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ABSTRACT The advent of machine learning (ML) methods for the industry has opened new possibilities in
the automotive domain, especially for Advanced Driver Assistance Systems (ADAS). These methods mainly
focus on specific problems ranging from traffic sign and light recognition to pedestrian detection. In most
cases, the computational resources and power budget found in ADAS systems are constrained while most
machine learning methods are computationally intensive. The usual solution consists in adapting the ML
models to comply with the memory and real-time (RT) requirements for inference. Some models are easily
adapted to resource-constrained hardware, such as Support Vector Machines, while others, like Neural Net-
works, need more complex processes to fit into the desired hardware. The ADAS hardware (HW platforms)
are diverse, from complex MPSoC CPUs down to classical MCUs, DPSs and application-specific FPGAs
and ASICs or specific GPU platforms (such as the NVIDIA families Tegra or Jetson). Therefore, there is
a tradeoff between the complexity of the ML model implemented and the selected platform that impacts
the performance metrics: function results, energy consumption and speed (latency and throughput). In this
paper, a survey in the form of systematic review is conducted to analyze the scope of the published research
works that embed ML models into resource-constrained implementations for ADAS applications and what
are the achievements regarding the ML performance, energy and speed trade-off.

INDEX TERMS Machine learning, embedded software, automotive engineering, GPU, FPGA, ADAS.

I. INTRODUCTION
Safety is increasingly important for drivers and other users of
the driving environment such as pedestrians, cyclists, bikers,
scooters, etc. Only in 2016, road accidents in the European
Union summed up to 25.600 fatalities and 1.4 million people
injured [1]. Many measures are being taken by public insti-
tutions (improving road quality, enhancing driver conscious-
ness and driving regulations, etc.) to improve these numbers.
However, the cause of most of these accidents resides in
human errors or distractions. For this reason, automotive
firms are pushing up research on improving safety. The cor-
nerstone of these advances are Advanced Driver Assistance
Systems (ADAS).

ADAS systems consist in several sensors, processing and
actuators components that help drivers to avoid accidents and
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to drive carefully. Examples of ADAS tasks or systems are
Adaptive Cruise Control (ACC), Lane Departure Warning
System (LDW) or Intelligent Speed Adaptation (ISA), among
others.

In the case of sensing, several sensors such as Lidar,
infrared (IR) and visible cameras, are used to collect the
required data for each tasks. The next step is to process all that
information and compute the desired outputs so that actuators
can apply the required commands.

Traditionally, ADAS have been implemented on appli-
cation-specific complex ad-hoc solutions built for the
automotive domain since they suppose a large market. The
corresponding algorithms need to be adapted explicitly to
every task and the processing pipelines become complex.
For example, in the case of Traffic Sign Recognition (TSR)
systems, the first step was obtaining images of the traffic
scenes from cameras. Then, applying models based on tem-
plate matching, contour detection or color thresholding along
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with other processing steps, to determine the desired regions
of interest (ROI). Follows the segmentation and classification
of every sign and the corresponding actuation. This problem
is even more complex if you consider different sign models
at different countries.

In previous years, the application of machine learning
algorithms to ADAS tasks began to grow as a significant trend
in the automotive sector. Machine Learning (ML) and deep
learning (DL) models, as for example Artificial Neural Net-
works (ANN) [2] or the more advanced Convolutional Neural
Networks (CNNs) [3], have proven to be an extraordinary
solution for such complex tasks. These models have been
already tested in ADAS systems for tasks such as vehicle
detection [4]. Support Vector Machines (SVMs) are one of
themost usedmethodswhen classifying complex information
since they provide good performance and can be implemented
as a lightweight model in resource-constrained platforms (for
the inference phase after its training off-line).

In this paper, we refer as performance the metric related
to machine learning outcomes for ML tasks (accuracy, preci-
sion, etc.). The HW/SW implementation performance will be
referred as either speed (latency, throughput, etc.) or energy
consumption.

Machine Learning (or Deep Learning) models are com-
putationally intensive (more for the training than for the
inference phases) while the processing elements used by
the automotive sector are often cost-Resource-Constrained
(i.e. microcontroller units or MCUs). Due to the trade-off
between performance and resource burdening, there are
different options for embedding such complex and heavy
(in terms of memory) models on different computing plat-
forms used for different car platforms (segmented according
to their costs).

The new ML solutions focus their attention in three
options: (1) model adaptation for resource-constrained envi-
ronments; (2) hardware implementation or acceleration
procedures and results; and (3) the use of more powerful
hardware. The first case includes model adaptation there
are three trends: adapting operations [5], adapting numeric
computations and data types [6] and adapting models for
scarce resource environments ([7], [8]). The option of HW
implementation refers to mapping NNs on programmable
processors or ad-hoc hardware such as FPGA or neuromor-
phic processors together with the explicit memory mappings
for efficient resource management ([9], [10]). Finally, the use
of more powerful hardware is based in the recent develop-
ment of embedded platformswith dedicatedGPUs, especially
devoted to automotive tasks, which accelerate inference of
deep learning models. This is the case of NVIDIA Jetson
and Tegra families being adopted for the embedded and
automotive domain.

The purpose of this paper is to review the research work
whose focus is the use of machine learning models for ADAS
tasks and their deployments on the resource-constrained
embedded platforms addressed to the automotive domain.

In order to reach a fair classification of this research, our study
is carried out as a systematic review.

II. RELATED WORK
In the past, there have been reviews and surveys devoted
to specific elements and problems of the automotive sector.
Self-driving cars [11], crowd information and traffic man-
agement [12] and intra-vehicular communications [13] are
examples found in the vast literature devoted to automotive
topics. There are also reviews that focus on ADAS systems
such as [14]–[17]. However, these reviews usually focus their
attention on topics such as the type of the sensing technology
used for each task or what new perspectives are projected to
the ADAS sector.

There are also reviews devoted to specific ADAS tasks
or subtasks with the corresponding models. For example,
the review [18] is devoted to pedestrian detection systems that
use far-infrared video as sensing technology. In [19], authors
compare different types of sensing and classification models,
SVMandAdaboost for vehicle detection. In [20], authors per-
form a comparative study among different techniques devoted
to traffic light and sign recognition and the properties and
robustness of each technique or procedure. There are also
reviews devoted to specific and complete ADAS tasks: [21]
is devoted to Adaptive Cruise Control systems (and the whole
system implementation).

Obviously, there are also reviews on machine learning
methods ([22], [23]). However, only one review has been
found in the intersection of machine learning and ADAS
systems. In [24], authors compare different methods and how
the data pipeline is generally built when applying machine
learning models to ADAS tasks.

As a summary, there has been a lot of work devoted
to reviewing, summarizing, and comparing ADAS systems
and related research. However, at the best knowledge of
the authors, there in not any study covering the three
main topics at once: advanced driver assistance systems
(ADAS), machine learning models and their implementation
on embedded devices.

III. METHODOLOGY
Systematic reviews imply following a strict methodology.
This section describes the main components of the review
process. First, the definition of the review question and the
inclusion/exclusion criteria. Second, the description of the
search and screening methodologies.

A. QUESTION
Systematic reviews are quite popular in the medical domain.
They start from the main question of the review according
to the PICOS eligibility criteria [25]. The PICOS format
stands for patient, intervention, comparison, outcomes and
study design. In our case, we propose to change patient by
object. Thus, the format used is OICOS: object, intervention,
comparison, outcomes and study design. The question should
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follow the specification of each component in order to be
clear and concise.

In the present case, specifications are:

• Object: A machine or deep learning model, i.e. a model
that can be trained, devoted to an ADAS task.

• Intervention: embedding the model into a Resource-
Constrained platform, by means of model or hardware
modifications.

• Comparison: performance of the model with other
implementations devoted to the same task.

• Outcome: performance metric of the model, energy
efficiency and speed of model execution (inference),
if available.

• Study design: experimental design and results.

Hence, the main question of the study is established as:
How aMachine Learning model can be implemented into
an embedded or Resource-Constrained platform devoted
to ADAS tasks?From this question, several others stem off:

• Which is the embedded platform?
• Which ML model was used to assess the ADAS task?
• Has the model been modified before embedding it?
• Are both training and inference performed in the embed-
ded platform or only inference?

• Are some models better suited for ADAS tasks? And for
Resource-Constrained tasks?

B. ELIGIBILITY CRITERIA
The question itself and the PICOS format leads to the estab-
lishment of the inclusion and exclusion criteria.

1) INCLUSION CRITERIA
There are three main requirements to include in the review an
article collected from queries on common databases: it has
to contain a ML model, it has to execute in an embedded or
Resource-Constrained platform and it has to implement an
ADAS task.

A machine learning model means that it has been trained
regarding a given dataset. The model should be clearly stated
and defined. With regard to the execution, the model can be
modified, optimized or transformed for its mapping to an
embedded platform. Our requirement is that the model should
be placed or run in a Resource-Constrained or embedded
platform by means of some modifications either in the model
or in the hardware. Research works without any modifica-
tion done on the ML model for its implementation on a
resource-constrained platform will also be included in the
review.We can exceptionally include studies consisting in the
formulation of some modification of MLmodels or hardware
that can be useful but that were not explicitly used for any
ADAS task.

We also require the ML model to be tested. Hence, a mea-
sure of the obtained performance has to be included in the
publication together with the metric selected and the dataset
used. Obviously, the implementation has to focus into any

specific ADAS task. The ADAS tasks considered in this
review are the classified as:
• Vehicle and pedestrian detection
• Driver’s state, behavior and identification
• Traffic sign recognition
• Road detection and scene understanding
• Miscellaneous

2) EXCLUSION CRITERIA
There are certain characteristics that will dismiss an article
from being accepted in the review. Regarding the model,
if the research paper does not include any training or learning,
it will not be included. Also, if the overall implementation
is carried out in a personal computer or general-purpose
machine, the article will be also excluded. If the study lacks
any performance test (with the corresponding metric) it will
be also rejected.

Considering the topic, exclusion criteria consist in the
following list: information management, vehicular ad-hoc
networks (VANETs), traffic surveillance, stealing avoid-
ance systems, battery State-of-Charge (SoC) and State-of-
Health (SoH). Those studies are not included in our review.

