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ABSTRACT High frequency oscillations (HFOs) in intracranial electroencephalography (GEEG) recordings
are a promising clinical biomarker that can help define the epileptogenic regions in the brain. The aim
of this study is to characterize the spatial and temporal distribution of HFOs in channel-wise instead of
event-level as usual and to develop an automated the seizure onset zone (SOZ) identification by using a
support vector machine (SVM) approach on the channel-wise features in a short-term recording. In this
work, five consecutive patients with medically intractable epilepsy were enrolled. For each patient, ten-
minute segments were defined from two hours of iEEG recordings during sleep state. A total of 17 channel-
wise features including 6 rate-based, 6 duration-based, 3 amplitude-based, and 2 power-based features of
HFOs were extracted from each 10-min segment, which including ripples (Rs, 80-250 Hz) and fast ripples
(FRs, 250-500Hz) were detected automatically using validated detectors. Each channel-wise feature was
ranked by using the Student’s t-fest method and the most distinctive features were selected to explore the
characteristics of HFOs in each channel. A supervised-learning based SVM classifier with the selected
channel-wise features or their combinations was developed to identify each channel within the independently
clinician-defined SOZ or not. Over 3,816 chanel-10-min segments of iEEG recordings, the evaluated
accuracy, sensitivity, and specificity of the proposed approach with the optimal combination of top five
ranked features for SOZ identification are 86.6%, 73.0%, and 94.1%, respectively, for ten-fold cross-
validation, and 86.0%, 79.2 %, and 91.8%, respectively, for the leave-1-out cross-validation. Compared with
the recently reported SOZ detectors based on event-wise feature of HFOs, the channel-wise features and the
combination with machine learning approach demonstrate its feasibility in SOZ identification with a relative
higher performance and potentially reduce the time needed currently for long-term recording and manual
inspection.

INDEX TERMS Epilepsy, high frequency oscillations (HFOs), intracranial electroencephalograms (iEEG),

machine learning, seizure onset zone.

I. INTRODUCTION

Epilepsy is one of the most frequent chronic neurological
diseases affecting an estimated number of 65 million people
of worldwide and occurs in all age ranges [1], [2]. The
current gold standard for identification of the epileptogenic
zone is the seizure onset zone (SOZ) [3]-[8]. However,
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identifying this brain region is challenging. The current
surgical outcomes are unfavorable 40-50% of well-selected
patients, which has led to a search for new biomarkers that
could accurately and effectually identify the SOZ and there-
fore result in better postsurgical outcomes [9]. Recently,
a number of studies reported that interictal high frequency
oscillations (HFOs, 80 - 500 Hz) in the recorded intracranial
electroencephalography (iEEG) have been shown to be a
promising biomarkers to identify the epileptogenic zone by
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using brief segments of data between seizures, and has altered
the traditional EEG frequency bands which were thought
clinically relevant (up to 40 or 70 Hz) [10]-[16]. However,
multiple recent studies also reported that HFOs are present
not only in epileptic cerebral area but also in non-epileptic
brain regions often including visual cortex, motor cortex and
language areas [17]-[20]. The presence of these physiologic
events complicates the clinical use of HFOs as biomarkers
for the delineation of SOZ and increase the risk of injury to
functional areas.

The characterization of HFOs is an increasingly important
measure of SOZ detection at present [21], [22]. Several earlier
studies have attempted to characterize and distinguish HFOs
discovered inside and outside the SOZ based on manual
extraction of event-wise features in time domain [21]-[23],
spectrum domain [23], time-frequency domain [25], and/or
nonlinear domain [26]-[28]. Most of these studies focused
on exactly quantifying waveform morphology using these
features from a statistical point of view or employing an
unsupervised method, after clustering them according to their
known origin. Although the main finding of stereotyped
HFOs showing temporal [23], [29] and/or spatial variabil-
ity [30] may help elucidate mechanisms of seizure generation,
the analysis of HFO events form one by one has limited
use in epilepsy diagnosis and planning neurosurgery. Mean-
while, a large portion of the current clinical HFO literature
is based upon a channel-wise strategy of analyzing the rate
of HFO occurrence (detected either manually or using soft-
ware) to classify the channels that are in the SOZ [29]-[33],
which allows for experts to process and count HFOs in
fixed durations manually. Compared with normal physiologic
HFOs, pathological HFOs may not only have distinctive
shapes but occur more often during slow-wave sleep than in
wakefulness [23], [31], and epileptiform HFOs rates were
proven significantly higher within the SOZ than in non-
SOZ regions, especially during interictal periods in a deep
sleep state [13], [14]. Some also attempted to differentiate
between epileptic and non-epileptic HFOs based on others
features besides their rate [34], [35], [41]. The investigated
features are related to the duration, amplitude, frequency of
the HFOs. However, these approaches have predominantly
utilized a single rate or an arbitrary partial combination of the
abovementioned features to identify SOZs and have not con-
sidered the inter-patient variability nor the high-dimensional
dynamics of the epileptic activity.

