occur or Moderately strong
(-) Absence or rare/Weak
X) Low

SARO system). If drug d was not used, uy = O and uy = 1 if
it was used. If more than one drug is used, more than one uy
is equal to 1, which means that its effects will be added up.

However, since the first layer is the input layer, it can
be modified by creating functions at its nodes to take into
account other variables, such as the time since ingestion and
the dose of the drug. This will be a subject that will be studied
in the future.

A team of seven psychiatrists proposed a four-level quali-
tative scale, shown in Table 10, for the negative side effects
of psychotropic drugs considered to degrade the relevant
psychic functions shown in Table 6 over the psuchic func-
tions Isted on Table 6. In the current approach, neither drug
interactions nor drug dosing were taken into account, so the
assigned effect was based on the use of single drug and at the
nominal dose for the patient’s gender and age.

In cases where the operator has taken more than one of
the drugs considered to be dangerous, for example if he
takes a medicine that combines several drugs, the simulta-
neous effect of all drugs is considered. In fact, drug inter-
actions may reduce or increase the effect of single drugs
on different psychic functions [14], [66]. However, com-
plete and reliable data for these complex processes have
not been found in the literature or experts consulted. Thus,
it was decided not to include any terms of drug interaction
in the model that could not even be qualitatively estimated in
practice.

To illustrate the results of the experts, Table 11 shows
the consensus of the psychiatric team’s assessment of the
degrading impact (in frequency and magnitude) of tri-
cyclic antidepressant side effects on psychic functions. Four
drugs were considered: Amitriptyline (A), Clomipramine
(C), Imipramine (I) and Nortriptiline (N).

80664

TABLE 11. Example of effects over psychic functions of antidepressant
psychotropic drugs (Amitriptyline (A), Clomipramin (C), Imipramine (1),
Nortriptiline (N)). Functions are ordered as in Table 9.

Psychic Function Tricyclic Antidepressant

A C 1 N
Surveillance ++ ++ + +
Attention/Concentration ++ ++ + +
Memory + ++ ++ +
Perception ++ ++ ++ +
Thinking X X X X
Conation ++ ++ + -
Pragmatism ++ ++ + -
Psychomotor/Equilibrium ++ ++ ++ +
Intelligence - - - -
Imagination - - - R
Language X X X X
Affectivity - - - -
Orientation/Guidance - - - -

Combining the data from Tables 9 and 11, it is clear that
Clomipramin (C, second column above) is the worst drug for
Monitoring activity. To guide the reader through the reason-
ing that leads to this conclusion, let us start by noting that
the first 4 functions are the most important, ie the only ones
rated as Strong (S) for the Monitoring activity in Table 9.
Then, Looking now at the first four rows of Table 11, it can
be noted that the sum of the effects of the first four rows
is the largest (4++) in the second column, corresponding to
Clomipramin. The second worst drug is amitriptyline (first
column of Table 11), which affects litter less (+) memory
function (third row) than Clomipramin, having the same
effect as Clomipramin on the remaining 12 psychic functions.

The side effects of all subcategories of all categories of
psychotropic drugs presented in Table 5 were evaluated fol-
lowing the described methodology.

C. MODELING THE HUMAN RELIABILITY DIMENSION

In this section, we describe how all the layers in Figure 1 are
connected, allowing us to calculate the negative effect of a
given drug on a given task. The integration was made by
a team of one psychiatrist, one ergonomist, one reliability
engineer and two software engineers, following the consensus
building methodology. The integration of our model took over
a year and a half. This team was also responsible for overall
project coordination.

Our definition of error is given by [78], [79], according to
which an error is something that, although not intended by the
actor or undesirable by a set of rules or an internal-external
controller, led the task or system outside acceptable limits.
In our case, the unscheduled shutdown of a safety/protection
system or turbine, or the unintentional discharge of reservoir
water or the increase of the reservoir water level above the
safety level, for example, is outside the acceptable operating
limits.

To quantitatively assess the impact of drug use on human
reliability, the qualitative scales of Table 8 and 10 were trans-
formed into quantitative ones, which implies attributing a
numerical weight proportional to the expected contribution to
human failures. Tables 12 and 13 shows the attributed values
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TABLE 12. Qualitative values of the psychic function relevance to the
activity and their attributed value.

Function importance Attributed
to the activity (if 4) Value

S 1.000
M 0.500 (= 1/2)
R 0.250 (= 1/4)
W 0.125 (= 1/8)

TABLE 13. Qualitative values of effect of drug on psychic function and
their attributed value.

Effect of drug on Attributed
psychic function (eq,r)  Value

++ 1.000
+ 0.666 (= 2/3)
- 0.333 (=1/3)
X 0.000

for psychic function importance on activity (ir, , used at Eq. 6)
and the effect of drug on psychic function (ey s used at Eq. 7).

The maximum of both scales is the unit, but the minimum
value is not the same. In the effect scale the smallest value is
zero which indicates null side effect, but in the importance
scale the smallest value is 1/8. This is due to the greater
reliance on psychiatrists’ estimates of the impact on psychic
functions of drug side effects (es s) than on the estimates of
ergonomists and reliability engineers on the importance of
each function in O&M task activities (i 4). Therefore, it was
agreed that no psychic function would be considered totally
irrelevant to any human activity, but that a drug could not
affect certain psychic functions at all.

The vast majority of published studies on human reliability
focus on high-risk areas such as the chemical and nuclear
industry and rail and air transport. Studies can be classified
according to their objectives into four categories: (1) to inves-
tigate whether accidents / incidents were caused by human
or technical failure to settle legal responsibilities; (2) in case
of human failure, identify the internal and external factors
and the scenario in which they were caused, ie, identify the
causes of accidents / incidents that induced human error to
contextualize attenuating conditions, (3) evaluate the factors
that lead to increased likelihood of human error under certain
critical operating conditions that precede high-risk accidents
(identified by experience or Probalistic Risk Analysis) to
improve: (i) working conditions; (ii) risk prevention manage-
ment mechanisms and (iii) operator training programs (using
simulators or not); (4) assess operational risk across different
industrial sectors to establish insurance policy, loss coverage
and premium.

It is worth noting that the first two goals are post-accident
and the last two pre-accidents, but both have in common
the extration of knowledge to be used to prevent further
accidents.

The purpose of this paper is to present a methodology
developed for pre-accident assessments, but which differs
from objectives 3 and 4 above in several respects: (a) focuses
on hydroelectric generation that is not classified as a high
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risk industry; (b) endeavors to prevent incidents that cause
interruptions in power generation or alteration of the voltage
and frequency parameters of the energy produced, which are
penalized by the ANEEL regulatory agency, (c) considers
operating and maintenance personnel and tasks and (d) the
result is the assessment of the contribution of psychotropic
drugs to human error in routine O&M tasks in order to opti-
mize the allocation of human resources to the tasks defined
for each work session. It is done according to the human relia-
bility assessment based on matching the effects of drug-types
used by different team members with the demands of the tasks
to be performed.