Studies that consist in general tasks such as object detec-
tion, that could be implemented for ADAS but which are not
explicitly devoted to ADAS will also be dismissed unless
they provide a useful improvement applicable to the field.
Of course, if it the access to the full text of an article is not
possible, it will be excluded from the review. There is not any
exclusion criteria regarding the format of publication or the
date of publication.

C. SEARCH STRATEGY
The search is carried out by the two principal researchers.
Each researcher is in charge of a group of databases or sources
of information. The search is performed with the resources
made available by the Autonomous University of Barcelona.
The first step of the search is the specification of the databases
used. As the research is focused in computing and electronics
the specific databases are chosen accordingly. The databases
used for the search are:
• Multidisciplinary databases:
◦ Web of Science
◦ Scopus
◦ Arxiv
◦ Springer On-line

• Specific databases:
◦ IEEE Xplore Digital Library
◦ ACM Digital Library

For the searches, we use the product set of the keywords in
the next two groups in every search engine:
• Machine learning keywords: [deep learning, neural
networks, RNN, CNN, regression, machine learning,
extreme learning, ensemble methods, reinforcement,
meta-learning, decision tree, random forest, gradient
boost, LSTM, SVM, support vector machine, GRU,
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autoencoder, Hopfield, Boltzmannmachine, deep belief,
Markov, autodiff, recurrent, convolutional]

• Hardware keywords: [embedded, SoC, MCU, CPU,
microcontroller, chip, processor, wearable, low power,
fixed point, device, FPGA, field programmable gated
array, FPU, GPU]

• ADAS keywords: [vehic∗ OR automo∗ OR car OR
ADAS OR ‘‘advanced driver assistance system’’ OR
driver]

All searches are carried out regarding title, abstract and
keywords in conjunction. If this combination is not possible,
the title is used for the search. The main reason for this is the
noise avoidance in the search hits.When possible, the boolean
AND and OR are used to group searches. The searches were
conducted between November 2018 and December 2019.
Hence, articles published beyond 01-01-2019, are out of the
scope. Any article with a posterior published date has been
manually included and for reference purposes.

D. SCREENING STRATEGY
We include in the review all papers that fulfill the inclusion
criteria and can be downloaded. The screening methodology
is divided in two phases: title/abstract and full text. The first
inclusion/rejection phase is carried out taking into account
title, abstract and conclusions. It can happen, that the title
or the abstract are not sufficiently specific about the content.
Hence, if there is any possibility that it can meet the inclusion
criteria the corresponding article is included due to the need
of not excluding any relevant study.

Once all the articles have passed the first screening,
the next one consists of the full text reading. The desired
information is retrieved on all papers accepted according to a
specific structure. The fields contained in this retrieval are:

• Task
• Embedded or Resource-Constrained platform
• ML/DL algorithm, library and embedding procedure
• Data pipeline
• Dataset characteristics and object of classification/
regression

• Task performance, speed and energy

IV. RESULTS
As stated before, the screening process consists in several
steps of selection of articles. The results of the different steps
are: articles hit in the search, number of accessed articles,
deleted duplicates, screen by title, abstract and conclusions.
The two final steps of the process are screen by full text
reading and, finally, summarizing. Table 1 shows the num-
ber of articles associated with each database and the finally
accessed number. In the case of Table 2, it shows the number
of articles associated with every step of the systematic review
and selection procedure.

After the search, screening and selection steps, selected
articles and conclusions read and summarized. This section

TABLE 1. Results of the search in terms of the number of papers and the
papers accessed for each database.

TABLE 2. Number of articles after each step of the systematic selection
and review procedure.

shows and analyzes the published results according to the
tasks classification stated in section III.B.1.

A. VEHICLE AND PEDESTRIAN DETECTION
Pedestrian or vehicle detection implementations on embed-
ded devices using machine learning usually show a very
structured design: preprocessing, feature extraction and
classification. Usually, preprocessing starts with binariza-
tion (thresholding), selection of areas-of-interest (AoI) of
the image or an image pyramid scheme. After that, feature
extraction uses algorithms such as HOG, CoHOG or Haar.
Finally, features allow classifying regions with one machine
learning classifier, typically SVM. These kinds of systems
have an advantage: their easy deployment on embedded plat-
forms since these classifiers require little memory and short
time, and preprocessing tasks can easily be implemented on
hardware.

With the advent of neural networks and more specifi-
cally convolutional networks ([26], [27]), this situation has
changed. The performance shown by NNs (compared to tra-
ditional pipelines) pushed developers to try to embed them
in resource-constrained devices. The problem resides in the
fact that those networks are extremely heavier in terms of
memory and resource usage. Hence, its embedding is difficult
and requires applying several strategies. Among them stand
out pruning, quantization and layer fusion. However, even
with these techniques, pipelines and required structures are
still too heavy to attain real-time performance for functions
such as detection and classification of pedestrians and road
objects. In this sense, one problem that the systems devoted to
object detection and classification usually show is their need
to implement one pipeline per task.
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Specific networks, such as YOLO [28] were developed to
solve that issue. They are usually implemented onGPU-based
embedded boards to speed-up inference time. This often
incurs in a not optimal energy profile. As a result, developers
have also tried to implement those systems in ad-hoc hard-
ware (ASIC or FPGA) which show a more suitable energy
profile.

1) ALGORITHM STRUCTURE
The classical approach is to use HOG and SVM for detect-
ing objects together with some previous preprocessing step.
In [29], they apply a pyramid of different scale images and
create a HOG descriptor vector with histogram normalization
by rolling a fixed size window through the image. Finally,
they feed these different vectors to the SVM. They report an
increase from 16% to 40.1% from changing the number of
scales from 1 to 44 (scale factor 1.05). Another example of
a pyramid of images is found in [30]. Authors apply region
selection to each of the images in the pyramid by selecting
central regions related to vanishing point. Feature extraction
uses CoHOG. This technique relies on the co-occurrences of
gradients in the window and among different images in the
pyramid. This boosts the robustness of detection compared
to HOG.

Another way of creating features for further classification
is shown in [31]. Using a sliding window approach, authors
obtain feature vectors, through a covariance matrix decompo-
sition, which are then forwarded to a linear SVM.

Usually both HOG and feature extractor plus SVM can
be extended by adding tracking after classification or fea-
ture extraction improvements. In [30], authors improve the
performance by adding tracking using Kalman filtering for
the prediction of the next position. An extended version of
the HOG plus SVM pipeline is found in [32] whose authors
add detection grouping to delete overlapped windows that are
detecting the same pedestrian, and detection tracking to keep
detections among frames.

Haar wavelet is another alternative for generating the fea-
tures used for classification. In [33], authors show an early
implementation of vehicle detection and distance estimation
for a Forward Collision Warning system. To detect a vehi-
cle, they firstly generate 3 ROIs from different overlapping
parts of the image. Then, they apply Sobel edge detector for
detecting the vehicle. Finally, a quantized version of Haar
wavelet features are extracted from the ROI where the vehicle
is detected. Then, these features are fed to a SVM. To enhance
detection among frames, they apply tracking through Motion
Vector estimation [34] and they apply SOD to the region
where the car was detected.

There are also other classification choices instead of apply-
ing SVM. In [35], authors start from a pyramid of images and
use Adaboost as detector. After detection, they apply tracking
with dynamic modelling, using Haar-like features, and shape
and symmetry estimation to improve detection rate.

The use of CNNs for both feature extraction and clas-
sification is also common although they impose higher

computational demands and is less suitable for resource-
constrained applications. Hence, most research works focus
their attention on reducing the memory and processing
requirements of these networks. In [36], authors use a mod-
ified version of SqueezeNet [37] but instead of detecting
the pedestrian through a bounding box at pixel level, they
detect it through a coarser grid to reduce the computational
requirements of the model. The size of the grid is related to
the size of the last feature map size of the network. Besides
modifying the ground truth, no preprocessing is applied to
images in order to improve pedestrian detection.

A good example of memory size reduction is found in [38].
Authors use the DeepPed network [39] based on AlexNet.
In order to reduce memory utilization and improve latency,
they apply two optimization strategies for the network: scalar
quantization (based on k-means clustering) and pruning.
They study how these strategies affect both convolutional lay-
ers and fully connected layers. They find that pruning affects
severely the performance of convolutional layers while quan-
tization does not impose such performance burdens. In the
case of fully connected layers, both strategies impose similar
performance losses. However, in this last case, the combina-
tion of both strategies at the same time yields better results.
To evaluate the effect of these optimization procedures in the
memory requirements they compare the weight of the initial
network, 216.94 MB, with the final compressed one, 3.5 MB,
which corresponds to a 61.35x compression factor while only
adding 0.4% increase in the Log Average Miss Rate.

Data variety and quantity is usually a difficult point for
training neural networks. Several strategies exist for improv-
ing the initial situation of any specific dataset. In [40], authors
use a SSD network [41], with a Wide Residual (WR) net-
work [42] as a base for detecting pedestrians, vehicles and
cyclists from different datasets: KITTI, CBCL Streetscenes
and Cityscapes. To obtain more data, they apply Restricted
Random Sampling, which consists in sampling crops from
original images and resizing themmaintaining the image size
ratio of objects inside. Experiments show that not varying
the shape ratio of objects helps to increase performance.
Another point when detecting different types of objects is the
different number of occurrences of each class. One solution is
to apply balanced loss weighting using the relative proportion
of objects. In [40], they applied it and improve mAR by 8%.

One way to ease the deployment of CNN is to reduce
computational constraints of the original structure as well
as other modifications. In [43], authors focus in the design
and deployment of a lightweight CNN for pedestrian and
vehicle detection. To do so, they use a SSD network, which
has less accuracy than R-CNN or R-FCN but is faster,
with a lightweight backbone consisting of a MobilenetV2.
To increase accuracy without reducing throughput too much,
they apply a series of modifications to the original network.
First, they increase resolution to account for pedestrians
placed in far frames. Second, the also use depth-wise blocks
in the SSD head to reduce complexity. Third, they extend
the prediction branch with two more heads to account for
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low and medium sized objects and, finally, they prune the
network via randomfilter sampling. As an improvement, they
show that a two stage training from scratch is possible without
incurring into the problems of pre-trained backbones, such
as domain misalignment [44]. Finally, they apply tracking
through frames to improve detection.