In our previous study [36], we proposed an automated
HFOs detector based on deep convolutional neural net-
works (CNN), which is capable of automatically extracting
the shared features of HFOs events of different patients and
shown a higher accuracy for distinguishing real HFOs as well
as Rs and FRs from false HFOs such as noise and spike. Based
on our preliminary inspection of count of identified HFOs in
each channel and the occurrence time of each HFOs event,
both of them were found a greater variability between within
the SOZ and other regions. As such, we hypothesize that it
may be possible to reduce the variability across patients by
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combining the complementary values contained with differ-
ent electrophysiological characteristics of HFOs and thereby
improve the generalization capability of SOZ localization.
Although each feature constitutes specific electrophysiolog-
ical information about the epileptogenicity of brain tissue
and might add predictive value when used in unison with
other features, it is a new challenge to design more sophis-
ticated models for any conclusion regarding the practical
significance of the feature differences and their reflection in
the usefulness of SOZ identification, by effectively utilizing
multiple electrophysiological features.

Following up on our previous work, this study assessed
the feasibility of using machine learning approach on seven-
teen, channel-wise characteristics of HFOs instead of features
of each event to automatically identify channels recorded
from the seizure onset zone in patients with drug-resistant
epilepsy. To our best knowledge, the present study provided
the first attempt to systematic investigation of HFOs regard-
ing automated identification of SOZ with their traditional
and customized characteristics representing electrophysio-
logical knowledge, including the rate, duration, amplitude,
and power of channel-wise HFOs instead of each event.
By automatically localizing the zone of seizure onset or at
least estimating a region of interest containing or closed to
the epileptogenic zone before surgery procedure, the investi-
gated machine learning based SOZ technique would provide a
useful and applicable pre-surgery guideline for operator, and
potentially reduce the time needed for long-term recording
and manual inspection.

Il. MATERIAL AND METHODS

A. DATA ACQUISITION

1) PARTICIPANTS

Five consecutive patients with medically intractable epilepsy
were included in the study (three male, two female patients)
from 2016 to 2017 at the department of neurosurgery of
the West China Hospital (affiliated to Sichuan University,
Chengdu, China). All patients underwent a comprehensive
presurgical evaluation by the doctors including a detailed
history, routine scalp EEG, and imaging (MRI and CT of
brain), and subsequently been implanted with intracranial
electrodes for a long-term iEEG recording. This study was
approved by the Institutional Review Board (IRB) of the West
China Hospital, where data collection was performed, and
written informed consent was obtained from all patients.

2) INTRACRANIAL EEG RECORDING

The intracranial EEG of each patient was recorded from
subdural electrodes formatted in subdural silastic grids (4 mm
diameter electrode contacts, 10 mm inter-electrode spac-
ing) which all referenced to a bipolar montage along the
length of the grid. The duration of clinical monitoring
(24 -208 hours) and the location and number of implanted
electrodes (46 - 110) were determined in accordance with
clinical considerations. For each patient, a continuous
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long-term intractable EEG recording was performed in a
sampling rate of 4,096 Hz by using a multichannel bio-
amplifier with XLTEK EMU128FS system (Natus neurology,
USA). Note that no hardware filter was used in the acquisi-
tion procedure, except the high-pass filter with 0.1 Hz as a
cutoff frequency classically used to remove the offset of the
baseline.

3) CLINICAL SOZ LOCALIZATION

Clinical reports abovementioned were used for clinical SOZ
localization. The seizure onset channels of each patient were
determined visually by two neurologists based on the well
known knowledge of the seizure onset channels with the ear-
liest iEEG seizure discharges [17], [30], [35]. In case of mul-
tiple SOZs, the seizure onset channels from all seizures were
marked as SOZ and treated equally. Meanwhile, the remain-
ing non-spiking channels with normal activity were referred
to as recording from the normal zone (NoZ). The same
approach has been used in previous studies [33]-[35]. In this
way, both two corresponding electrodes of one marked SOZ
channel were localized and all SOZ electrodes were then
annotated as the gold standard to validate our proposed
method.

B. DATA ANALYSIS
1) ALGORITHM FRAMWORK
A full set of algorithms for the automated detection of HFOs
in iEEG data, the evaluation of their channel-wise features
and the identification of the candidate SOZ were developed
and programmed with the help of the MATLAB software
package (MATLAB 2010, the Mathworks Inc., Natick, MA).
It consists of five main blocks of functions as shown in Fig. 1:

(i) data pre-processing and segmentation;

(i) CNN-based HFOs detection that was presented in our
previous work [36];

(iii) candidate channel-wise features extraction of HFOs,
such as the rate, duration, amplitude, and power of HFOs;

(iv) informative features selection by conducting on a stu-
dent #-test on all candidate channel-wise features;

(v) machine-learning based classifications and automated
identification of SOZ.