To quantify the contribution of psychotropic drugs to
human error in an O&M task ¢, we need to combine equa-
tions 5, 6 and 7, ie, substituting x, from Eq. 6 into Eq. 5 we
have

A A F
Yt = Zwa,txa = Zwa,t(z if,azf>’ 3
a=1

a=1 f=1
and then substituting z; from Eq. 7 into Eq. 8 we obtain

A F D
yi = Z%,z(Zif,a(ZEd.fud)), C))
f=1 d=1

a=1

Finally, recalling that w,; = r4:nq: (Eq. 1) we obtain
the explicit formula for y; which is the Psychotropic Drug
Use (PDU) Contribution to Human Failure for Task t,

A F D
Vi :Zra,lna,t<zif,a<Zed,fud>>- (10
a=1 f=1 d=1
All the coefficients in Eq. 10 are stored in the knowledge
database (PDIHR) for the selected tasks. The database is
being gradually updated by a permanent experts team.
In the case of a single drug d use Eq. 10 reduces to the form

A F
Ydi =Y TaiMa ( > if,aed,f), (a1

a=1 f=l

from which we can extract the term in parentheses corre-
sponding to a single activity a, denoted as 84 4, in the form

F
Sda =Y if.ad, (12)
f=1

Equation 12 is adequate to illustrate the calculation process
as shown in Table 14 for drug d = Amitriptyline and activity
a = Monitoring.

Notice that the columns function importance and drug
effect have two subcolumns, one with the qualitative scale
and the other with the quantitative scale. The last column is
the product of the importance and effect values. The sum of
the last column is the 84 4, which in this case is 5.5.

Thus Amitriptyline will contribute with 5.55 * Monitoring,
points every time the activity Monitoring (nMonitoring,r) b€
executed in any O&M task ¢, remembering that rvonitoring, 7 18
the relative relevance of the Monitoring activity in the task 7.
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TABLE 14. Calculation of §4 , for the drug Amitriptyline in activity
Monitoring.

Function Drug
Functions importance effect if.a €d,f
Level ifa Level | eq r

Surveillance S 1 X 0.33 0.33
Att./Conc, S 1 ++ 1 1.00
Sens./Perc. S 1 + 0.66 0.66
Memory S 1 + 0.66 0.66
Language w 0.125 + 0.66 0.08
Thinking w 0.125 + 0.66 0.08
Intelligence w 0.125 + 0.66 0.08
Imagination M 0.5 + 0,66 0.33
Conation M 0.5 + 0.66 0.33
Pragmatism M 0.5 ++ 1 0.50
Psychomot./Eq. F 0.25 ++ 1 0.25
Affectivity F 0.25 ++ 1 0.25
Orient./Guid. S 1 ++ 1 1.00
Drug effect to the activity (d4,4) 5.55

We performed these calculations for all activities and all
drugs and stored the results in the PDIHR database.

However, as our main practical objective was to pro-
vide a way to optimize O&M staffing for different tasks,
given that human reliability depends on psychotropic drug
intake and task demands, normalization of §s is recom-
mended. Normalization transforms absolute values, context-
and situation-dependent quantities, into relative values, which
are often independent of such conditions.

In our case, there are two normalization alternatives:
(1) Absolute Normalization, dividing all és by the theoreti-
cally possible § maximum value (837) and (2) Relative Nor-
malization, dividing all §s by the maximum value found in the
data (8;;4x = max($)). In the first case, the maximum possible
8y theoretical value may be extremely higher than the values
observed in practice and, therefore, the normalized & values
may be very small. Ergonomists and neuroscientists know
that humans don’t like to deal with very small or very large
numbers. In the second option, as the knowledge database
will be continuously fed over time, whenever a higher § value
arises in the practice of using the system, it will be necessary
to recalculate all coefficients that depend on that value. But
this is not the greatest difficulty, but it will be very difficult
to compare the s themselves or their dependent data, which
have been normalized using different § maximum values,
compromising this way the analysis of the temporal evolution
of any §-related indicator.

To avoid recalculations, we use 837 to normalize the §’s
primary values. The maximum theoretical § is obtained in
a hypothetical case where all the ir , and ey ¢ coefficients
in Eq. 12 are equal to one, whereby 6y = F = 13,
ie equal to the number of psychic functions considered. Thus,
the normalized ds are defined and denoted as

? 8d a
Sd,a =

" (13)

and should be used instead of non-normalized &s. Note that
the normalized § for the example with Amitriptyline drug
and Monitoring activity is 0.4269, which is not such a small
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number. Reliability engineers can use this result to per-
form human performance assessment on any task. The value
obtained can be used to weight the effect of each drug to
adjust the nominal HEP of the Monitoring activity.

The greatest uncertainty in the estimation of the various
coefficients was observed when establishing the relevance of
activities to tasks (r4;) in Eq. 10. A high dispersion of esti-
mates did not allow the establishment of reliable consensus
values. We believe that more experts can help to narrow the
best estimates, but it takes more time and resources. Con-
versely, estimates of activity frequencies in tasks were very
consistent, with relative dispersion below 30%. Therefore,
at this stage of the project we chose to disregard the relevance
estimates (assuming all the coefficients r, ; = 1).

D. SPECIFITIES OF THE USED HUMAN RELIABILITY
ASSESSMENT METHODS

Among the various HRA methods three of them: THERP,
SLIM and HEART, were developed for NPPs, so they are best
suited for non-nuclear power plant applications [13]. In most
HRA methods there are four kind of HEP:

1) The nominal HEP, which is the probability of a given
human error when the effects of plant-specific PSFs
have not yet been considered.

2) The basic HEP, which is the probability of human error
without considering the conditional influence of other
tasks.

3) The conditional HEP which is a modification of the
basic HEP to account for influences of other tasks or
events.

4) The joint HEP, which is the probability of human error
on all tasks that must be performed correctly to achieve
some end result.

Our objective is to evaluate how the conditional HEP (3™
above) calculated with these methods reflects the inclusion
of the new Contributing Factor, measured by the y, variable
described in this article (Eq. 10). More specifically, how
does the basic HEP change when the operator uses some
psychotropic medication before performing a task. To do this,
you need to know the nominal HEP of the task, calculate its
basic HEP considering the effects of plant-specific PSFs, and
then calculate the conditional HEP due to psychotropic drug
use. In our case, we choose the path that requires the small-
est set of procedural modifications in the selected methods.
However, as the modifications depend on the HRA method
employed, this section is devoted to a brief description of
them.

1) HEART
HEART method consists of five steps:
1) Classify the task in terms of its generic human unrelia-

bility into one of the eight generic HEART task types.
The nominal HEP ranges from 0.00002 (0.000006 —
0.00009) to 0.55 (0.35 — 0.97). Let C; € [1, 8] be the
selected class of the studied task ¢ and P,(C;) be its
nominal HEP.
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2)

3)

4)

5)

Identify relevant Error Producing Conditions (EPCs)
to the scenario/task under analysis to obtain the cor-
responding multiplier. Let EPC;; = 1 if the ith EPC
is relevant for task ¢t and EPC;; = 0 otherwise. There
are 38 EPCs and multipliers ranges from 1.02 to 17.00.
Let M; € [1.02,17] denote the multiplier of the ith
EPC. From these EPCs only one (the 30™) reffers to
the operators physiological condition: ‘“‘Evidence of
ill-health amongst operatives, specially fever” with a
multiplier M39 = 1.2.

Estimate the proportion of effect (between 0 and 1) of
each relevant EPC on the task ¢ based on expert’s
judgement. Let’s r;; € [0, 1] denote the proportion of
effect of the ith EPC for task 7. If an EPC i is not relevant
for a task ¢ (that is EPC;; = 0) then it has a null effect
on the task r;; = 0.