Another way to increase performance is to use an ensemble
of models. In certain ADAS applications, it is important
to have a reduced false positive rate, as for example in
Autonomous Emergency Braking (AEB), where a false posi-
tive could induce harmful situations. In [4], authors reduce the
false positive rate by adding aDNN as an extramodel for clas-
sification. The base model is already an ensemble, Adaboost,
who receives a ROI from a previous detection pipeline formed
by binarization, connected component labelling and integral
feature channel. The way the models are added (either voting
or bagging) is not clearly explained.

An interesting application of vehicle and pedestrian detec-
tion is found in [45]. After being able to detect the object,
authors apply first a RNN to predict its future position and
velocity, and then a Fuzzy Inference System (FIS) to predict
the riskiness of the object. The detection uses input images
from a stereo camera to extract and track optical flow features.
Semi Global Matching (SGM) is in charge of providing depth
information and the ego motion module of adjusting the val-
ues with respect to the movement of the driving vehicle. ROIs
are generated in small portions on the images and only where
objects are detected. Any object detected is characterized by
4 variables St = x, z, 1x, 1z: lateral distance, longitudinal
distance and velocities in both dimensions. The collection of
these 4 variables for N frames, {St, St−N}, is the input of a
Recurrent Neural Network in charge of predicting Q further
steps. The whole collection of previous and predicted values
{St−N, St+Q} is used to predict the riskiness of the object
through a FIS. The FIS has different membership functions
for each variable and set of rules devised for moving car and
pedestrian risk determination. The system is tested with the
KITTI dataset and, for their specific task, they create one
novel dataset: risky urban scene stereo (RUSS).

2) EMBEDDING METHOD AND PERFORMANCE
As already mentioned, the main problem when implement-
ing neural networks on embedded devices is the real-time
constrain often formulated as trade-off between latency and
performance. In [36], authors implement a modified version
of SqueezeNet (a CNN which takes advantage of 1 × 1
convolutions and delayed sampling for reducing computa-
tional demands) using the S32V234 [46] automotive pro-
cessor. To further reduce memory requirements and improve
latency, the network uses integers with 8-bit representation
and arithmetic except the tanh activations, which operate as
floats. They achieve at most 30 fps of speed, consuming 2W.

An example of the latency constraints that deep neural
networks suffer is found in [38]. Their network consists in an
Aggregated Channel Features (ACF) detector, an optimized
Alexnet-based network and a SVM. The whole optimized

system achieves 61x compression factor and a final weight
of 3.5 MB. However, using an NVIDIA Jetson TX1, they
only achieve 2.4 fps. To increase that value, they reuse the
previous detection results for next frames, reaching 10 fps at
maximum. Another example of a SqueezeNet modification
is [47]. Its authors convert the detection and classification
modules of the original network to a joint classification and
detection module named ConvDet. This fully convolutional
detection allows for a drastic reduction on the number of
parameters and a related increase in the possibilities of region
proposal. This advance makes the network weigh less and
achieve similar or better performance that other heavier net-
works such as Faster R-CNN [48]. Compared to YOLO,
which weights 735 MB, SqueezeDet weighs, in its minimal
version, 7.9 MB.

Another example of CNN optimization is found at [49],
where a modified version of a Faster R-CNN is implemented
on a NVIDIA Tegra TX1. They use pruning and quanti-
zation with two objectives: size reduction and throughput
increase. Pruning is applied trough threshold set out from
observations of the results on fully connected layers. For
quantization, authors take advantage of video instructions of
the SIMD architecture selected to reduce network weights
from 32-bit real values to 8-bit integers. The overall result
shows a decrease from 260 Mbytes to 42 Mbytes in size and
a reduction in latency from 508 ms to 327 ms per frame. This
allows only 3 fps, showing again the burden that CNNs suffer
regarding throughput even when using a dedicated embedded
board with GPU support.

Another possibility for increasing throughput is the analy-
sis and profile of its components. Authors in [50] increase the
speed of a Fast R-CNN by analyzing which layers consume
most of the time. They observe that fully connected layers
and batch norm are the most costing layers. Hence, they drop
batch normalization layers and reduce the number of neurons
of fully connected layers which are not directly related to
classification. On a PC, they get a throughput increase from
15 to 25 fps while on a NVIDIA Jetson TX1 they only reach
5 fps. Once again, we observe that CNNs are still too heavy
to attain real-time performance.

The deployment of a system into the desired platform for
its production use is usually a matter of interest. Several
methods can help to achieve this deployment. Apart from
modifying the model, neural network adapters and optimizers
such as OpenVINO [51] or NVIDIA TensorRT [52] can help
adapting the model to hardware specificities. In [43], authors
use OpenVINO to accelerate and deploy a lightweight CNN
implemented on a general purpose CPU but portable to other
platforms.

One of the possibilities to overcome the limitation for
CNN embedding is networkweights quantization. Among the
different quantization types, the most extreme one is binary
weight quantization which converts floating-point numbers
into binary values, either 0 and 1 or -1 and 1. In [53],
authors convert two YOLO CNNs, based on Darknet [54]
and MobileNet backbones, to binary-weighted networks.
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To reduce the accuracy drop, they use two strategies: wise
binarization and taught learning. In the wise binarization
stage, they train the network binarizing layers in groups.
First, the upper layers, and then lower ones in the network
graph. Taught learning helps to reduce the accuracy drop by
making the binarized network mimic the features obtained
from certain layers of a float-valued teacher network. To be
able to account for this mimicking during the network train-
ing, they added a new loss term based on the difference of
the outputs of the same layer in both teacher and student
networks. This strategy is possible as long as both networks
share the corresponding layer, even if the overall network
is not the same. They achieve a reduction from 257 MB to
8.8 MB from Darknet-YOLO with only 2% drop in accuracy.

A more feasible choice among machine learning algo-
rithms for hardware embedding is SVM. An early example of
SVM optimization can be found in [55] where authors refor-
mulate SVM to be able to quantize its parameters to reach
a feed forward phase with fixed-point values. Fixed-point
parameters for inference are saved in LUTs. With 12 bits,
they are able to attain same classification error rate as
with the floating-point representation version: 5.96%, with
the Daimler-Chrysler dataset. Another early example of an
embedded implementation of SVM is [33], in which authors
implement a Forward Collision system on a dual core DSP
processor. In the case of [56], authors implement a pipeline
of HOG and SVM in two embedded platforms: a Raspberry
Pi 3 and an Odroid C2, obtaining 5 fps and 7 fps respectively
for 320× 97 pixel images.

There are also fully hardware implementations. In [29],
authors optimize a system of image pyramid, followed by
HOG and SVM. The main contributions are efficient scale
selection and algorithm optimization, parallelism of detec-
tors and image preprocessing. In the HOG step, they bin
the gradients without computing the actual angle and use
L1 norms instead of L2 for magnitude computation. The his-
togram normalization is carried with L2 norm and fixed-point
dividers (due to 5% drop in performance when using L1).
The SVM is trained off-line and its weights are transformed
to 4-bit fixed-point numbers. Regarding the scale generation,
they choose a scale factor that provides a good trade-off
between the number of images to compute and the accuracy
performance. They also propose a parallel structure of the dif-
ferent detectors optimized for energy and latency. To reduce
memory constraints, they preprocess the image in two ways:
first, they quantize pixels to 4-bits and afterwards they use
the gradient image instead of the original image to be able to
reduce it to 3-bits. They report results of algorithm execution
both column- and row-wise. Since classification window is
higher than wider, results are far better for column-wise pro-
cessing. Regarding optimization results, multi-scale boosts
accuracy by 2.4x but increases memory usage by 8.8x and
energy consumption by 14x. Parallelism of detectors helps
reducing energy consumption by 3.4x without affecting accu-
racy and preprocessing saves 24% energy and 25% memory.
All results are obtained on 1080HD videos at 60 fps from

the INRIA persons dataset [57] and is implemented using
a 45 nm SOI CMOS ASIC technology at a supply voltage
of 0.72 V.

Another example of hardware mapping can be found
in [31]. Authors compute the covariance matrices of several
patches of an image with a FPGA in order to forward feature
vectors to a SVM. To obtain the covariance matrices they,
compute first and second order integral tensors. For this
computation, they profit from the symmetry of the second
order integrals to reduce the number of MAC units used,
and the parallelism that tensor computation allows to reduce
latency. The throughput reached is 132 fps for images of
128 × 64 pixels. Usually, only linear SVMs are applied
due to their simplicity, but in [58] authors apply non-linear
SVM with RBF kernel. They map the SVM into a gate-level
circuit (with Verilog HDL coding and a 65 nm standard cell
library) and they achieve 90 fps on 640 × 480 pixel images.
Another interesting approach applying SVM into hardware is
found in [59]. Authors define a training procedure that allows
finding an optimal classifier regarding the number of bits used
to implement the algorithm in digital hardware.

In [32], we found a good example of algorithm mapping
on an heterogeneous platform composed of GPP plus FPGA.
HOG and SVM are implemented on the FPGA and the
detection and tracking on the ARM processor. To reduce
computing time, they implement some optimizations in the
detection scheme. For computing HOG norm and orientation,
they use the CORDIC algorithm. For computing the SVM
prediction vector, they use a LUT. They use 16-bit fixed-point
arithmetic for the overall system and they attain 60 fps
for 1270 × 720 pixel images with an energy efficiency
of 3.95 GOPS/W A surprising implementation is found
in [45], where a neuro-fuzzy inference engine is mapped
onto an application-specific complex hardware architecture
comprising both analog and digital processing. The system
contains a matrix processing unit with a parallel SIMD
system (with a flexible numerical representation) to detect
objects and provide the level of risk for the car and the
driver. The pipeline consists of a semi-global matching pro-
cessor (SGMP) that obtains a real-time depth map and pro-
vides distances to objects. Next, a vector of distances and
derivatives of detected objects enters a Recurrent Neural
Network. The RNN and the Fuzzy Inference system (FIS)
are mapped together onto an analog core implementing the
intention-prediction processor (IPP).Weight multiplication is
performed by current-steering multiplying-DACs. The acti-
vation function is realized with a simple sigmoidal amplifier
and the outputs of the network are fed into a transconductance
Membership Function (MF) in charge of the intention predic-
tion evaluation. The MF changes its shape to adapt to various
risky conditions with 5 control parameters. The digital part
performs on-line learning. The overall system has two opera-
tionmodes: (1) high performance and (2) low power. The SoC
is implemented using a 65nm CMOS technology, operates at
30 fps on 720p videos and consumes energy ranging from
0.984 mW to 330 mW.
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Another detection SoC implemented for ADAS is [35].
Their authors stablish an Adaboost based detection mech-
anism with tracking that achieves 60 fps when working at
140 meters (active distance) and 300 fps when working
with 30m. The energy consumption of the chip is around
69mW on average with a power efficiency of 3.01TOPS/W.