2) DATA PRE-PROCESSING

In this work, the raw data recorded was exported in European
Data Format (EDF) without being filtered and subsequent
data segment selection for each recoding was carried out
using bipolar montages with neighboring electrodes along
the length of the grid with the help of the software
NeuroWorks 8 (Natus Medical Incorporated, Canada). Visual
review of individual channels was performed and channels
with excess line noise (50 Hz), motion artifacts, and con-
taining no visible EEG signal were removed before analysis.
The total number of the selected channels was 318 (a total
of 395 electrodes referring to a bipolar montage) in five
patients. Then, we randomly selected two hours of continuous
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FIGURE 1. Block diagram of the proposed approach for automated
identification of SOZ.

raw data during sleep, which were at least 60 min prior to
the onset of a seizure. Each of the selected iEEG signals
was cut continuously into 10 minute segments (a total of
60 10-min segments for five patients). Moreover, each data
segment was filtered with a 4-order Buterworth bandpass
filter to reconstruct HFOs both of the Rs (80 - 250Hz) and FRs
(250 - 500Hz) events. After filtering, all filtered segments of
these two frequency ranges were normalized for subsequent
data analysis such as automatic HFO detection and SOZ
localization.

3) AUTOMATED HFOs DETECTION

Automated HFOs detection is a crucial step to get a more
complete overview of the HFOs characteristics [27], [41],
[42] and to further investigate their relationship with epilepsy,
especially with the assessment of the SOZ in the context of
continuous monitoring. In this work, the automated HFOs
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TABLE 1. A summary of channel-wise features of HFOs analyed in this study and their informative ranking and p valuse by using the Student t-test

ranking method.

Ranking with
No. Category Feature Description or Equation statistical analysis (p
value)
1 Rate fuxy): Absolute HFOs rate Average rate of HFOs of each channel in 10 min ~ 6(8.0e-21)
2 fr(x): Absolute Rs rate Similar to f(x;) 5(9.8e-24)
3 frr (x;): Absolute FR rate Similar to fr(x;) 9(3.3e-4)
4 Rify(x;):Relative raito of HFOs rate Ratio between the absolute and the maximum 1 (8.4¢-52)
absolute HFOs rate
5 Rifx(x;): Relative raito of Rs rate Similar to Rify(x;) 2(1.1e-51)
6 Rifrr (xy): Relative raito of FRs rate Similar to Rifp(x;) 12(9.6¢-4)
7  Duration  Rify(t;): Ratio of duration of HFOs Ratio between the summary of all HFOs’ 4 (5.9¢-32)
duration of each channel and the total duration of
all channels for each 10 min
8 Rifg(t;): Ratio of duration of Rs Similar to Rify(t;) 3 (4.5¢-32)
9 Rifra(ty): Ratio of duration of FRs Similar to Rify(t;) 10(9.3¢-4)
10 Avfa(ty): Average duration of Rs Ratio between the summary of all Rs’ duration of ~ 13(3.1e-3)
each channel and the number of Rs
11 Avfr(ty): Average duration of FRs Similar to Afpr(t;) 15(1.9¢-2)
12 Sd fu(ty): Standard deviation of HFO  Equation (1) 7(7.4e-8)
duration
13 Amplitude AvSd fu(a;): Average of standard Equation (2) 17(7.5¢-2)
deviation HFOs amplitude
14 AvSd fr(a;):Average of standard Similar to AvSd fu(ay) 8(4.4e-6)
deviation Rs amplitude
15 AvSd frr(ay):Average of standard Similar to AvSd fu(a;) 14(3.4¢-3)
deviation FRs amplitude
16 Power Avfr(py): Average energy of Rs Equation (3) 16(3.9¢-2)
17 Avfrr (py): Average energy of Rs Similar to Avfp(py) 11(4.7¢-4)

detection was performed by using our recently reported HFOs
detector with high diagnostic sensitivity and specificity [36].
The algorithm employs the combination of short-time energy
(STE) estimation and the CNN classifier to detect HFOs
in all recorded channels of each 10-min data segment [36].
Meanwhile, the time occurrence of each transient of HFOs
is accurately identified so as to further assist the extrac-
tion of duration-based features in this work. Unlike what
we’ve reported before, when detecting HFOs event, each
10-min segment of the recorded iEEG was further divided
into numerous of successive 5-ms frames instead of 10-m for
HFOs event detection for better temporal resolution. Once
energy values of five adjacent frames all exceed a certain
threshold level, one candidate HFOs event with different
duration can be identified individually, which may span
numerous of 5-ms frames (at least 5 frames). The duration of
each HFOs event in time window is correspondingly deter-
mined between the beginning time of the first frame and
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the ending time of the last frame. Note that the temporal
resolution of the duration of each HFOs event was 5 ms in
this work.