Calculate the ‘“assessed impact™ (/) for each EPC i
such that EPC; ; = 1, according to the formula:

Liy =WM;— Dri; +1

Calculate the Human Error Probability for task # mul-
tiplying all the EPC’s impacts and then multiplying the
result by the nominal HEP, based on the formula:

HEP; = Py(C)epc, =111

2) SLIM
SLIM method consists of seven steps:

1)

2)
3)

4)

Selection of the members Mater
Expert (SME) groups.

Selection of Tasks for Assessment.

Task Analysis - full verbal description of the task from
SME group members so that the task elements (called
activities in this paper) and personnel required, and
the PSFs influencing task performance are clear to
everyone.

Tasks are described by: Task Goals, task Activities, task
Location, time available, task Characteristics/event
description, task initiatirs, job aids, etc.

Activities are grouped into four categories:

of Subject

a) Equipment/Machine Operation: Open/close,
position, maintain, calibrate, fill/drain, use,
repair, test, start/stop, adjust, select, check, etc.

b) Cognitive Processes: Monitor, detect, calculate,
categorize, compute, encode, extrapolate, iden-
tify, interpolate, interpret, itemize, read, recall,
learn, remember, tabulate, translate, analyze,
choose, compare, decide, diagnose, estimate,
plan, predict, schedule, design, recognize, etc.

¢) Supervision: Advise, verify, manage, inspect,
direct, instruct, supervise, etc.

d) Communication/Social Processes: Write, tell,
discuss, transmit, read, ask, confer, communicate,
etc.

Classification of tasks into small subsets of tasks
affected by the same PSF set. The purpose of task
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5)

6)

7)

classification is to identify common general factors that
influence performance. A PSF may have a different
classification for two tasks but still be relevant to the
performance of both. For example, experts can identify
the “amount of time available™ as a factor influencing
the performance of two tasks. The success criteria for
a “pseudo reactive” task can be 30 seconds; but for
the second ‘““longer - more complex” task, it may take
2 hours.

Selection of Calibration Task - two tasks must be
included in each group of tasks which are similar to
the tasks already in the group and for which HEPs are
already available. This pair of tasks in each group will
be referred to as “calibration reference tasks” because
they will serve as reference tasks for calibrating or
transforming the Success Likelihood Indexes (SLIs)
into HEPs for other tasks in the group.

Use of the SLIM form by each SME group for each sub-
set of tasks, followed by the direct numerical assess-
ment of SLIs that are later transformed into the HEPs
of all tasks in all subsets by each group member.
Analysis and Interpretation of Results from SLIM ses-
sions. Correlational and nonmetric multidimensional
scaling analyses conducted to assess the inter-judge
reliability of SLIM methodology for estimating HEPs.

SLIM consider six PSF families:

1y

2)

3)

4)

)

Job and task instructions: Includes written procedures,
written and oral instructions and communications, cau-
tions and warnings, plant policies, work methods.
Task and equipment characteristics: Includes man-
machine interface factors, instrumentation, team struc-
ture and communication patterns, availability of feed-
back, task criticality, frequency and repetitiveness of
task, perceptual requirements of task, workload, infor-
mation load, complexity of task, motor requirements of
task.

Situational characteristics: Includes characteristics of
the work environment (temperature, humidity, air qual-
ity, radiation, lighting, noise, vibration, cleanliness),
architectural features, staffing/manning parameters,
organizational structure (responsibility, authority, com-
munication channels), actions by other personnel, work
schedules (hours of work, work breaks, shift rotation),
rewards, recognition, incentives, benefits, promotions.
Psychological Stressors: Includes stress-related fac-
tors such as suddenness of onset, task speed, task
load, perceived risk, threats of failure and loss of job,
monotonous, degrading, or meaningless work, long,
uneventful vigilance periods, conflicting motives of
job performance (e.g., accuracy vs. speed) distractions
(noise, glare, movement, display flicker, display color).
Physiological Stressors: Includes duration of stress,
fatigue, pain or discomfort, hunger or thirst, temper-
ature extremes, movement constriction, disruption of
circadian rhythm.
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6) Organismic Factors: Includes previous training,
experience level, state of current practice or skill, per-
sonality and intelligence variables, motivation and atti-
tudes toward work, emotional state, mental or bodily
tension or stress, knowledge of required performance
standards, physical condition.

3) THERP

THERP estimates human reliability considering the depen-
dences among human performance, equipment performance,
other system events, and outside influences, but explicitely
accounting for recovery factors ie, the probability of detecting
and correcting incorrect task performance in time to avoid
undesirable consequences. In any man-machine system, there
are usually several recovery factors, e.g., inspections that
increase the probability of detecting errors before they affect
the system. This method considers six types of tasks in
NPPs:

1) Routine control room monitoring tasks, e.g., periodic
scanning of panels.

2) Preventive and corrective maintenance tasks, e.g.,
replacing a defective part in a system.

3) Calibration tasks, e.g., ensuring that readings from
detectors are within the expected tolerance.

4) Postmaintenance or postcalibration tests, e.g., a test to
see that a repaired component/subsystem works prop-
erly.

5) Change and restoration tasks, in which the normal state
of a component is changed to permit maintenance,
calibration, or tests and then is restored to their normal
state after completion of the work.

6) Recovery tasks - those involving additional actions to
detect deviant conditions. Among them, four are most
common:

a) Checking someone’s work (human redundancy),
b) Noticing out-of-tolerance signals,
¢) Active inspections, with focus on specific items
of equipment, usually via written procedures, and
d) Passive inspections, as the basic walk-around
inspection.
THERP also considers six basic Activities, called “‘task
behaviors™, while coping with unusual conditions:
1) Perception - noting that some alarms are triggered
2) Discrimination - identifying the parameter (or set of
parameters) that better reflects the nature of the prob-
lem.
3) Interpretation - assigning the probable primary causes
to the problem that was discriminated.
4) Diagnosis - determining the most likely cause(s) of the
abnormal event.
5) Decision-Making - choosing between alternative diag-
noses and deciding which actions to carry out.
6) Action - carrying out the activities indicated by the
diagnosis, operating rules, or written procedures.

Assessment of HEP in THERP has three steps:
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1) Select interest tasks according to reliability or
availability.

2) Task Analysis - it is done using a graphic method called
the HRA event tree that considers correct and incorrect
human actions. In the tree, members represent a binary
decision process, ie, correct or incorrect performance
are the only options. Thus, in every binary branch,
the probabilities of events must add up to 1.0. Members
of the HRA event tree show different human Activities
as well as different conditions or influences (PSFs)
on those activities. The values attributed to all human
activities represented by tree branches (except those of
the first branch) are conditional probabilities, ie, they
are calculated assuming the success of the previous
activity. First members can also be conditional prob-
abilities if they represent a transfer from another tree.
On systems without redundancy (series), the entire set
of human activities must be performed correctly for
system success to be achieved, but on redundant (par-
allel) systems, not necessarily homogeneous, failure
will occur only if all human activities are performed.
incorrectly.

3) Estimate the relevant error probabilities. Once the HRA
event tree is drawn correctly and the estimates of the
conditional probabilities of success or failure of each
tree member have been determined, the math is simple.
The HEP of each path through the tree is calculated by
multiplying the failure probabilities of all members in
the path. Choosing the path with the highest probability
of failure (or least probability of success) defines the
HEP of the considered task.

In the following section, we describe an example task, how
drug impact was included in the calculation procedure of each
selected HRA method, and the HEPs calculated with (condi-
tional) and without (basic) psychotropic drug use.