The language inwhichNN are described is usually not suit-
able for its direct mapping onto the target platform. In [62],
authors port Yolo and TinyYolo networks to OpenCL (only
for inference). They replace kernel implementations such as
general matrix-matrix multiplication (GEMM) and simple
arithmetic operations (e.g. scaling). Other layers are also
replaced by OpenCL homologue implementations. To ana-
lyze their results they compare CUDA and OpenCL imple-
mentations obtained mapping on different platforms: cuDNN
with CUDA on a GTX 1050 and Darknet with OpenCL on
AMD R7 APU and AMD Radeon RX 560. The results show
the need for a better optimization of the deep learning network
for OpenCL. OpenCL implementation for both hardware
platforms was 6.4x times slower for TinyYOLO, being the
computational part of the network the main responsible of the
performance loss.

FPGAs are considered more efficient regarding energy
consumption than GP-GPU systems. However, depending on
the task and the inference engine, this advantage (and others
like throughput) is not fulfilled. In [60], authors compare a
NVIDIA Tegra X2 board with a Xilinx Ultrascale regarding
throughput and energy consumption. In the case of a complex
task such as detection, both platforms show similar results
in both parameters. However, in this study, the FPGA plat-
form is not optimized and its performance severely varies
for different engines such as PipeCNN [65] or xfDNN [66].
The main problem is that the High Level Synthesis (HLS)
tool used for porting CNNs to FPGA platforms is still not
as efficient as traditional design. In the case of a simpler task
such as classification, a huge difference regarding throughput
is observed. The GP-GPU platform achieves around 600 fps
while the FPGA achieves only 60 FPS. It must be noted that
the FPGA system is not fully optimized for the algorithm.
One important point regarding the GP-GPU system in the
classification task is that throughput increases proportionally
to CPU clock (but not to GPU clock) since the application is
memory intensive. Meanwhile, this burden is not observed in
the detection task, where throughput also increases with the
GPU frequency.

To exploit FPGAs performance, the system has to be well
optimized. The authors of [61] carry out a series of sim-
ulations for optimizing energy performance of the FPGA
for HOG and Adaboost algorithms. They obtain a simulated
improvement ranging from 376x to 1896x. They implement
approximate computing and quantization in HOG and a Pro-
cessing in Memory (PIM) hardware accelerator for Haar
detector. For Adaboost, they arrange the learning steps in
memory blocks. As noted in the case of a GP-GPU plat-
form [60], memory access can become burden for throughput
and energy efficiency.

3) PARTIAL CONCLUSIONS
The 23 articles reviewed in this section are classified in two
groups regarding their algorithm: classical, which use prepro-
cessing, feature extraction and classification, and NN-based.
Algorithms using neural networks shown better performance.
However, there are problems in their porting to embedded
platforms concerning real-time performance. From the imple-
mentation point of view, there are two main options for vehi-
cle and pedestrian detection: software and hardware. While
the preprocessing and feature extraction parts are prone to
be accelerated using application-specific hardware, classi-
fication is usually devised in software. On the other hand,
hardware mappings of CNNs is a hot topic both on ASICs and
FPGAs. Detection of different objects is a difficult task since
it implies detecting first the objects and then classifying them.
For this reason, CNNs suffer from higher latency although
improvements have been made when using networks such as
YOLO. In the other hand, classical classification algorithms,
which have a lower memory footprint, together with tailored
preprocessing algorithms, show lower latency but also lower
performance in terms of accuracy.

A summary of the collected and selected articles is shown
in Tables 3 and 4. The information collected shows key fac-
tors affecting performance: algorithms and libraries, dataset,
embedding strategies, and hardware platforms together with
the obtained results regarding performance in the specific
task.

B. DRIVER’S STATE, BEHAVIOR AND IDENTIFICATION
Distracted driving was responsible of 9.9% of fatalities in
2015 in the U.S.A. ([67], [68]). Hence, being able to correct
driver distractions or alerting the tired driver is of utmost
importance to maintain safety in transportation. For this rea-
son, there has been a strong research trying to solve the
problem in a safe, non-intrusive and efficient way.

Driver inattention can be divided in two categories: distrac-
tion and fatigue. Distraction can be further divided into visual
and cognitive distraction. These distinctions are important
since each type of lack of awareness requires different types
of information to be processed. Following this reasoning,
driver distractions can be measured by centering the attention
at the driver, at the car or at both. Fatigue, a priori, can only
be analyzed regarding the driver. Hence, the first difficulty
when trying to determine the level of distraction or fatigue of
a driver is the source of information.

Some studies center the analysis of driver’s state in phys-
iological signals such as EEG, ECG, SRG or EMG [69].
Retrieving these signals require using sensors that can pro-
vide good relation with regards to alerts. However, their
degree of intrusiveness makes some of the proposals imprac-
tical for real daily life situations. One alternative is to place
sensors out of the human body like for instance in the steer-
ing wheel, as in [70]. In that case, authors use it for user
identification, but it can also be used for driver’s state mea-
surement with some limitations. Only the hands are exposed
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TABLE 3. Algorithm and data information for vehicle and pedestrian detection articles: task, classification, dataset, embedding and performance. / is
used when the field is not given.

and hence only signals coming from them can be analyzed.
Another approach centered at the driver is to infer its state
from cameras inside the car that can determine head pose,
gaze and other features. However, this methodology has huge
dependence on recording conditions such as lighting or sun
glasses and its predictions are not robust in these contexts.
To solve this problem, an option is to use other types of
cameras such as depth or infrared cameras. Apart from body
signals and cameras, there are other options to sense the
driver state. In [71], 5 inattentive driving activities are sensed
through Doppler shifts by using microphones and speakers.
According to the authors, each activity has its own frequency
shift footprint that allows its identification.

The other approach to detect the driver state, is to retrieve
data from car behavior, such as distance to the front car or
the lateral acceleration, and use it to monitor the driving
behavior and infer a danger degree [72]. The problem to infer
the dangerousness of a driving style or behavior is the lack
of a standardized set of rules to define it. Hence, the level
inferred is totally devised with logic rules by the programmer
or application builder.

The challenge of performing both sensing and classifica-
tion in real-time is added to the problem of selecting the
method to sense distraction or fatigue. Real-time is manda-
tory since a distraction can occur just in less than second
and its consequences can be catastrophic. For this reason,
applications tend to use SVM which is a lightweight method
compared to deep learning [73]. We also include in this
section the driver identification as a topic prior and related
to driver state. Driver identification consists in being able
to identify different drivers according to certain features.
It is intimately related to state determination because both
imply recording signals from each different driver or from
the car to carry out the objective. Its applications range from
avoiding driving the car in some time spans, limiting speed
in case of young or old drivers or avoiding not authorized
driving.

The following sections focus on the structure of the algo-
rithms for drowsiness, fatigue and distraction found in the
review along with the important facts of every method. Later,
we examine the platform used to embed the methods and the
way researchers do it.
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TABLE 4. Implementation information for vehicle and pedestrian detection articles: libraries/languages, platform, hardware, image size, detected classes
and speed. The field HW contains the product name, the processor or any information provided. / is used in tables when any data is given in the original
article.

1) ALGORITHMS STRUCTURE
As said, SVM is often the preferred algorithm for classifi-
cation when dealing with embedded applications. Authors
in [69] apply SVM to classify between a drowsy and awaken
state. The input consists in two signals, Galvanic Skin
Response (GSR) and Electromyography (EMG) and the fea-
tures derived from them. In order to have a better classifi-
cation and cleaner features, they previously apply a median
filter to those signals. Another case of SVM usage is found
in [74]. The authors use Electroencephalographic (EEG) sig-
nals to classify the awareness state of a driver. To clean up
signals they apply a Chebyshev bandpass filter, transform
the signals to the frequency domain by means of a Fast
Fourier Transform (FFT) and obtain the power spectral den-
sity (PSD). Then, they use a support vector regression (SVR)
with a Radial Basis Function (RBF) as kernel to predict
the reaction time with respect to the lane departure events
generated by the simulator. This case is interesting since the
authors use different power metrics of the PSD relating them
to the reaction time. However, the regression coefficients
indicate a poor correlation between the metrics and the reac-
tion time with the exception of the alpha power that shows
R2 = 0.54.

Another study where authors use features coming from
human biosignals for the classification of the driver state
with an SVM is [75]. They define the state of the driver
with regards the Abraham-Hicks emotional guidance scale
and establish three states: relaxed, stressed and fatigued.

The main inputs for the SVM are features derived from elec-
tromyographic signals of the upper trapezius muscle, photo-
plethysmography signals of the earlobe, as well as inertial
motion sensing of the head movement. In all cases, some
preprocessing is carried out. In the first case, features are
derived from the PSD obtained through FFT while in the
third one, features are obtained from the application of the
complementary filter to the gyroscope readings. The final
selection of features to be used at inference is carried out
considering the performance of every single feature. Later,
they propose the final fusion of the selected ones. Another
use of SVM is to give a range or scale of the drowsiness
level. In [76], authors use Posterior Probability Model with
the Platt algorithm [77] to obtain a degree of drowsiness
between 0 and 1 (after binary classification).