4) CHANNEL-WISE FEATURES EXTRACTION

After collected a pool of HFOs, a total of 17 novel channel-
wise characteristics of HFOs were proposed to be derived
from all HFOs, Rs, and FRs in each 10-min segment data.
There were 6 rate-based, 6 duration-based, 4 amplitude-
based and 2 power-based features, which are summarized
in Table 1 and described as followings:

o Rate-Based Features (fg(xjj), fr(xij), frrR(xij), Rifg(xij),
Rifgr(xjj), and Rifgr(x;)): The channel-wise feature of
absolute HFOs rate fg(x;;) characterizes the absolute
count x of HFOs per min of the i 10-min segment in the
j™ channel, and the corresponding relative ratio Rify (xif)
is computed between the absolute and the maximum rate
of HFOs in each channel. For the Rs and FRs events,
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TABLE 2. Optimal channel-wise features for SOZ indentification by using
the student t — test ranking method.

No. of No. of Description of ranking
Category input optimal optimal feature
features  features
Rate 6 3 Rifu(xij):  Relative 1
raito of HFOs rate
Rif(xij):  Relative 2
raito of Rs rate
fr(xij): Absolute Rs 5
rate
Duration 6 2 Rif(tij): Ratio of 3
duration of Rs
Rifu(tij): Ratio of 4
duration of HFOs
Amplitude 3 1 0
Power 2 0 0
Total 17 5 -

one absolute rate and one corresponding relative ratio
are also derived for each data segment in each channel,
respectively.

o Duration-Based Features (Rify(t;j), Sdfy(xij), Rifr(t;),
Rl'fFR(t,'j), Ava(x,'j), and AVfFR(xij)).' Based on the
detected duration ¢ of each HFOs event of the i 10-min
segment in the j# channel, the channel-wise feature of
ratio of HFOs duration is defined as the ratio between
the summary of all HFOs’ duration of the j” channel
and the total duration of all channels for the i 10-min
segment in each patient. And, the feature of average
duration of Rs Avfg(t;;) is computed as the ratio between
the summary of all Rs’ duration of each channel and
the number of Rs. The feature of average duration of
FRs (Avfr(t;) ) is similar to that of Rs. Additionally,
the corresponding standard deviation of HFOs duration
is computed as following equation:

— 2
Sdf[—](l‘,]) _ \/Zk (tn Ktkmean) (1)

where 1, is the duration of the ¥ HFOs of the i
segment in the j channel, ; is the average duration of
the total HFOs events K.

o Amplitude-Based Features (AvSdfy(ajj), AvSdfr(aj),
and AvSdfrr(a;j)): Considering each HFOs event k con-
taining numerous oscillations n, the standard devia-
tion of amplitude of each HFOs event can be defined
to characterize partially its morphology. As such, the
channel-wise average of standard deviation of oscilla-
tions amplitude is customized as one of channel-wise
feature AvSdfy (a;j) as following:

_ 2
AdefH(azf/) _ \/Zn (an Nakmean) /K (2)

where a,, is the amplitude of one oscillation of the k™
HFOs of the i segment in the j channel, N is the total
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number of the oscillation of the average duration of the
total K HFOs events, K is the total number of the HFOs
events of the i’ segment in the j channel.

o Power-Based Features (Avfr(p;;) and Avfr(p;j)): For the
frequency domain, the channel-wise average energy p
of a total of K Rs (80-250 Hz) in the i segment of the
j™ channel was computed as following, and the feature
Avfrr(p;j) of the FRs (250-500 Hz) was also obtained
with a similar equation:

Afrpi) =), /K 3)

5) FEATURES SELECTION

Considering the complex electrophysiological mechanism of
epilepsy, a common limitation of individually using the above
proposed channel-wise features is that they may not provide
a high enough sensitivity, specificity, or either both of them.
Thus, we further hypothesis is that, if such features reflect
different phenomena of an underlying neuro activity, they
might add complementary information to each other, con-
sequently, a combined informative features might improve
the capability of the proposed method for identification of
SOZ. Therefore, the most distinctive features were selected
and combined for subsequent classification by using a fea-
ture ranking/selection algorithm. In this work, the Student’s
t-test was used for this purpose [37]. The p-value obtained is
used to rank all of the extracted channel-wise features, higher
p-value indicate better ranking. The selected channel-wise
characteristics including the traditional and customized fea-
tures associated with HFOs were computed for each 10-min
data segment of each channel.

6) MACHINE LEARNING BASED CLASSIFICATION

The supervised-learning based method of support vector
machine (SVM) with radial basis function (RBF) kernel func-
tion [38] was used in this work to differentiate between elec-
trodes of located in the clinical SOZ and those out of this area,
which was suggested by recent works [17], [35] and shown
a superior performance in our pilot study among four stan-
dard machine-learning techniques such as k-nearest neigh-
bors (k-NN), decision tree (DT), and SVMs with linear and
polynomial kernel function. And, two different experimental
approaches of cross-validation were carried out, as shown in
Fig. 2(A).