IV. CASE STUDY

Of the 29 tasks considered most critical from a safety and
availability standpoint, listed in Table 2, one (Operator Rou-
tine Inspection) was selected to illustrate the applicability of
the method. A software developed called SARO - Sistema de
Avaliacdo do Risco Operacional (Operational Risk Assess-
ment System) based on the knowledge database and network
structure was used.

Routine operator inspection is a common task considered
of low complexity by most operators. The inspection has
times to determine if a fault has occurred or is about to
occur by identifying abnormal equipment states. The deci-
sion depends on the scenarios and perception created in the
operator’s mind. The task seems simple, however, there are
many equipment that must be inspected. If the number of
equipment increases, the number of activities increases and
the task becomes increasingly complex.

Routine inspection at hydroelectric plants includes check-
ing up to 35 different equipment on the inspection route
with an average of 8 control points on each equipment;
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TABLE 15. Comparative of the use of Amitripytiline and not use in the
HEP for Operator Routine Inspection task.

HRA basic HEP conditional HEP HEP
Method  (No drug use) (Drug use) Increase (%)

SLIM 0.40 0.54 35.0%
THERP 0.38 0.51 34.2%
HEART 0.60 0.69 15.0%

therefore, the task requires a total of 280 inspection points.
Some ergonomic aspects, such as the design of equipment
that makes it difficult to access inspection points increase the
likelihood of human failure.

V. RESULTS

The nominal HEP of the Operator Routine Inspection task in
SLIM is 0.0002. We considered 8 PSFs: layout of workspace,
the pressure of time, lighting, inspector experience, work-
place interruptions, inspection points accessibility, task com-
plexity and the organization support for decision making. The
basic HEP of this task was 0.4.

In HEART the HEP of the visual inspection of one point is
0.03. However, the task is a multi-point inspection on various
elements of equipment. We considered an scenario where 8
points of 35 different equipment are inspected within 4 hours
of service. For this new condition, the basic HEP was 0.6.

The THERP method was tested using in each branch of the
event tree a sequence of three activities for each Inspection
point. The nominal HEP of inspection task has a probability
of 0.0002. This value was used in all branches of the tree
because is the same (inspection-diagnosed-action). The basic
HEP was 0.38.

In the above assessments for the calculation of basic HEP
the effect of psychotropic drugs was not included. Now,
to calculate conditional HEP due to operator ingestion of a
dose of Amitriptyline one hour before the start of work, yz ;
calculated according to Equation 11 was used as a multiplier
of PSFs related to cognitive and sensory-motor functions.
Table 15 shows the basic and conditional HEP calculated by
three HRA methods when the new PDU-PSF was considered.

As can be seen on Table 15 the HEP values after the
inclusion of the amitriptiline effect were greater than initials,
varying from 15% for the HEART method to 35% for SLIM
method. Applying the method described to include the Psy-
chotropic Drugs Use (PDU) as an influencing factor in human
reliability assessments significantly increased the likelihood
of human failure in a moderately complex activity due to the
operator’s prior ingestion of a commonly used drug to reduce
stress and anxiety.

VI. DISCUSSION

The definition of all the relative relevance of the activities to
all tasks r,;, = 1 was a tough decision, because including
relevance was one of the key elements of the approach at the
beginning of the project. However, it was very hard to reach
a consensus on the impact of each activity, and a generalized
solution would not be possible since a new assessment would
be required for each specific task. The frequency of the
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activity (n4r) became the most important variable and it was
verified that it is very simple to obtain this data when applying
a systematic task analysis.

Another area in which our team of experts experienced a
high degree of uncertainty was in establishing the strength of
the influence of sensory-cognitive-motor functions on oper-
ational activities, facing a complete lack of previous results
on the subject. The estimates obtained will be shared with
the community of cognitive ergonomics and neurosciences
as a starting point for a discussion leading to knowledge
enhancement. These estimates are the connections between
the second and third layers and can be adjusted by regression
with operational error data.

Words mean different things to different people; conse-
quently, there is uncertainty associated with any word used.
There are three different universes of discourse in the pro-
posed work, so the final results have a composition of the
uncertainties of each one. The process of building the knowl-
edge database that underpins the developed methodology
depends on expert judgment, so the immeasurable subjective
component of the judgment causes uncertainty. In addition,
work in psychiatry is not an exact science and is based on
experience with each specific drug and multivariate analysis
of each patient’s condition.

Uncertainties can have a significant impact on method
results, but as the purpose of this paper is to present an
instrument to begin measuring a neglected human perfor-
mance influencing factor so far, quantifying the sensitivity
of the result to uncertainties in the model parameters will be
subject to future works. However, the authors are aware of
this problem and the results obtained are considered grounded
guidelines, but not determinant statements.

In spite of all the uncertainties, we believe, as mentioned
in the introduction of this article, that our contribution to the
improvement of human reliability analysis of operators of
socio-technical systems in general is relevant for two reasons:
(1) Considers for the first time the effects derived from the
use of psychotropic drugs, an increasingly common event in
our society, and (2) In matters related to risk control and
/ or reliability assessment, it is always advisable to use a
method for evaluating influencing factors even if it depends
on uncertain parameters, rather than not applying the method.

VII. CONCLUSION

The use of psychotropic drugs is becoming increasingly
common among operating and maintenance personnel in
the industry and their effects should be considered in
human reliability analysis. The presented method, based on
a conceptual-mathematical model, is a way to include the
use of psychotropic drugs as a factor of influence in human
performance.

The method was designed to establish the impact of a
specific drug on the execution of a task, broken down into a
sequence of sensorimotor-cognitive activities, by an operator
who is not mentally ill but who used the drug shortly before
or during his workday, for some reason, justified or not.
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The connection between a drug and a sensorimotor-
cognitive activity is established through the product of drug
effect on a given set of psychological functions and the rele-
vance of those functions to the performance of said activity.

The applicability of the method was illustrated with a
simple task carried out by a hydropower plant operator who
took Amitriptiline. A PSF is calculated and used as input
for three common HRA methods in power plants: SLIM,
HEART, THERP. In this study case, the Human Error Proba-
bility (HEP) increased between 15% and 35% depending on
the HRA method.

One of the expected contributions of this work is to estab-
lish the data needed to build a Knowledge Database (KDB)
that suports the evaluation of the impact of the use of psy-
chotropic drugs in human reliability. This KDB can be useful
as a standard to collect human failure data. The experience
of applying this instrument will support risk analysts and
reliability engineers in their decision-making process.

Although there is a natural uncertainty in the model param-
eters associated with insufficient current knowledge the prac-
tical use of the developed system (SARO) will allow adjust-
ment to the parameters over time.

So-far, the method is being used to optimize the allocation
of human resources to the tasks defined for each workday in
eight Brazilian hydroelectric plants. From a human reliability
perspective, the method takes into account the type of drug
taken by team members and the characteristics of scheduled
tasks.

ACKNOWLEDGMENT
o ANEEL - Agéncia Nacional de Energia Elétrica
« FUNDEB - Fundacio para o Desenvolvimento de Baurd
o AES Tieté company
« Karla Kristine Santana Gongalves, MSc.

REFERENCES

[1] M. Lassalle, J.-F. Chastang, and I. Niedhammer, “Working conditions
and psychotropic drug use: Cross-sectional and prospective results from
the French national SIP study,” J. Psychiatric Res., vol. 63, pp. 50-57,
Apr. 2015, doi: 10.1016/j.jpsychires.2015.02.019.