The main goal is to obtain meaningful signals correlated
to the attention of the driver. Apart from electric body sig-
nals, head nodding or eye movement are also considered for
obtaining information about the driver state. In [78], authors
predict the head pose using of CNNs and RNNs. The input
consists of depth maps of the driver and the output is three
values for 3D angles: yaw, pitch and roll. The CNN is used
to reduce the dimensions of the input features and to pro-
vide meaningful information to the RNN, implemented by
a LSTM network of two layers, which outputs directly the
3D angle value. The datasets used are the Biwi Kinect Head
Pose dataset [79] and the ICT-3DHP database [80] together
with data augmentation. The method provides better results
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than other studies, such as [81] while only using depth and
not RGB plus depth. In[82], authors derive a method for
obtaining the position of eyes. It consists of face detection by
Viola-Jones algorithm with Haar-like features, illumination
normalization, eye candidate generation and eye classifica-
tionwith an SVM. The inputs for the classifier are the position
of the candidate’s eyes and the intensity values. Although the
method does not provide an exact evaluation of the driver
state, it could help in building a complete system based on
gaze detection.

A complete example of a drowsiness detector based
on eye closure is found in [83]. This study offers a full
pipeline description from image capture to percentage of
eye closure (PERCLOS) computation. Authors begin with
an image resizing and gray component extraction. Next, face
detection is carried out using the Viola-Jones algorithm on
integer images and Haar-like feature classifier. Following,
eye detection is performed using local binary pattern his-
togram (LBPH) and its state, closed or opened, is established
through a Partial Least Squares regression and SVM for the
classification. Finally, they report PERCLOS computation
based on the number of blinking among frames. One inter-
esting point of the process is the use of PLS (Partial Least
Squares) for dimensionality reduction, which offers better
performance than PCA. It only needs 18 support vectors to get
an optimal hyperplane whereas the PCA subspace requires
173 support vectors. Thus, the computation time is reduced
one order of magnitude (from 42ms to 4ms). According to
authors reasoning, the choice of Viola-Jones face detector
is based on its robustness and simplicity compared to other
detectors.

In general, when the input is too complex or has too much
information for a traditional classifier, deep learning is a
good option. In [73], authors classify the behavior of the
driver among ten different activities using different CNNs.
The input for the model is a 64 × 64×3 RGB image and
the CNNs are the well-known VGG-16, AlexNet, GoogleNet
and ResNet. They use dataset recordings obtained through
the Carnetsoft [84] driving simulator. The problem of heavy
structures, such as the mentioned networks, is that they
require a huge number of training samples and that the infer-
ence is not as fast as in classical models (i.e. linear SVM).

In [85], authors implement a detection and classification
model based on one CNN and knowledge distillation. The
input for the first network is an RGB image and the output
is the detection of the eyes, mouth and face. The second
network takes those features as inputs and classifies people
as being in a yawning, normal or drowsy state. For detec-
tion, they use Multi-Task Cascaded Convolutional Networks
(MTCNN) [86] and the classification network is composed
of 4 streams, each one with a similar structure to AlexNet,
that take each feature coming from the previous network as
input.

Driver identification is often related to driver state or driver
behavior analysis since both tasks imply sensing signals from
the individual driver or its interactionwith any of the elements

of the driving context. For example, in [87], authors build a
driver identification algorithm based on brake and gas pedal
signals, cepstral analysis for feature extraction and ANN
for classification. However, these signals can also be used
for classifying the behavior of the driver. In this case, it is
interesting to note the use of cepstral analysis for feature gen-
eration since it is able to transform the components, which are
not separable, into a linear sum, providing good separability.
In this case, the sensing mechanism is appropriate since it
does not interfere with the driving activity as with ECG, EEG
or other biological signals. In [70], there is another case of
driver identification that is used for driver state classification.
Authors sense heart rate signals from the steering wheel. The
problem of this methodology is that it requires to have both
hands at the wheel, which in some contexts does not happen
(e.g. when changing gears). The positive point is that the
method is not intrusive regarding the driver and its embedding
is well embraced by car component manufacturers.

A novel way of identifying driver activities is found
in [71], where authors sense the activities through frequency
shifts (Doppler effect) of signals emitted by speakers and
received by amicrophone. They first convert the signals to the
frequency spectrum using SOFT (Sliding-window Overlap
Fourier Transformation) and then they reduce the dimen-
sionality by means of PCA. Later, they use SVM binary
classifiers assembled in a gradient forest to provide on-line
inference and early recognition of inattentive activities. The
study stands out the use of Self OrganizingMaps for detecting
driving modes.

Only one example of driver behavior determination
through car driving signals [72] has been found in the review
process. Authors record data such as distance to next car or
frontal/lateral accelerations to estimate the driving behavior:
accelerating, decelerating, moving left or right and more. The
identification is carried out by a Hidden Markov Model and
its output is further used for a danger level estimation through
fuzzy logic rules.

2) EMBEDDING METHOD AND PERFORMANCE
The main problem with drowsiness detection is capturing
meaningful signals from the driver without interfering with
its attention at the driving environment. In [69] authors
capture Galvanic Skin Response (GSR) and Electromyog-
raphy (EMG) signals and use a Lilypad Arduino for com-
putation with GSR, EMG and BLE interface boards. The
main issue is that the driver has to wear the sensors to obtain
meaningful signals. This could bother the driver and difficult
the driving activity. The captured signals are sent to a LG G
Smart-watch where they are analyzed to classify the driver’s
state. It is not clear how they embed the SVM classification
algorithm in the smart-watch. The achieved performance is
good, over 90% precision. The problem in this case is the
dataset. It only consists in 4 males and 2 females which, with
the help of a physician, establish their own state by using the
Karolinska Sleepiness Scale (KSS) [88].
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In [74] authors develop a EEG sensor that does not need
any type of conductive gels what facilitates its use. How-
ever, the sensor still needs to be worn by the driver. After
preprocessing the signals, they use a SVR obtained from
LIBSVM [94] and develop the model in JAVA to be able to
embed it in mobile devices. Once again, SVM seems to be
the preferred option to make an embedded model. Bluetooth
is again used to connect the sensor and mobile platform.
This adds latency to the model that is able to provide alert
information every 2 s using regression to obtain the reaction
time and awareness state. In [75], authors use also an Arduino
platforms (plus BLE and sensors shields) to connect to a
Google Nexus 5 smartphone running a mobile application.
The app uses SVM to predict the emotional state of the
driver using a three class (relaxed, stressed, and fatigued)
classification. For this purpose, themodel reduces the initially
considered 36 features to only the top-15 ones in order to fit
with the computational capabilities of the Google Nexus 5.
The performance of SVM is good with 96.23% accuracy
and a battery lifetime of 8 hours, and can be improved by
incorporating multiple features extracted from PPG, EMG,
and IMU up to 99.52%. Once more, the emotional response
paradigm has only been tested on ten subjects, consisting on
10 min baseline, 5 min pre-stimulus, and 5 min post-stimulus
measurements.

Again, SVM is preferred due to its easy embedding and
the evolution of tools for embedding models on hardware
and software. Logistic regression is also easy to embed and
can deliver good results as shown in ([95], [96]). This is
also the case of neural networks that are becoming easier
to embed, thanks to frameworks such as Tensorflow [97]
and Theano [98] and specialized embedded hardware, such
as NVIDIA Jetson boards or software libraries such as
TFLite [99] or TFMicro. One example is [78], where a system
containing both CNN and RNN (devoted to head pose estima-
tion) is embedded into NVIDIA Jetson TX1 and TK1 plat-
forms. The input consists of 64 × 64 pixel images and the
recording is done using a Kinect camera [100] and the library
Libfreekinect. The network consists of three convolution plus
max pooling stacks followed by two additional convolution
layers and two layers of LSTM cells. The system is able to
achieve 19 fps on the TK1 with the use of the GPU alone and
30 fps on the TX1 when they use the cuDNN library and the
GPU.

In [73] authors embed four different CNNs, such as
VGG-16, into a Jetson TX1. The problem of CNNs is the high
latency in inference, 8 fps in ResNet with 64× 64×3 images,
not achieving real-time performance. They compensate this
problem by reaching 92% accuracy in tasks where the
input information is too big to be processed by any classic
algorithm.

As already mentioned, embedded implementations of deep
learning try to find ways to simplify the network. In the
case of [85] authors opt for deleting two streams from the
multi branch CNN that they devoted to drowsiness detection.

They also train a bigger network to teach a smaller net-
work (process known as knowledge distillation). The over-
all system implemented consists of a Multi-Task Cascaded
Convolutional Networks (MTCNN) for eyes and mouth
detection plus another network, Driver Drowsiness Detection
Network (DDDN) with multiple branches, devoted to obtain
the drowsiness level. With the branches cut, they reduce
redundant information and increase the speed from 6.1 to
13.5 fps on the NVIDIA Jetson TK1. With the compressed
model (from knowledge distillation) they lose only 3.6%
accuracy (from 94.8% to 91.2%) but attain 14.9 fps. There
are two main downsides to this study. First, the dataset,
as in many other studies, is not public and results cannot be
checked. And second, the latency, despite the optimizations,
does not attain real-time performance, what discourages the
use of CNNs for embedded applications that require real-time
performance.

In [87], authors map an ANN onto a Xilinx’s KINTEX-7
family FPGA for driver identification using gas and brake
pedal signals. The idea in this case is to map the most compu-
tationally intensive part to hardware, the matrix operations of
theMulti-Layer Perceptron, and to implement in software the
less demanding parts, such as preprocessing with band-pass
filters.

In [83], authors implement a full drowsiness detection
pipeline as software in a DSP. The full eye detection pro-
cess consists in image capturing and resizing, face detection,
eye detection and eye classification. In this case, the over-
all systems performs at 3 fps on a TMS320DM6437 DSP
with images 288 × 360 pixels. The main bottlenecks is
face detection that consumes nearly 72% of the processing
time while eye localization takes 21% of the total latency,
888.31 ms.

A strategy for easing the embedding of NNs in MCUs
(microcontroller units) is presented in [92]. Authors use a
RNN embedded in a smartphone for detecting driving activ-
ities. They follow the strategy for quantizing and compress-
ing weights found in [101]. Weights are quantized to 8 bit
unsigned integers, inputs are quantized on the fly, the mul-
tiplication is accumulated in 32 bit integers and then trans-
formed to float when biases are added and used for the
computation of the activation function. With this strategy,
they are able to reduce the weight of the model from 412 KB
to 77KB without apparent loss in accuracy and decreasing
latency. This strategy is expanded in [6] to provide full inte-
ger inference. This same strategy is found in TF Lite [99]
framework which helps reducing the memory and latency
constraints that CNN impose. In [93], authors implement a
drowsy classifier with a quantized CNN (MobileNet) to video
recordings in a smart-phone. TF Lite provides functions to
quantize the networks and anAPI for calling the networks and
implement inference in Resource-Constrained devices easing
the task of embedding NNs. However, the problem is still
latency that limits the achieved frame rate to 5-10 fps, which
is still not valid for many real-time contexts.