All of 17 extracted features used for the classification were
divided into four categories such as rate-based, duration-
based, amplitude-based, and power-based features. These
channel-wise features were extracted from each 10-min seg-
ment (epoch) of a channel, and 12 feature matrixes with
number of channels by 17 were obtained from the 2 hours
recording of each channel in each patient. Note that one cell
of the feature matrix was set to be zero if there is no any HFOs
events detected in this segment. A total of 60 10-min segment
data was analyzed to distinguish a total of 395 electrodes
between the SOZ and NoZ electrode.
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-

FIGURE 2. Intracranial EEG recording with subdural grids (A) and representative EEGs with HFO events including visually marked
ripple (B) and fast ripple (C) showing: (top) raw data of multichannel recordings, (2nd row) raw data in the dotted rectangle is
extended; (3rd row) the Rs and FRs range band-passed data with an cutoff frequency of 80-250 Hz and 250-500 Hz, respectively;
(bottom) visually verification of HFOs including Rs and FRs using the wavelet transform method, where an clear ‘island’ present in

the corresponding time-frequency map.

The overall analytic scheme of these two cross-validation
protocols is illustrated in Fig. 2(B). One is a ten-fold cross
validation, where the dataset was divided into an 80% training
set and a 20% testing set. Then, a leave- 1-out cross-validation
was carried out. For every patient in the dataset, the data from
the rest of the patients was employed as the training data and
respective patient’s data used as the testing data. For each
of the cross-validation iteration, training and testing datasets
were generated by employing one of the cross-validation
methods. These two validation approaches allow the calcu-
lation of generalizable performance metrics for the analyzed
classifier from the view of balance degree of a dataset in
case of the ten-fold cross and the view of feasibility in a new
patient in case of the leave-1-out cross [35]. With combina-
tions of same category features the trained SVM classifier
with optimized model parameters was used to identify auto-
matically the SOZ or NoZ channels in the testing set and
their corresponding performance was therefore evaluated.
Moreover, to evaluate the significance of the improvement
in the classification results when including various combina-
tions of selected features, we performed a series of tests on the
SVM classifier with various selected features combination,
including combinations of the top one, the top two, the two
three, , the top 16 informative features and all of the
17 extracted channel-wise features.

C. STATISTICAL ANALYSIS
All detected HFOs were used to identify the seizure onset
areas by using the SVM based classifier as mentioned above.
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The performance of the proposed classification when using
different feature subsets was evaluated by identifying the
classes of the test dataset and comparing the identifications
against the clinical gold standard annotations of the test
dataset, as shown in Fig. 2(C). A channel was considered true
positive Cspz if it was overlapped with the seizure onset site
marked by clinicians and was considered false positive Cy,z
if it lied outside of the SOZ region. This performance was
conducted using standard performance metrics such as the
area under curve (AUC), sensitivity, specificity, and accuracy,
which were defined as:

Cyo; in SOZ
Sensitivity = _ oz : (4)
Csoz In SOZ + Cnoz in SOZ
Chno t SOZ
Specificity = Noz 91 Q)
Cnoz out SOZ + Cg,; out SOZ
Cioz out SOZ + Chpz out SOZ
Accuracy = (6)

number of tested electrodes

IIl. RESULTS

A. HFOs DETECTION AND CHANNEL-WISE

FEATURES SELECTION

As shown in Fig. 3(A), examples of automatic detection of
HFOs (Rs and FRS), spike, and noise from two patients are
given in raw signal, filtered signals after 80-250 Hz filter and
250-500 Hz filter, and two dimensional time-frequency maps.
HFOs events consisted of the Rs and FRs events, and false
HFOs including noise and spike were excluded in this study.
Over 3,816 chanel-10-min segments of iEEG recordings
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A. Examples of HFOs detection B. Spatial distribution of five optimal features
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FIGURE 3. (A)Examples of automatic detection of HFOs (Rs and FRS), spike, and noise are given in raw signal, filtered signals after
80-250 Hz filter and 250-500 Hz filter, and two dimensional time-frequency maps in two patients, (B)examples of top five ranked features
are given in each color coded channel of patients 2 and 3 with the leave-1-out cross-validations, where a channel color-coded with a hotter

color means a higher possibility within the SOZ.

(5 patients with on average 54 channels per patient, 2 h per
channels) were analyzed in this study. A total of 4,014 HFOs
was detected automatically, including 2,530 events within the
SOZ area and 1,484 outside it. And, 2,375 Rs and 155 FRs
were found in the SOZ region, while there were 1,460 Rs and
24 FRs from norm brain region.