[2] M. Kivimaki, T. Honkonen, K. Wahlbeck, M. Elovainio, J. Pentti,
T. Klaukka, M. Virtanen, and J. Vahtera, “Organisational downsizing
and increased use of psychotropic drugs among employees who remain
in employment,” J. Epidemiology Community Health, vol. 61, no. 2,
pp. 154-158, Feb. 2007, doi: 10.1136/jech.2006.050955.

[3] L. H. Ripoll, J. Triebwasser, and L. J. Siever, “Evidence-based pharma-
cotherapy of personality disorders,” in Essential Evidence-Based Psy-
chopharmacology, 2nd ed. Cambridge, U.K.: Cambridge Medicine, 2012,
pp. 278-315, doi: 10.1017/CB0O9780511910395.015.

[4] R. H. Y. So and S. T. Lam, “Factors affecting the appreciation gen-
erated through applying human factors/ergonomics (HFE) principles to
systems of work,” Appl. Ergonom., vol. 45, no. 1, pp. 99-109, Jan. 2014,
doi: 10.1016/j.apergo.2013.04.019.

[5] A. Antonovsky, C. Pollock, and L. Straker, ‘“‘Identification of the human
factors contributing to maintenance failures in a petroleum operation,”
Hum. Factors, J. Hum. Factors Ergonom. Soc., vol. 56, no. 2, pp. 306-321,
Mar. 2014, doi: 10.1177/0018720813491424.

[6] K. M. Groth and A. Mosleh, “A data-informed PIF hierarchy for
model-based human reliability analysis,” Rel. Eng. Syst. Saf., vol. 108,
pp. 154-174, Dec. 2012, doi: 10.1016/j.ress.2012.08.006.

[71 K.Mearns, Human Factors in the Chemical and Process Industries, vol. 1.
Amsterdam, The Netherlands: Elsevier, 2017.

[8] M. Philippart, Human Reliability Analysis Methods and Tools, vol. 1.
Amsterdam, The Netherlands: Elsevier, 2018.

80670

[9]

[10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

(25]

(26]

(27])

(28]

(29]

(30]

V. N. Aju Kumar, M. S. Gandhi, and O. P. Gandhi, “Identification and
assessment of factors influencing human reliability in maintenance using
fuzzy cognitive maps,” Qual. Rel. Eng. Int., vol. 31, no. 2, pp. 169-181,
Mar. 2015, doi: 10.1002/qre.1569.

J. Park, Y. Kim, J. H. Kim, W. Jung, and S. C. Jang, “Estimating the
response times of human operators working in the main control room
of nuclear power plants based on the context of a seismic event—
A case study,” Ann. Nucl. Energy, vol. 85, pp.36-46, Nov. 2015,
doi: 10.1016/j.anucene.2015.03.053.

K. Coyne and A. Mosleh, “Nuclear plant control room operator modeling
within the ADS-IDAC, version 2, dynamic PRA environment: Part 1—
General description and cognitive foundations,” Int. J. Performability
Eng., vol. 10, no. 7, pp. 691-703, 2014.

N. A. Stanton, P. M. Salmon, L. A. Rafferty, G. H. Walker, C. Baber, and
D. P. Jenkins, Human Factors Methods: A Practical Guide for Engineering
and Design, 2nd ed. Boca Raton, FL, USA: CRC Press, 2005.

Y. Zou, L. Zhang, and P. Li, “Reliability forecasting for operators’ situation
assessment in digital nuclear power plant main control room based on
dynamic network model,” Saf. Sci., vol. 80, pp. 163-169, Dec. 2015,
doi: 10.1016/j.s5¢1.2015.07.025.

D. L. Dunner, “Clinical handbook of psychotropic drugs,” J. Clin. Psychi-
atry, vol. 63, no. 3, p. 254, Mar. 2002, doi: 10.4088/JCP.v63n0313d.

E. Barros and H. M. T. Barros, Medicamentos Na Prdtica Clinica.
Porto Alegre, Brazil: ArtMed, 2010.

K. Z. Bezchlibnyk-Butler and J. J. Jeffries, Clinical Handbook of Psy-
chotropic Drugs, 23rd ed. Boston, MA, USA: Hogrefe, 2019.

A. B. Clayton, “The effects of psychotropic drugs upon driving-related
skills,” Hum. Factors, J. Hum. Factors Ergonom. Soc., vol. 18, no. 3,
pp. 241-252, Jun. 1976.

A.P. G. Brown, “Modelling a real world system and designing a schema
to represent it,” in Proc. IFIP TC-2 Special Working Conf. Data Base
Description, 1975, pp. 339-348.

P. P.-S. Chen, “The entity-relationship model-toward a unified view of
data,” ACM Trans. Database Syst., vol. 1, no. 1, pp. 9-36, Mar. 1976,
doi: 10.1145/320434.320440.

1. Olkin and A. R. Sampson, Multivariate Analysis: Overview. New York,
NY, USA: Pergamon, 2001.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Nature, vol. 323, no. 6088,
pp. 533-536, Oct. 1986.

J. Schmidhuber, ““Deep learning in neural networks: An overview,”” Neural
Netw., vol. 61, pp. 85-117, Jan. 2015.

M. C. B. Sengul, F. Karadag, C. Sengul, K. Karakulah, O. Kalkanci, and
H. Herken, “Risk of psychotropic drug interactions in real world settings:
A pilot study in patients with schizophrenia and schizoaffective disorder,”
Klinik Psikofarmakoloji Biilteni-Bull. Clin. Psychopharmacol., vol. 24,
no. 3, pp. 235-247, Sep. 2014, doi: 10.5455/bcp.20140311041445.

M. Bonnard, J. de Graaf, and J. Pailhous, ““Interactions between cognitive
and sensorimotor functions in the motor cortex: Evidence from the prepara-
tory motor sets anticipating a perturbation,” Rev. Neurosci., vol. 15, no. 5,
pp- 371-382, Jan. 2004.

R. Wijesinghe, “A review of pharmacokinetic and pharmacodynamic
interactions with antipsychotics,” Mental Health Clinician, vol. 6, no. 1,
pp. 21-27, Jan. 2016.

A. B. Harding, “Mhidas: The first ten years,” in Proc. ICHEME Symp.
Ser., no. 141, 1997, pp. 39-50.

A.D. Swain and H. E. Guttmann, ““Handbook of human-reliability analysis
with emphasis on nuclear power plant applications,” U.S. Nucl. Regulatory
Commission, Rockville, MD, USA, Tech. Rep. NUREG/CR-1278; SAND-
80-0200 ON: DE84001077, 1983.

B. Kirwan, “The validation of three human reliability quantification
techniques—THERP, HEART and JHEDI: Part III—Practical aspects of
the usage of the techniques,” Appl. Ergonom., vol. 28, no. 1, pp. 27-39,
1997, doi: 10.1016/S0003-6870(96)00046-4.

M. A. B. Alvarenga, P. F. Frutuoso e Melo, and R. A. Fonseca, “A crit-
ical review of methods and models for evaluating organizational factors
in human reliability analysis,” Prog. Nucl. Energy, vol. 75, pp. 25-41,
Aug. 2014, doi: 10.1016/j.pnucene.2014.04.004.

T. Q. Tran, R. L. Boring, J. C. Joe, and C. D. Griffith, “Extracting and
converting quantitative data into human error probabilities,” in Proc. IEEE
8th Hum. Factors Power Plants HPRCT 13th Annu. Meeting, Aug. 2007,
doi: 10.1109/HFPP.2007.4413200.