40584 VOLUME 8, 2020



J. Borrego-Carazo et al.: Resource-Constrained Machine Learning for ADAS: A Systematic Review

TABLE 5. Algorithm and data information for driver state, behavior and identification articles: task, classification, dataset, embedding and performance.

3) PARTIAL CONCLUSIONS
This section detailed the 14 papers containing algorithms and
its embedding for driver’s state and behavior determination.
Biometric body signals, such as EEG, GSR, EMG, are widely
used. However, these signals often imply intrusive methods
that are not suitable for real driving situations. One option to
avoid this issue is to place the sensors in the steering wheel.
This improves latency since it avoids the use of wireless
communication between sensors and the computing platform.
However, it implies certain implementation problems for
sensing, such as dependence on signals coming from both
hands. Another alternative is the use of cameras to sense the
driver. In this case, the models require more resources and
usually lack of real-time performance. Finally, another way
of sensing behavior (but not its state) is through car signals.
In this case, the main problem is to determine which actions
are related to each behavior.

Regarding models used, SVM is the most popular one due
to its lightweight nature and easiness to embed in hardware.
CNNs and RNNs are also used even that those structures
imply a heavy resource usage, which ends up in low through-
put and lack of real-time performance.

One important comment is the lack of a uniform dataset
shared among research works. This makes impossible to
compare articles and methodologies. Moreover, in the case
of biosignals, any public dataset has not been found as also
happens in the case of the car signals, while regarding head
pose estimation, public datasets are available.

Regarding hardware used, GPUs, with the NVIDIA Jetson
family, stand out as one of the most used devices. However,
due to the resource demanding nature of CNN, real-time
performance is achieved just in rare cases.

The summary of the selected articles is presented in
Tables 5 and 6 with the information related to their key
factors affecting performance: tasks, NNs, libraries, dataset,
embedding strategies, hardware platforms, and results
regarding performance.

C. TRAFFIC SIGN RECOGNITION
Driving tasks are restrained to strict norms which affect the
behavior and possible actions of the driver. These norms
change depending on the conditions of the driving context:
number of lanes, amplitude of the hard shoulder, existence of
crossings, surroundings and others. Traffic signs and lights
are placed by authorities in proper places to adjust the drivers’
behavior and to specify the actions permitted or prohibited
in every circumstance. It is essential for drivers to be aware
of this information in order to act accordingly and drive
safely. However, in some occasions, the driver might get
distracted or miss the traffic signs and lights. To avoid this
situation, Traffic Sign Recognition (TSR) methods capture
the information covered in signs and lights and serve it to
the driver, thus reducing the probabilities that the driver is
unaware of driving regulation context. These methods must
be fast enough to provide the information in time but accurate
enough to avoid confusing the driver. However, the diversity
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TABLE 6. Implementation information for driver state, behavior and identification articles: object classes, libraries/languages, platform, hardware, image
size and speed.

of external conditions, such as rain or fog, or even lack of
maintenance of traffic information make the task of recog-
nizing traffic sign information an outstanding challenge.

Generally, there are two sources of traffic sign informa-
tion: Global Positioning System (GPS) information and TSR
methods. GPS information can be useful but has two main
downsides that make it inappropriate as main source of infor-
mation. First, the lack of satellite or connectivity information
in some contexts as for example, long tunnels or mountainous
areas and, second, the lack of updated information of the
context (i.e. maps). TSR methods are based on computer
vision and can work everywhere but they have to offer a
good trade-off between latency and accuracy. This, however,
must not exclude the possibility of combining both types of
information: internal, from the car itself, and external, from a
GPS system or a database.

In [29], a database of geo-referenced traffic signs is devel-
oped concomitant with a TSR system. The idea is to generate
a positive synergy between the two sources of traffic sign
detection: the TSR system provides new signs and their loca-
tions or corrects and updates the database, while the database
reports sign status and check for false negatives. Neverthe-
less, one important problem with mixed recognition systems
is the weight of each branch and which has modification
rights over the other.

Another important distinction in TSR systems is the com-
mon differentiation between traffic lights and traffic signs.
Studies tend to focus in one type of traffic signaling element,
such as in [102], where only red and green traffic lights
are taken into account. Furthermore, there are even splits

among traffic signs, for example in studies covering only
speed limit signs [103]. The reason behind this object special-
ization relates to the performance in both sign detection and
classification. Usually, characteristics such as color or shape,
among others, are used to detect signs. Hence, class diversity
is problem for detection, lowering the final classification
rate as well as imposing demanding hardware requirements.
Keeping an application specific object detector and classifier,
eases the procedure. For example, in [104] only triangular
traffic signs are modelled.

It is important to notice that there are important and widely
used traffic sign dataset, such as the German Traffic Sign
Recognition Benchmark (GTSRB) [105] or the Belgium
Traffic Sign Dataset (BTSD) [106] although few projects
use the original datasets but modified versions or their own
dataset. These object specifications and dataset modifications
restrict the proper comparisons among studies. Other used
datasets are San Diego Traffic Sign (SDTS) dataset [107],
the Stereopolis dataset[108], or the Nexar Traffic Light Chal-
lenge dataset [109]. In this section, the different approaches
found for TSR are reviewed, both from the perspective of
algorithms and hardware used.

1) ALGORITHM STRUCTURE
Most TSR algorithms follow the same structure. They have
two differentiated steps: (1) detection or generation of the
Region of Interest (ROI) for defining the regions in the image
where the sign is located; and (2) recognition, where the
detected sign is classified in one of the predefined classes.
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The input in all studies is an RGB image. In some cases,
authors apply preprocessing procedures to the image before
the detection process. For example, in [110] authors apply
histogram equalization to the ROI of the object detected in
order to adjust the intensity of the pixels in the YCrCb color
space. In [111], authors apply two preprocessing steps: upper
right corner image selection and white balancing. Selecting
a specific part of the image is found in some studies, such
as in [112], where authors crop 25% from the top and 15%
from the bottom part of the image. In [113], the RGB image
is converted to the HSV color space, to better account for
relationships between colors. Although these procedures are
found in the original studies as preprocessing steps, similar
methods are defined as part of the detection process in other
studies, such as Red Blue Channel Enhancement (RBCE)
found in [114]. Simpler strategies are also found, as in [115],
where the authors simply convert the image to gray scale.

For the detection step most of the studies use a concatena-
tion of different algorithms until obtaining the desired ROIs.
In [116], authors use a pyramid scheme to obtain the same
image in different resolutions and then they apply HOG to
produce features. For the HOG computation, they use EVE
(embedded vision/vector engine), a fixed-point vector copro-
cessor. The final detection step is carried out by an Adaboost
cascade classifier withmean-shift algorithm to group the final
candidate ROIs. In [113], authors use one pass blob detection
with 4-connectivity to detect the regions of interest. Other
studies also apply connected components to obtain the final
regions of interest. In [112], authors produce a binary image,
based on RB Normalization and thresholds, and then apply
Connected Component Labelling. The use of binary images
is common to produce the desired regions such as in [117]
and [111]. Another useful technique to produce the desired
ROIs is to use template or shape matching, as in [111].

The detection process in ([103], [117]) consists in convert-
ing the images from RGB to HSV, applying color threshold to
obtain a binary map of red points and extracting the contour
using structural analysis functions. Final ROIs are extracted
based on minimum shape requirements and aspect ratio con-
straints and are detected with polygonal curve approximation
and minimal bounding rectangle functions. They both use
binarization and shape matching procedures.

More complex processes have been found, such as in [114],
where authors apply Red/Blue Channel Enhancement, fol-
lowed byMaximally Stable Extremal Regions (MSER) [118]
to produce the generated ROIs. Then, they apply regionmerg-
ing and a shape/ratio filtering before obtaining the final ROIs.
Another elaborated process is found in [117] where authors
apply the following steps to obtain candidate regions: RGB
to HSV conversion, color thresholding and contour detec-
tion. In [110], authors use a different approach for detect-
ing the regions of interest. They apply Multi Block Local
Binary Pattern [119], faster than Haar or HOG. Then, they
use six different cascade classifiers to determine the image
class. An example of robust traffic light recognition is found
in [102]. Authors produce the candidate regions for red and

green traffic lights bymodelling the traffic light colors in HSL
format as 1D Gaussian distributions. After that, the region of
interest is further redefined by applying the top-hat algorithm
to an extended region and thus making the algorithm robust
to light changes. The region is also passed through a filter
of shape and ratio thresholds. Another approach to detect
regions is to train a cascade of classifiers with Haar-like
features as in [115].

Although most of the papers follow the detection plus
recognition procedure, there are some only devoted to detec-
tion. In [120], a CNN encoder-decoder based on U-Net [121],
is used to produce grey scale images. These images are
then binarized, pixels are clustered using DBScan [122] and
filtered to produce the final regions where traffic lights are
found. The loss of the overall algorithm uses DICE measure
(as formulated in [123]) for the regions generated.

The case of [104] is a special one, since authors devote
the algorithm only to triangular traffic signs using a five
step based method: computing gradients of pixels, Harris
corner detector, encoding of corners, applying RANSAC for
line detection and finally detecting the baseline. Although
the performance is not distinguishable from other methods,
the RANSAC and line detection methodology makes the
method more robust against rotations that can happen due to
the inclination of the traffic signals.

In [124], authors use a knowledge based and attention
mechanism to detect traffic signs with Recurrent Neural Net-
works (RNN). They use a SqueezeNet and a fire module to
provide future maps for the LSTM cells. These LSTM cells
are modified to include an attention mechanism to decide
the part of the image to concentrate on. Finally, a reverse
Gaussian method is used to apply domain knowledge to the
process. After the generation of ROIs, the following steps are
the generation of the appropriate features for classification
and their feeding (or directly the ROIs) to the final classifier.