Fig. 4 shows the evaluated performances of combination of
various ranked features, where a total of seventeen features
combinations. Specifically, the proposed 17 channel-wise
features of HFOs were computed for each channel-10-min
segment, and ranked by the obtained p value of the Student
t-test method. To find most informative feature or fea-
tures combination, an optimization of combination of inter-
category ranked features for SOZ identification was carried
out by using the ten-fold and leave-1-out cross-validations.
As shown in Fig. 4, we found that the point at the top
five ranked features has a tradeoff and optimal performances
including the AUC, the accuracy, the sensitivity, and the
specificity. For combinations from that to the subsequent five,
obtained performance values of four metrics almost keep the
same with that of the method combined with the top five
ranked features, whereas the corresponding computational
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complex would be increase as the increasing number of fea-
tures. Moreover, after the point of the ten ranked features,
performances of SOZ localization show a drastically reduced
and unstable. In this case, the optimal features combination is
determined for the proposed method in this work, including
three rate-based features and two duration-based features.
Referring the Tables 1 and 2, The ID and name of these fea-
tures are No. 4, Rify (xij): relative raito of HFOs rate, No. 5,
Rifg(xij): relative raito of Rs rate, No. 8, fg(xij): absolute Rs
rate, No. 7, Rifg(tij): Ratio of duration of Rs, and No. 2,
Rify (tij): Ratio of duration of HFOs). As shown in Fig. 3(B),
examples of these top five ranked features are given in each
channel of patients 2 and 3, respectively. One color bar is
given for each feature individually, where a channel color-
coded with a hotter color means a higher possibility within
the SOZ, and each SOZ marked visually by clinicians are also
indicated in the corresponding channel with a red arrow.

B. SOZ IDENTIFICATION AND CHANNEL-WISE

FEATURES COMBINATION

As shown in Table 3, various combinations of multiple
channel-wise features were input into the SVM classifier
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FIGURE 4. Optimization of intercartegory features combination for SOZ identification by using SVM-based classifiers by
using the ten-fold (A) and leave-1-out cross-validations (B). such as the top one, the top two, the top three, ...... the top

sixteen ranked features, and all channel-wise features of HFOs.

TABLE 3. Cross-validated classification performance for SOZ indentification by using SVM-based classifiers with combinations of same cartegory features
and Inter-category optimal features, by using both of the ten-fold and leave-1-out cross-validation experiments.

Features combination Cross-validation

AUC

Sensitivity Specificity Accuracy

(number) Method
Average ten-fold 0.637 68.3% 92.8% 84.1%
Rate (6)
Leave-1-out 0.675 77.2% 89.1% 82.7%
. Average ten-fold 0.505 52.0% 96.7% 82.0%
Duration (6)
Leave-1-out 0.554 62.3% 93.0% 83.8%
Average ten-fold o 0 )
Amplitude (3) 0.155 15.7% 97.3% 69.3%
Leave-1-out 0.144 14.8% 97.8% 65.9%
Average ten-fold 0.174 27.3% 80.8% 60.0%
Power (2)
Leave-1-out 0.064 32.3% 71.9% 61.7%
Average ten-fold o 0 )
All features (17) 0.248 31.9% 77.6% 62.1%
Leave-1-out 0.141 18.8% 93.9% 63.1%
Average ten-fold o o o
Optimal features () 0.689 73.0% 94.1% 86.6%
Leave-1-out 0.716 79.2% 91.8% 86.0%

to determine whether the performance of SOZ identifica-
tion can be improved and the inter-patient variability can be
reduced. Four combinations of same category features are
the rate-based SVM with 6 features, duration-based SVM
with 6 features, amplitude based SVM with 3 features, and
power-based SVM with 2 features. Importantly, one com-
bination with the selected top five ranked features and one
combination with all 17 features are both evaluated. For each
group, obtained performance metrics of the AUC, the accu-
racy, the sensitivity, and the specificity by using the ten-
fold and leave-1-out cross-validations described previously
are given in Table 3 separately. Our results also indicate that
both the rate-based and duration features combination show
an obvious superiority for SOZ identification in comparison
with the amplitude-based and power-based combination, and
it shows a good agreement with previous studies [34], [35].
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Interestingly, the proposed algorithm with the selected top
five ranked features (or called an optimal combination of
inter-category features) resulted in higher ten-fold cross-
validation performances of 86.6%, 73.0%, and 94.1% for the
accuracy, the sensitivity, and the specificity, respectively. For
the corresponding leave-1-out protocol, the obtained perfor-
mances are of 86.0%, 79.2 %, and 91.8%, respectively. Lastly,
based on these results further SOZ identification with the
optimal feature combination was performed in each patient.
Over 227 channels from five patients, 15 channels were suc-
cessfully identified within the SOZ region. Two examples are
shown in Fig. 5, where the best and worst good-fit between
our estimated SOZ and the clinical SOZ localization were
found in patients 4 and 1, respectively. As shown in Fig. 5,
examples of SOZ identification with our proposed method
on the combination of top five ranked channel-wise features
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FIGURE 5. Examples of SOZ identification with our proposed method on the combination of top five
ranked channel-wise features from one 10-min-segment iEEG with the leave-1-out cross-validations. The
result in left panel shows a good agreement between our estimated SOZ electrodes (red circle) and clincal
marked SOZ region (blue rectangle), whereas a slight mismatch between of them also found in this study,
as shown in right panel in one of patient; Two estimated SOZ electrodes are not correctely identified in
the SOZ area and two SOZ electrodes are missed in our estimated SOZ, which would lead to a

corresponding decrease of the performance.

TABLE 4. The Comparison of our method and other recent methods for SOZ indentification using the biomarker of HFOs in EEG signal'.