VOLUME 8, 2020


http://dx.doi.org/10.1016/j.jpsychires.2015.02.019
http://dx.doi.org/10.1136/jech.2006.050955
http://dx.doi.org/10.1017/CBO9780511910395.015
http://dx.doi.org/10.1016/j.apergo.2013.04.019
http://dx.doi.org/10.1177/0018720813491424
http://dx.doi.org/10.1016/j.ress.2012.08.006
http://dx.doi.org/10.1002/qre.1569
http://dx.doi.org/10.1016/j.anucene.2015.03.053
http://dx.doi.org/10.1016/j.ssci.2015.07.025
http://dx.doi.org/10.4088/JCP.v63n0313d
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.5455/bcp.20140311041445
http://dx.doi.org/10.1016/S0003-6870(96)00046-4
http://dx.doi.org/10.1016/j.pnucene.2014.04.004
http://dx.doi.org/10.1109/HFPP.2007.4413200

C. L. S. F. Filho et al.: Effect of Psychotropic Drugs as a PIF on HRA

IEEE Access

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

K. S. Park and J. I. Lee, ““A new method for estimating human error prob-
abilities: AHP-SLIM,” Rel. Eng. Syst. Saf., vol. 93, no. 4, pp. 578-587,
Apr. 2008, doi: 10.1016/j.ress.2007.02.003.

E. Hollnagel, Cognitive Reliability and Error Analysis Method (CREAM).
Amsterdam, The Netherlands: Elsevier, 1998, doi: 10.1016/B978-
008042848-2/50006-3.

A. C. Ribeiro, A. L. Sousa, J. P. Duarte, and P. F. F. E. Melo, “Human
reliability analysis of the Tokai-Mura accident through a THERP-CREAM
and expert opinion auditing approach,” Saf. Sci., vol. 87, pp. 269-279,
Aug. 2016, doi: 10.1016/j.ss¢i.2016.04.009.

R. A. Fonseca, A. C. M. Alvim, P. F. F. Frutuoso ¢ Melo, and
M. A. B. Alvarenga, “A THERP/ATHEANA analysis of the latent oper-
ator error in leaving EFW valves closed in the TMI-2 accident,” Sci.
Technol. Nucl. Installations, vol. 2013, pp. 1-8, 2013, doi: 10.1155/
2013/787196.

A. J. Spurgin, Human Reliability Assessment Theory and Practice.
Boca Raton, FL, USA: CRC Press, 2009.

Y. H. J. Chang and A. Mosleh, “Cognitive modeling and dynamic prob-
abilistic simulation of operating crew response to complex system acci-
dents,” Rel. Eng. Syst. Saf., vol. 92, no. 8, pp. 1076-1101, Aug. 2007,
doi: 10.1016/j.ress.2006.05.012.

J. C. Williams, “A data-based method for assessing and reducing
human error to improve operational performance,” in Proc. Conf. Rec.
IEEE 4th Conf. Hum. Factors Power Plants, Jun. 1988, pp. 436450,
doi: 10.1109/HFPP.1988.27540.

E. Akyuz, E. Celik, and M. Celik, “A practical application of human
reliability assessment for operating procedures of the emergency fire pump
at ship,” Ships Offshore Struct., vol. 13, no. 2, pp. 208-216, Feb. 2018,
doi: 10.1080/17445302.2017.1354658.

C. D. Griffith and S. Mahadevan, “Human reliability under sleep
deprivation: Derivation of performance shaping factor multipliers from
empirical data,” Rel. Eng. Syst. Saf., vol. 144, pp. 23-34, Dec. 2015,
doi: 10.1016/j.ress.2015.05.004.

B. Hallbert, A. Whaley, R. Boring, P. McCabe, Y. Chang, ‘““‘Human event
repository and analysis (HERA): The HERA coding manual and quality
assurance,” U.S. Nucl. Regulatory Commission, Rockville, MD, USA,
Tech. Rep. NUREG/CR-6903, 2007, vol. 2.

R. Islam, F. Khan, R. Abbassi, and V. Garaniya, ‘“‘Human error probability
assessment during maintenance activities of marine systems,” Saf. Health
Work, vol. 9, no. 1, pp. 42-52, 2017, doi: 10.1016/j.shaw.2017.06.008.

Y. Kim, J. Park, W. Jung, 1. Jang, and P. H. Seong, ““A statistical approach
to estimating effects of performance shaping factors on human error prob-
abilities of soft controls,” Rel. Eng. Syst. Saf., vol. 142, pp. 378-387,
Oct. 2015, doi: 10.1016/j.ress.2015.06.004.

R. B. Shirley, C. Smidts, M. Li, and A. Gupta, *“Validating THERP:
Assessing the scope of a full-scale validation of the technique for human
error rate prediction,” Ann. Nucl. Energy, vol. 77, pp. 194-211, Mar. 2015,
doi: 10.1016/j.anucene.2014.10.017.

B. S. Dhillon, Human Reliability, Error, and Human Factors in Engi-
neering Maintenance: With Reference to Aviation and Power Generation.
Boca Raton, FL, USA: CRC Press, 2009.

B. Kirwan, W. H. Gibson, and B. Hickling, “‘Human error data collection as
a precursor to the development of a human reliability assessment capability
in air traffic management,” Rel. Eng. Syst. Saf., vol. 93, no. 2, pp. 217-233,
Feb. 2008, doi: 10.1016/j.ress.2006.12.005.

R. L. Boring, J. A. Forester, A. Bye, V. N. Dang, and E. Lois, “Lessons
learned on benchmarking from the international human reliability analysis
empirical study,” in Proc. 10th Int. Probabilistic Saf. Assessment Manage.
Conf., 2010, pp. 1-13.

D. Attwood, P. Baybutt, C. Devlin, W. Fluharty, G. Hughes, D. Isaacson,
P. Joyner, E. Lee, D. Lorenzo, L. Morrison, and B. Ormsby, Human Factors
Methods for Improving Performance in the Process Industries. Hoboken,
NJ, USA: Wiley, 2007, doi: 10.1002/0470118849.

W. Preischl and M. Hellmich, ‘““Human error probabilities from operational
experience of German nuclear power plants,” Rel. Eng. Syst. Saf., vol. 109,
pp. 150-159, Jan. 2013, doi: 10.1016/j.ress.2012.08.004.

S.J. Lee, J. Kim, and W. Jung, ““Quantitative estimation of the human error
probability during soft control operations,” Ann. Nucl. Energy, vol. 57,
pp. 318-326, Jul. 2013, doi: 10.1016/j.anucene.2013.02.018.

H. Rong and J. Tian, “STAMP-based HRA considering causality within a
sociotechnical system: A case of minuteman III missile accident,” Hum.
Factors, J. Hum. Factors Ergonom. Soc., vol. 57, no. 3, pp. 375-396,
May 2015, doi: 10.1177/0018720814551555.

VOLUME 8, 2020

(51]

(52]

(53]

[54]

[55]

[56]

(57

(58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

(71]

S. Prvakova and V. Dang, “A review of the current status of HRA
data,” in Safety, Reliability and Risk Analysis: Beyond the Horizon,
R.D.J. M. Steenbergen et al., Eds. London, U.K.: Taylor & Francis, 2014,
pp- 595-602, doi: 10.1201/b15938.

Y. James Chang, D. Bley, L. Criscione, B. Kirwan, A. Mosleh,
T. Madary, R. Nowell, R. Richards, E. M. Roth, S. Sieben, and
A. Zoulis, “The SACADA database for human reliability and human
performance,” Rel. Eng. Syst. Saf., vol. 125, pp. 117-133, May 2014,
doi: 10.1016/j.ress.2013.07.014.