Once ROIs were generated, either they directly feed a clas-
sifier or they are used to generate the appropriate features for
classification. HOG and LBP stand among the most used fea-
ture extractors. In [113], after filtering by shape and resizing
ROIs, HOG features are extracted and fed to a linear SVM.
This structure is also found in other studies: authors in [114]
send HOG results to a group of linear SVMs that are used
(in a voting process) to obtain the final classification result,
and in [112], authors apply HOG and fed it to a soft margin
SVM after filtering by shape, resizing and converting[111],
they use the final resized ROIs as feature vectors for a linear
SVM.

Apart from HOG and LBP, there are other options for
creating features for the classification step. For example,
in [117], authors first extract the important contents from
the image descriptor named Centroid-to-Contour descriptor.
It consists in several steps: the computation of the moments
of the image and its centroid as well as contour detection.
Next, distances from centroid to the points in the contour are
computed, sampled and normalized to create the new feature
vector. This feature vector is then fed into a linear SVM.
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Convolutional Neural Networks are the other preferred clas-
sifier. In [116], authors use a CNN for classifying different
German traffic signs directly from the ROIs obtained in
detection. The network consists in two stacks of convolutions
plus max pooling, another convolution layer and two final
fully connected layers. Another study that also uses CNNs
is [110], where the input for the network is also the ROI from
the detection step. The network structure is quite similar to
the previous study: convolutions and max pooling followed
by fully connected layers for classification. A special case
of CNN usage is [107], where a two task network (for both
classification and regression) is built in order to classify the
shape label and determine the 2D orientation of the signal.
The two branches are implemented after a VGG16 or Incep-
tionV2 as base network, which generates the features for each
of the branches. For the detection branch, they use a modified
version of Single Shot Detector (SSD) followed by Non-
Maximum Suppression (NMS). Authors apply a template
transform to the networks outputs to segment the final sign.

Other classifiers used are self-organizing maps (SOM),
as in [125], where the input consists a sort of histogram count
of red pixels by row.

2) EMBEDDING METHOD AND PERFORMANCE
Studies found in this review focus on three types of platforms:
smart-phones, FPGAs and embedded processors/boards.
Embedded boards are the mainstream choice to build traffic
sign recognition systems. However, smartphones are keeping
pace with them due to their increase in computing capabili-
ties. FPGAs stand as the less used platform probably due to
their complex implementation process.

Smartphones have an uprising in computing performance
and efficiency but they still have constrained resources com-
pared to personal computers and many embedded platforms.
In [107], authors implement a CNN in a Qualcomm Snap-
dragon 820A processor using the Snapdragon Neural Pro-
cessing Engine (SNPE) SDK for optimization purposes.
Their network was built onto a base or skeleton network plus
two branches devoted to pose and shape estimation. They
make a series of changes to the original structure to increase
throughput, from 1 to 7 fps while only loosing around 6%
in performance. Optimizations consist in changing from a
heavy base network (VGG-16 to Inception V2 and then
SqueezeNet), cropping the image and reducing resolution.

Another study that uses a smart-phone is [110]. Their
authors implement a MB-LBP plus CNN system in a Huawei
P9 Lite with has an octa-core processor (ARM-Cortex
53 cores). Image resolution is 640 × 480 pixels and they
achieve 10 fps and 94.24% accuracy on GTSRB. For
implementing MB-LBP they use OpenCV Training Cascade
Library. No clues are given regarding the implementation
of the CNN in the ARM processor; neither regarding the
embedding option chosen nor on the optimizations carried.
However, being the input for the CNN of size 32 × 32 and
having only two fully connected and three convolution layers,
it is possible that any optimization was done. In [114] authors

implement the whole data processing pipeline plus SVM on
an Apple iPhone 6s, which has a dual-core 1.84 GHz Twister
processor and 64GB ROM with 2GB RAM. They obtain
94.48% recall at 30 fps on 640×480 pixel images. However,
no details are given on the embeddingmethodology or latency
analysis.

Other papers provide some hints about implementation
details. For example, in [117] the whole pipeline of the new
Centroid to Contour descriptor plus SVM is implemented in
two Android platforms using OpenCV and LIBSVM [94] for
detection and classification respectively, and Android NDK
(Revision 10e) toolset and OpenCV4Android SDK for the
embedding. In this case, it is explicitly established that the
system is trained apart and only inference is embedded. The
main platform used is an Android smartphone equipped with
a 2.3 GHz Qualcomm Snapdragon Quad-Core CPU. Authors
report accuracies above 95% for all the traffic limit signs
and throughputs up to 30 fps while processing 720p video
streams.

In [102], there is an example of optimizing the system
related to the platform. They embed their ELM plus finite
statemachine in a SamsungNote 3 smartphone equippedwith
a quad-core Krait 400 architecture CPU at up to 2.3 GHz per
core and an Adreno 330 GPU with a frequency of 450 MHz
and 3G RAM. For the conversion of the input image to HSL
they use a LUT table and they accelerate the K-ELM algo-
rithm with OpenCL and a CPU-GPU fusion approach. Fur-
thermore, they built a parallel pipeline for processing dif-
ferent ROIs at the same time. The full system is applied on
1280× 720 videos for recognizing different types of red and
green lights achieving 93.2%mean accuracy and up to 20 fps.

In [115], authors compare a set of classifiers: KNN,
SVM, MLP, Optimum Path Forests (OPF), Least squares and
Extreme Machine Learning (EML). They decide to choose
OPF as the best model to embed in a smartphone according
to the trade-off between latency and accuracy.

Concerning implementations on embedded boards, authors
of [111] implement their pipeline for TSR in a Friendl-
yARMTiny4412 board, which has a 1.5GHz quad-core ARM
Cortex-A9 Samsung Exynos4412 as main processor. This
board comes with 1GB RAM, 4GB FLASH, and 7-inch
capacitive touch screen. They implement SVMwith OpenCV
and use it for inference on the embedded board. As they
report, the most demanding part of their full algorithm corre-
sponds to detection, color segmentation (red, blue) and shape
matching. For this part, they implement a multi-thread system
using the Qt library: images are divided in four parts and
each one is assigned to a thread for color segmentation while
for shape matching, every thread manages a candidate. The
performance goes from 10-11 fps without threading to 15 fps
with it. They obtain a 90.1% accuracy while recognizing
50 different types of traffic signs. In this case, they opted for
a hardware related optimization, but model parameter related
decisions can also improve the system latency.

The most computationally demanding step of a TSR algo-
rithm is detection. In [112], authors study the impact on
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performance of adding several thresholds to color segmen-
tation. Their result is that several thresholds produce the
best detection rate but it slows down the process. They also
optimize HOG by using fixed-point computations and study
the effect of the number of bits related to performance. To dif-
ferentiate the algorithm at the hardware level, they implement
twomodules: (1) detection on two 640×480 pixel images and
(2) recognition module on the ROI inputs of size 32 × 32.
Detection is implemented using OpenCV and classification
using the library LIBSVM. Regarding the hardware, they
implement the proposed TSR hardware architecture on an
ASIC using 90nm CMOS from TSMC. The core size is
0.26mm2 and the chip size is about 1mm2. The design oper-
ates at 105 MHz clock frequency. They are able to compute
one full pass at 135 fps with 91.53% accuracy for the three
types of signs classified: prohibitory, danger and mandatory.
The overall energy consumption of the system is estimated
as 8 mW. This is an important fact since it is the only study
providing explicitly energy consumption results. It stands
out that, being energy consumption important for embedded
automotive applications, almost any study has focused its
attention on it.

In [116], authors use a TI’s TDA3x SOC (low-power het-
erogeneous architecture for ADAS) which comes with fixed-
and floating-point dual TMS320C66x generation of DSP
cores. It also includes a programmable vision acceleration
engine (EVE), dual ARM Cortex-M4 cores and an image
signal processor (ISP). They implement the image pyramid
and HOG in EVE and Adaboost classifier and the CNN in
each of the DSP processors. They obtain an overall accu-
racy of 89.6% and the system has a throughput of 15 fps.
That low throughput could be due to the limited processing
capabilities of the system, but also due to the overload of
heavy demanding algorithmic structures such as CNNs and
Adaboost.

Again, few application use FPGA for TSR. In [113],
authors try to detect blobs of two different traffic lights:
green and red. For that, they split blob detection in two
branches with 4 connectivity labelling in only one pass by
recording the blob position in a table and the connections
between pixels in another table. Finally, they merge both
tables to obtain position of blobs. The whole system con-
taining preprocessing plus blob detection plus HOG plus
SVM is devoted to green and red traffic light recognition
and is implemented in a Xilinx Zynq ZC-702 board with
well-balanced workload on FPGA fabric and the on-chip
ARM processor. For fast memory access, they use AXI4-
stream bus with a video DMA, realizing high-speed from
FPGA to frame buffers in DDRmemory. They report 92.11%
and 94.44% recall for green and traffic lights and, depend-
ing on the number of red lights in the picture, and 60 fps
(up to 100 fps). Data formats and arithmetic used are not
detailed and they only show the System-on-Chip architecture
at block level. Authors in [121] map their implementation
on a platform that combines a Xilinx Virtex II XC2V1000
FPGA, used in the preprocessing of the images with the

AxeonVindAXprocessor on a PCI development board for the
SOM. They claim that signs were perfectly detected and iden-
tified under variations of scale (as small as 25 pixels wide),
rotation (up to 20%) and occlusion (up to 15–20% of vertical
and 5–10% of horizontal occlusion, depending on the area
being occluded) at 19-21 fps on VGA images. Their SOM
maps have been trained with images from Spain and Czech
Republic, while the system has been tested with images from
Britain, so they use their own test set with almost 100%
success rate.

One point that is not usually tackled in research and which
is very important for the automotive sector is safety and
robustness of models. An interesting study regarding this
topic is [126], where authors analyze the reliability of a
CNN devoted to traffic recognition and implemented on a
FPGA. The core of the study consists in injecting errors in
the data streams to see the robustness of the system. One
important conclusion is that pipelined parallel neural net-
work implementations show a lower Architecture Vulnerabil-
ity Factor (AVF) than timing-multiplexed architectures. The
results show that the proposed network and system Failure-
In-Time (FIT) would comply with the ASIL-B and C require-
ments but not with D.