Methodology

Best performance

Authors (year) -
Feature extraction (No. of features)

Classifier

Accuracy Sensitivity Specificity

Greertsema et al.  Nonlinear features (1) Unsupervised method, ARR - 60.0% 70.0%
(2015) [26]
Ellenrrieder et al. Event-wise features (4, rate, amplitude, Supervised method, LC - 80.0% 65.0%
(2016) [34] duration, and frequency)
Murphy et al. Event-wise features (1, rate) Unsupervised method 84.3% 77.1% 82.1%
(2017) [32]
Cimbalnik et al. Event-wise features (3, rate, amplitude, Supervised method, SVM-LIN - 63.9% 73.7%
(2018) [17] and duration)
Varatharajah et al ~ Event-wise features (3, HFOs rate, PAC ~ Supervised method, SVM-RBF 79.0% 70.4 % 75.1%
(2018) [35] rate, and IED rate)
Liu et al. Event-wise features (1, rate) Unsupervised method, DBSCAN 65.0% 85.0% 63.0%
(2018) [33]
Present study Channel-wise feature (5 selected from  Supervised method, SVM-RBF
17 features such as rate-based, duration-  Average ten-fold cross-validation 86.6% 73.0% 94.1%
based, amplitude-based, and power-
based features) Leave-1-out cross-validation 86.0% 79.2% 91.8%

'ARR = Autoregressive model residual variation, LC = Logistic regression, SVM = support vector machine, LIN = linear kernel, RBF = radial basis
function kernel, PAC = phase-amplitude coupling, IED = interictal epileptiform discharges, DBSCAN = density-based spatial clustering of applications

with noise.

from one 10-min-segment iEEG are presented with the leave-
1-out cross-validations. The result in left panel shows a good
agreement between our estimated SOZ electrodes (red circle)
and clinical marked SOZ region (blue rectangle). Whereas
a slight mismatch between of them also was found in this
study as shown in right panel of the Fig. 5, two estimated SOZ
electrodes were not correctly identified in the SOZ area and
two SOZ electrodes were missed in our estimated SOZ, which
would lead to a corresponding decrease of the performance.

C. COMPARISON TO EXISTING WORKS

Furthermore, compared with recent studies that are most
close to our proposed method [17], [26], [32]-[35], our pro-
posed method shows an comparable performance in accuracy
and specificity, such as 86.6% and 94.1% for ten-fold test,
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86.0% and 91.8 for leave-1-out test, as shown in Table 4.
Meanwhile, the evaluated sensitivity around 70-80% is sim-
ilar to those reported works [32]-[35] and a little bit lower
than that reported work [33], while our method demonstrated
an improvement in both accuracy and specificity. However,
one should be cautious that this comparison of performance
to existing works is only a relatively qualitative analysis to
assess the feasibility of this proposed method with a similar
level.

IV. DISUSSIONS

A. MAIN CONTRIBUTIONS OF THIS STUDY

The present study reports a SVM based method for automated
identification of SOZ and NoZ electrodes using combination
of multiple channel-wise features extracted from interictal
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iEEG data, which were collected in a clinical setting. Impor-
tantly, our study, to our best knowledge, is the first attempt to
systematically extract and optimize channel-wise features of
HFOs rather than that of each event, which represent higher
dimensional information and distributions of HFOs including
rate, duration, amplitude, and power. The optimal combi-
nation of engineering and electrophysiological features of
HFOs provides a way of reducing variability across patients
and redundant information among features to improve the
performance of SOZ localization. With experiments in thou-
sands HFOs detected from hundreds of electrodes in five
patient with medically intractable epilepsy, the automated
identification of SOZ presented in this work show a solidly
consistent in all patients, and the spatial distribution of iden-
tified SOZ channels showed agreement with clinician-define
SOZ. Compared to other recent reported methods for SOZ
identification, our proposed method with the combination
of optimized channel-wise features has an obvious higher
performance in terms of the accuracy, the sensitivity, and
specificity. In addition to the above specific contributions,
we evaluate the usefulness of these channel-wise features
as well as the proposed method through the performance of
a machine learning based classification algorithm, instead
of simply assessing statistical significance of the difference,
which can be meaningless from a practical point of view.
Besides that, the ability to perform SOZ identification auto-
matically within a maximum monitoring duration of two
hours offers a considerable benefit when considering its clin-
ical applicability.