A. Kolaczkowki, J. Forester, E. Lois, and S. Cooper, “Good practices
for implementing human reliability analysis (HRA),” Office Nucl. Reg-
ulatory Res., U.S. Nucl. Regulatory Commission, Rockville, MD, USA,
Tech. Rep. NUREG-1792, 2004.

X. Pan, Y. Lin, and C. He, “A review of cognitive models in human
reliability analysis,” Qual. Rel. Eng. Int., vol. 33, no. 7, pp. 1299-1316,
2017.

J. Reason, Human Error. Cambridge, U.K.: Cambridge Univ. Press, 1990,
doi: 10.1017/CB0O9781139062367.

A. Sobhani, M. I. M. Wahab, and P. W. Neumann, ““Integrating ergonomics
aspects into operations management performance optimization models:
A modeling framework,” IIE Trans. Occupational Ergonom. Hum. Fac-
tors,vol. 4, no. 1, pp. 19-37,2016, doi: 10.1080/21577323.2016.1178190.
M. Sheikhalishahi, L. Pintelon, and A. Azadeh, ‘““‘Human factors in mainte-
nance: A review,” J. Qual. Maintenance Eng., vol. 22, no. 3, pp. 218-237,
Aug. 2016, doi: 10.1108/JQME-12-2015-0064.

B. Kirwan and L. K. Ainsworth, A Guide to Task Analysis: The Task
Analysis Working Group. New York, NY, USA: Taylor & Francis, 1992,
doi: 10.1201/b16826.

N. Stanton, A. Hedge, K. Brookhuis, E. Salas, H. Hendrick, Handbook
of Human Factors and Ergonomics Methods. Boca Raton, FL, USA:
CRC Press, 2005.

M. Bertolini, “Assessment of human reliability factors: A fuzzy cogni-
tive maps approach,” Int. J. Ind. Ergonom., vol. 37, no. 5, pp. 405-413,
May 2007, doi: 10.1016/j.ergon.2005.12.009.

L. G. Militello and R. J. B. Hutton, “Applied cognitive task analy-
sis (ACTA): A practitioner’s toolkit for understanding cognitive task
demands,” Ergonomics, vol. 41, no. 11, pp. 1618-1641, Nov. 1998.

G. Baxter, D. Besnard, and D. Riley, “Cognitive mismatches in the cockpit:
Will they ever be a thing of the past?” Appl. Ergonom., vol. 38, no. 4,
pp. 417423, Jul. 2007.

Guidelines for Preventing Human Error in Process Safety: CCPS (Center

for Chemical Process Safety), Hoboken, NJ, USA: Wiley, 2004.

P. Falzon, Fundacion MAPFRE, in Manual De Ergonomia. 2009.

C. V. D. Weerdt and R. Baratta, “Changes in working conditions for
home healthcare workers and impacts on their work activity and on
their emotions,” Production, vol. 25, no. 2, pp. 344-353, Jun. 2015,
doi: 10.1590/0103-6513.108412.

C. Gorenstein, S. C. de Carvalho, R. Artes, R. A. Moreno, and
T. Marcourakis, “Cognitive performance in depressed patients after
chronic use of antidepressants,” Psychopharmacology, vol. 185, no. 1,
pp- 84-92, Mar. 2006, doi: 10.1007/s00213-005-0274-2.

C. DeBattista and A. F. Schatzberg, “‘Psychotropic dosing and monitoring
guidelines,” Primary Psychiatry, vol. 13, no. 6, pp. 61-81, 2006.

M. Nederlof, L. J. Stoker, T. C. Egberts, and E. R. Heerdink, “Instructions
for clinical and biomarker monitoring in the summary of product char-
acteristics (SmPC) for psychotropic drugs: Overview and applicability in
clinical practice,” J. Psychopharmacol., vol. 29, no. 12, pp. 1248-1254,
Dec. 2015, doi: 10.1177/0269881115609016.

D. S. Baldwin, I. M. Anderson, D. J. Nutt, C. Allgulander, B. Bandelow,
J. A. den Boer, D. M. Christmas, S. Davies, N. Fineberg, N. Lidbetter,
A. Malizia, P. McCrone, D. Nabarro, C. O’Neill, J. Scott, N. van der Wee,
and H.-U. Wittchen, “Evidence-based pharmacological treatment of anx-
iety disorders, post-traumatic stress disorder and obsessive-compulsive
disorder: A revision of the 2005 guidelines from the British association for
psychopharmacology,” J. Psychopharmacol., vol. 28, no. 5, pp. 403—439,
May 2014, doi: 10.1177/0269881114525674.

S. M. Stahl, “Overview of trends in modern psychopharmacology,” CNS
Spectrums, vol. 12, no. 2, pp. 103-105, 2007.

G. Andrews, M. J. Hobbs, T. D. Borkovec, K. Beesdo, M. G. Craske,
R. G. Heimberg, R. M. Rapee, A. M. Ruscio, and M. A. Stanley,
“Generalized worry disorder: A review of DSM-IV generalized anxiety
disorder and options for DSM-V,” vol. 27, no. 2, pp. 134-147, 2010,
doi: 10.1002/da.20658.

80671


http://dx.doi.org/10.1016/j.ress.2007.02.003
http://dx.doi.org/10.1016/B978-008042848-2/50006-3
http://dx.doi.org/10.1016/B978-008042848-2/50006-3
http://dx.doi.org/10.1016/j.ssci.2016.04.009
http://dx.doi.org/10.1155/2013/787196
http://dx.doi.org/10.1155/2013/787196
http://dx.doi.org/10.1016/j.ress.2006.05.012
http://dx.doi.org/10.1109/HFPP.1988.27540
http://dx.doi.org/10.1080/17445302.2017.1354658
http://dx.doi.org/10.1016/j.ress.2015.05.004
http://dx.doi.org/10.1016/j.shaw.2017.06.008
http://dx.doi.org/10.1016/j.ress.2015.06.004
http://dx.doi.org/10.1016/j.anucene.2014.10.017
http://dx.doi.org/10.1016/j.ress.2006.12.005
http://dx.doi.org/10.1002/0470118849
http://dx.doi.org/10.1016/j.ress.2012.08.004
http://dx.doi.org/10.1016/j.anucene.2013.02.018
http://dx.doi.org/10.1177/0018720814551555
http://dx.doi.org/10.1201/b15938
http://dx.doi.org/10.1016/j.ress.2013.07.014
http://dx.doi.org/10.1017/CBO9781139062367
http://dx.doi.org/10.1080/21577323.2016.1178190
http://dx.doi.org/10.1108/JQME-12-2015-0064
http://dx.doi.org/10.1201/b16826
http://dx.doi.org/10.1016/j.ergon.2005.12.009
http://dx.doi.org/10.1590/0103-6513.108412
http://dx.doi.org/10.1007/s00213-005-0274-2
http://dx.doi.org/10.1177/0269881115609016
http://dx.doi.org/10.1177/0269881114525674
http://dx.doi.org/10.1002/da.20658

IEEE Access

C. L. S. F. Filho et al.: Effect of Psychotropic Drugs as a PIF on HRA

[72] R. B. Hidalgo and D. V. Sheehan, “Generalized anxiety disorder,” Hand-
book Clin. Neurol., vol. 106, pp. 343-362, Jan. 2012, doi: 10.1016/B978-
0-444-52002-9.00019-X.

[73] Diagnostic and Statistical Manual of Mental Disorders, 5th ed., Amer.
Psychiatric Assoc., Washington, DC, USA, 2013, doi: 10.1176/appi.
books.9780890425596.

[74] D. Wishart, Y. Feunang, A. Guo, E. Lo, A. Marcu, J. Grant, T. Sajed,
D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu,
A. Maciejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, D. Le, A. Pon,
C. Knox, and M. Wilson, “DrugBank 5.0: A major update to the DrugBank
database for 2018,” Nucleid Acids Res., vol. 4, no. 46, pp. D1074-D1082,
2017, doi: 10.1093/nar/gkx1037.

[75] (1996). Drugs.Com. [Online]. Available: https://www.drugs.com

[76] E. Cheniaux, “Psicopatologia descritiva: Existe uma linguagem comum?”’
Brazilian J. Psychiatry, vol. 27, no. 2, pp. 157-162, 2005, doi: 10.1590/
S1516-44462005000200017.

[77]1 C. L. S. Figueir6a, E. M. Assis, G. C. Lima, P. V. Fleming, A. Garcia,
and I. Freitas, “Human reliability—An analysis of proportional suc-
cess x fails scenarios for adjusting assessment and management risk to
reality—Applied to hydroeletrical energy generation,” in Safety, Reli-
ability and Risk Analysis: Beyond the Horizon. New York, NY, USA:
Taylor & Francis, 2013, pp. 375-382.

[78] A. Swain and H. Guttmann, A Handbook of Human Reliability Analysis
With Emphasis on Nuclear Power Plant Applications. Washington, DC,
USA: U.S. Nuclear Regulatory Commission, 1983.

[79] D. Meister, Human Error: Cause, Prediction, and Reduction: Analysis and
Synthesis, Hillsdale, NJ, USA: Lawrence Erlbaum Associates, 1993.

CELSO LUIZ SANTIAGO FIGUEIROA FILHO
received the B.S. degree in mechanical engineer-
ing from the Federal University of Minas Gerais,
in 1991, and the M.Sc. degree in production engi-
neering from the Federal University of Bahia,
1999, and the M.Sc. degree in industrial engineer-
ing from UFBA-Universidade Federal da Bahia,
Brazil, in 1999.

He was a Human Reliability Researcher of
FUNDEB—Bauru Development Foundation for
ANEEL—National Electric Energy Agency Research and Development
projects, from 2011 to 2019. He is currently working as a Researcher and a
Consultant in human reliability and industrial maintenance management and
also holds a position as a Lecturer of the Catholic University of Salvador.
He is consultant in the oil and gas, iron and steel, metal mining, hydropower
generation, water and sanitation, and transportation sectors (air, road, and
rail). His research interests include human reliability and maintenance.

DIEGO GERVASIO FRIAS SUAREZ received
the degree in nuclear engineering from the Uni-
versidade de Havana, in 1983, the Ph.D. degree
in nuclear technology from Budapest Technical
University-Hungary, in 1986, the Ph.D. degree
(summa cum laude) in tecnologia nuclear from the
Universidade Tecnoldgica of Budapeste, Hungary,
in 1986, and the Ph.D. degree in computational
modeling from the Universidade do Estado do Rio
de Janeiro—UERJ, in 1999.

He was a Postdoctoral Researcher in computational modeling from the
Laboratério Nacional de Computagdo Cientifica (LNCC), Petrépolis, Rio
de Janeiro, from 1999 to 2001, scholarshipo PRONEX. He was also a
Postdoctoral Researcher in viral bioinformatics from the Centro de Pesquisas
Gongalo Moniz, Fiocruz, Salvador, from 2008 to 2009. He is currently a
Professor of the Universidade do Estado da Bahia (UNEB). He also coordi-
nates research projects in nuclear technology, bioinformatics, robotics, and
information technology.

80672

EDILSON MACHADO DE ASSIS received
the degree in civil engineering from UCSal,
in 1994, the master’s degree in production engi-
neering from UFBa/MEP, in 1999, and the
Ph.D. degree in industrial engineering from the
UFBA-Universidade Federal da Bahia, in 2013,
(UFBa/PEI 2013). He is currently a Reliability
Researcher at the FUNDEB-Bauru Development
Foundation for ANEEL- National Electric Energy
Agency Research & Development projects and a
participant in the Graduate Program in Industrial Engineering at UFBA (PEI)
as a co-supervisor of doctorate and master’s degrees. He has experience in
civil engineering, in the area of design of structures in reinforced concrete,
and has also worked in the design of water supply and distribution networks.
He currently develops consulting in the area of reliability engineering by per-
forming risk analysis of non-tolerable events and works with methodological
and product innovations.

GABRIEL ALVES DA COSTA LIMA received the
master’s degree in mines engineering from the
University of Campinas, in 2004, the Ph.D. degree
in industrial engineering from the University of
Campinas, in 2006, the Ph.D. degree in econ-
omy from the University of Campinas, in 2008,
and the Ph.D. degree in engineering from the
UNICAMP-Universidade de Campinas, Brazil,
in 2008.

He was a Professor at UNICAMP from 2008
to 2014. Since 2008, he has been a Researcher of FUNDEB-Bauru Devel-
opment Foundation for the ANEEL- National Electric Energy Agency
Research & Development projects, as well as a Researcher in systems
reliability, economic models applied to oil and gas, econometrics models
for predictions, and uncertainties models. His research projects involve
the development of reliability, risk, and asset management quantitative
methodology (UNICAMP/Comgds), E&P Portfolio optimization method-
ologies using 3D de components visualization techniques strategy (UNI-
CAMP/Petrobras), methodology and computer platform for assessing human
reliability in operational and maintenance activities in power generation
companies (FUNDEB), and development of a state-of-the-art computing
platform for optimization of operational improvement project groups.

ROBSON DA SILVA MAGALHAES received the
degree in mechanical engineering from the Federal
University of Bahia, in 1985, the master’s degree in
electrical engineering from the Federal University
of Bahia, in 2005, the Ph.D. degree in industrial
engineering from the Federal University of Bahia,
in 2010, and the D.Sc. degree in industrial engi-
neering from the UFBA-Universidade Federal da
Babhia, Brazil, in 2013.

He worked as an Adjunct Professor (Exclusive
Dedication) with a focus on instrumentation and industrial automation with
the Chemical Engineering Department, Polytechnic School, Federal Univer-
sity of Bahia (UFBA). He is currently an Associate Professor with the Federal
University of Southern Bahia (UFSB), in the activities developed with the
Tecno-Ciéncias e Inovagio Training Center. He has experience in industrial
maintenance, focus on vibration analysis: predictive maintenance, vibration
analysis, signal spectral analysis, harmonic analysis. He is also a Researcher
in acoustic and neural networks applied to pattern recognition. He has strong
experience in the coordination, supervision and leadership of maintenance
teams in petrochemical plants, mining, and food industry.

VOLUME 8, 2020


http://dx.doi.org/10.1016/B978-0-444-52002-9.00019-X
http://dx.doi.org/10.1016/B978-0-444-52002-9.00019-X
http://dx.doi.org/10.1176/appi.books.9780890425596
http://dx.doi.org/10.1176/appi.books.9780890425596
http://dx.doi.org/10.1093/nar/gkx1037
http://dx.doi.org/10.1590/S1516-44462005000200017
http://dx.doi.org/10.1590/S1516-44462005000200017