B. THE VALUE OF FEATURE SELECTION

AND COMBINATION

These obtained results also highlight the need for further
research to clarify the differences in significance of SOZ
identification among all extracted channel-wise features as
well as various combinations of them. Previous works have
focused on SOZ detection algorithm with event-wise fea-
tures of HFOs or an arbitrary partial combination of them.
Although, the most widely reported feature for SOZ iden-
tification is the rate of HFOs as well as the Rs and the
FRS [29]-[33], the generalization capability of such single
feature has been insufficient, primarily because of the vari-
ability across patients [21], [22], spatial variation [30], and
temporal changes [23], [29] of HFOs events in clinical prac-
tice. In the analyses of two cross-validations on seventeen
proposed individual channel-wise features and four inter-
category feature combinations in this work, both experiments
demonstrated significant differences in performance of SOZ
identification, as shown in Table 3. The feature rank of signif-
icance for SOZ identification is given as p-value calculated
with the Student z-fest method, as shown in Table 1. And,
the optimization of combination of various ranked features
is presented in Fig. 4. Moreover, this study demonstrated that
supervised machine learning method on combining optimal
channel-wise features can be more accurate in performing
SOZ identification than those either of supervised method

45540

with arbitrary combination of features [17], [34], [35] or of
unsupervised method with single feature [26], [32], [33],
essentially by reducing the inter-patient variability. The anal-
yses highlights the importance of considering the feature
selection and suggests an optimal combination with the top
ranked features in order to accurately and efficiently identify
the SOZ contacts from normal brain tissue.

C. IDENTIFY SOZs WITH SHORT RECORDINGS

DURING SLEEP

Epilepsy is characterized by recurrent unprovoked seizures
that are occasionally excessive and abnormal electrical dis-
charges of cerebral neurons. Since the apparent random
nature of ictal events, epileptic patients is usually underwent
a long-time iEEG monitoring for pre-surgical evaluation.
The surgical intervention of epilepsy aims at removing the
entire epileptogenic zone, defined as the region which is
indispensable for generating seizures. However, identifying
this brain area by visually inspecting the seizure onset in a
mass iEEG recordings is challenging and time consuming,
as seizures are typically short events with changes in aware-
ness, changes in feelings or sensations, and sometimes there
is no any seizure even during more than ten days monitor-
ing [5]-[7]. Frequency based analysis of electrical signals
recorded from the brain are popular among the neuroscience
community due to the inherent spectral encoding of brain
activities. Recently, interictal SOZ localization have attracted
many research groups’ interest in the context of the novel
biomarker of HFOs, with the main objective of finding and
validating of a single feature or an arbitrary combination of
them that can be used in all patients [25], [34], [35]. As such,
the possible value of HFOs recorded interictally is of special
interest, since it focuses on collecting high frequency oscil-
lations during interictal time rather than requiring to record
seizures. With the optimization of combination of channels
of features, interictal HFOs analyses in two hours iEEG data
during a sleep-wake cycle have been demonstrated useful for
SOZ identification in this work. This result suggests that it
would be technically possible for our proposed method for
SOZ localization to be useful in a short-term recording in
clinical.

D. LIMITATIONS AND FUTURE WORKS

At present there is no available biomarker of the epilep-
togenic zone to reliably identify relevant pathologic tissue.
Although this study demonstrated an obvious improvement
in the performance of the proposed method for identifying
SOZ by using a set of optimal channel-wise features of HFOs,
in comparison with other recent works, there is still a long
way to go before it to be used clinically because of several
important limitations as followings. First, the relatively small
patient data was collected in the present work. Collecting
a great number of clinical data from patients with various
pathological epilepsies, various age groups, during different
sleep states, and simultaneously functional imaging would be
interested in our future work. Second, one should be cautious
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that the placement of subdural electrodes was determined
entirely by the patient’s clinical indication, inevitably leading
to an undersampling of nonpathologic brain tissue, as well
as uneven sampling of anatomic regions. Future studies on
retrospective evaluation between estimated SOZ with the
proposed method and the corresponding outcome of epilepsy
surgery and further prospective investigations are of much
important for HFOs as well as these channels-wise features to
be established as useful clinical tools for diagnosis and treat-
ment of epilepsy. Meanwhile, further works on other machine
learning and/or deep learning approaches are of potential
for automatically extracting and selecting features for better
performance, which can automatically learns and discovers
the complex features from the raw data and performs the
classification in an end-to-end manner [36], [40].

V. CONCLUSION

The current gold standard for identification of the epilepto-
genic zone is the seizure onset zone (SOZ). However, HFOs
are complex dynamic phenomena and identifying channels
with HFOs within the SOZ or not is challenging. This study
suggested that characterization of the spatial and temporal
distribution of HFOs in channel-wise instead of event-level
as usual and their integration with machine learning approach
could serve as an efficient and useful tool for automatic
identification of SOZ. By comparing with various combi-
nations of the channel-wise features in same category and
inter-category, to our best knowledge, we investigated firstly
and systematically the temporal and spatial distribution of
HFOs in channel-wise regarding automated identification of
SOZ with their traditional and customized characteristics
representing electrophysiological knowledge, including the
rate, duration, amplitude, and power of the HFOs. Our results
indicate that the proposed channel-wise features and the com-
bination with machine learning approach can automatically
localize the zone of seizure onset or at least estimating a
region of interest containing or closed to the epileptogenic
zone before surgery procedure, and would provide a useful
and applicable pre-surgery guideline for operator and poten-
tially reduce the time needed for long-term recording and
manual inspection.
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