3) PARTIAL CONCLUSIONS
This section analyzed 14 TSR articles regarding their ML
pipeline and hardware implementation. Most algorithms
divide the task in two parts: detection and classification.
In the detection step, techniques such as color thresholding,
connected component labelling or shape matching stand out.
In the recognition process, two algorithms share the main
uses: SVM and CNNs. The detection steps are the most com-
putationally demanding and the main objective for hardware
and software optimization.

Regarding hardware, it is surprising the use of smartphones
while automotive embedded boards, FPGAs and ASICs, such
as the Jetson family, are also used in publications. Both smart-
phones and embedded boards have problems when dealing
with CNN to achieve real-time performance. The preferred
algorithms is SVM due to its weight and performance. It sur-
prises that frameworks such as Tensorflow Lite and Tensor-
flow for Microcontrollers [127] or ARM-NN [128] did not
appear in the process of embedding and adapting CNNs to
MCUs.

One of the main obstacles for a fair comparison among
articles, is the difference in the final recognized or detected
objects. Another problem is the different data format used
(concerning inputs). All selected articles use images, but their
size is different in most cases what severely impacts both ML
and speed. It is also surprising that any article has imple-
mented a full pipeline of traffic light and sign recognition.
A method that embraces both object types with a remarkable
accuracy and decent throughput would be of significant use
in industry. Another important note is that all systems are
trained externally and are frozen for its inference; any on-line
learning or model adaptation has been found to the best
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TABLE 7. Algorithm and data information for traffic sign and light recognition articles: task, pre-detection, detection, pre-classification and performance.
In this table the columns predetection, detection, preprocess and classification model are in this exact order to reproduce the usual algorithm order.
In [107], the reason of performance variation is due to the different optimizations for speed-performance trade-off. In [114], the different values
correspond to different datasets. In [120] the performance is given as a threshold because in the paper is not specified for all classes.

TABLE 8. Implementation information for traffic sign and light recognition articles: tasks, libraries/languages, platform, hardware, image size and speed.
In [116] two values are given for speed since two processors were tested.

knowledge of authors. To facilitate a general view of the
differences among articles,a summary and comparison of the
articles is presented in Tables 7 and 8.

D. ROAD DETECTION AND SCENE UNDERSTANDING
Scene understanding refers generally to the segmentation
and detection of the components of the driving environment
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to produce an accurate representation. Although it is not
directly an ADAS function, scene understanding can help
other ADAS tasks such as collision avoidance or lane change
functions by providing the required information or directly as
a part of that task. In some cases, instead of pursuing a whole
scene segmentation, only the road is detected or segmented.
Traditionally, road was detected using manually extracted
features that model the road through polygons, color of lane
markers or template matching [129]. Lately, researchers have
also adopted deep learning as themain technique to solve road
detection.

Due to nature of the road segmentation and scene under-
standing tasks and the limited amount of works found,
we present together the deep learning methodologies used,
as well as their optimization, embedding and achieved
performance.

Full scene understanding requires its semantic segmen-
tation, what can be directly performed with CNNs. This
process imposes high computational requirements (hundreds
of GOPS or TOPS). Again, due to the limited platform
resources, CNNs have to be adapted or modified to reduce
their memory and processing requirements. Another option
is to modify the network for its direct hardware mapping,
which is a good option if low energy and/or high throughput
are desired.

In [130], authors determine 3 techniques that can help
implementing a CNN in a Resource-Constrained device:
quantization, layer fusion and sparse multiplication. Their
task is to determine the free drivable space. For this pur-
pose they take a pre-trained network, ResNet10, with the
Cityscapes dataset [131] and modify it for its embedding in
a TDA2x SoC from Texas instruments. Quantization helps
to achieve low-size networks and decrease latency. It basi-
cally consists in the conversion of floating-point weights and
activations to fixed-point equivalents. There are two different
ways to do it: (1) by fine-tuning/training the network in a
quantized-aware mode or (2) converting the operations and
values to fixed-point after the network is trained (in this case
some operations such as activations remain in floating-point).
Afterwards, they apply layer fusion consisting in grouping
different operations in the same process. For example, 2D
convolution and max pooling can be grouped what saves
the need to store intermediate results in memory, or a given
input is loaded into the internal memory only once when
several convolutions use that same input, as in Inception
modules [132].

In general, this type of fused operations helps to reduce
memory bandwidth and improve speed. Finally, the last
technique implemented is sparse multiplications. It con-
sists in avoiding carrying out the explicit computation when
a value in a matrix is 0 or close to it. Sparse or light
matrices can be obtained by applying regularization during
training, by means, for example, of L2 or L1 norms. This
helps reduce the latency since it reduces the amount of
multiply-accumulate (MAC) operations. In the case of [130],
authors achieve a speed-up of 3.93x by applying sparse

convolution with only a 1.79 % drop in mIoU (mean intersec-
tion over union). Another important point in this paper is the
description of the process for embedding a deep learning net-
work in an embedded system. Usually, only inference is car-
ried out in Resource-Constrained devices. Hence, the usual
pipeline is to train the network in a suited environment, such
as a personal computer with a GPU. Then convert the model
to an appropriate format for its embedding (for example with
Tensorflow Lite [99] or Glow [133]) and finally, use a library
for calling the adapted graph and infer the results (for example
the Texas Instruments Deep learning library -TIDL-).

Another possibility is to apply transfer learning from a
bigger network to a smaller one. In ()[134], authors apply
transfer learning to obtain a network of equivalent accuracy
but with only 0.5% memory footprint for weights. They find
that using Softmax probabilities to generate the loss for the
smaller network or target network improves results compared
to using the labels. They also find that training the network
with a Balanced Gradient Contribution (BGC) improves their
results. This latter case implies taking into account, in the
computation loss, the different frequencies of appearance
for each of the segmented classes, related with the problem
of data scarcity for semantic segmentation. They prove that
training a network with a mix of densely and sparsely anno-
tated data altogether with a weighting loss strategy helps
solving the diverging nature of training when dealing with
multi-domain differently annotated data.

Another way to embed CNNs is to downgrade the compu-
tational cost of operations such as convolutional layers. Using
depth-wise convolutions, as introduced by [5], to produce
lightweight CNNs, the authors in [135] are able to embed a
SDD [41] (modified version) devoted to multi-scale object
identification. The main point of depth-wise separable con-
volution is to divide the standard convolution in two distinct
operations. The first one applies a filter to each channel
without changing them while the second applies a point-wise
convolution to combine the output of the previous operation.
Formula 1 shows the relationship between computational
complexity of standard convolutions and depth-wise sepa-
rable convolution, where N is the number of output chan-
nels and Dk is the kernel size of filters. The formula refers
to the relative complexity of depth-wise convolutions with
regard to standard convolutions. As observed, computational
complexity is reduced.

1
N
+

1

D2
k

(1)

In [136], authors develop a network devoted to lane position
and orientation and suited for embedding. They embed it in
a NVIDIA Drive PX and achieve 100 fps with 240 × 260
resolution images. It is outstanding that the network is really
small for a vision task: two stacks of convolutions, followed
by normalization and pooling, and two stacks of fully con-
nected layers followed by drop-out. They use images from
lateral cameras and artificially generated images. In [137],
they propose a segmentation and detection multi-task system.
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TABLE 9. Information for road detection and scene understanding: task, dataset, embedding strategy, the hardware, performance, image size and latency.

The key of their approach, in order to achieve lower latency
than competitors, is to use a backbone which gives shared
features at different scales. The general structure consists of
a shared encoder and specific task decoders. The encoder is
based on Inception V-2 and the decoders are, for segmenta-
tion, a FCN [141] derived network, and for detection, a SSD
based network.With this shared framework, authors achieve a
latency of 5.32 fps with the standard KITTI dataset resolution
on a NVIDIA Jetson TX2. It has to be noted that this result is
far from real-time processing.

In [138], authors map a CNN into a chip area of 0.45mm2

and the energy consumption of only 80mW and 241 fps
throughput at 1080p. The CNN is devoted to road segmen-
tation (the road is the only part of the image segmented).
Their implementation has two main characteristics that help
improving their results andmapping the network to hardware.
First, as inputs, together with images they add 2 extra feature
channels related to row coordinate and column coordinate,
since road is found usually in the lower part of the image.
And second, they use the same number of neurons at every
layer to be able to reuse the same hardware for all layers.

Another task inside road understanding is lane change
detection, which in fact is a useful task for semi-autonomous
cars. It helps the system to know, altogether with scene
understanding, where the car is and when changes its
position. In [139], authors detect lane changes of the car
driven using accelerometer and gyroscope sensors alto-
gether with a pre-trained SVM. The implementation uses
SVMLIB [94] and it is implemented in two smartphones:
Google Nexus 4 / Nubia Z7 Max. In this case, it is interesting
to analyze how they use a server together with GPS to provide
better resolution of the localization of the car with constrained
K-means clustering, establishing a mixed embedded plus
cloud-based solution. Another application to lane change
detection is found in [140]. They detect roll angles and
lane changes using a Raspberry Pi 3 model B together with
a fully connected artificial network implemented with the

FANN [142] library. For detecting changes, they use both
acceleration values and angle change rates.

1) PARTIAL CONLUSIONS
Road detection and scene understanding applications, found
in 8 articles, is mainly carried out with deep learning tech-
niques such as CNN with their corresponding computational
burden. Among the techniques applied to embed CNNs
in resource-constrained devices to achieve real-time perfor-
mance stand out quantization, layer fusion, convolution opti-
mization and knowledge transfer. As for implementation,
NVIDIA Jetson boards and application-specific hardware
achieve better performance in both latency and energy while
losing adaptability.

For this task, certain homogeneity exists among articles
regarding the dataset and performance metrics. This fact
allows a better cross comparison between articles in terms of
their network, hardware or embedding strategy. Table 8 shows
the selected articles and related data regarding performance
and implementation characteristics.

E. MISCELLANEOUS
Previously addressed ADAS tasks correspond to well defined
problems. However, other 5 articles comply with the require-
ments and constraints of the review but do not belongto
any of those specific and established topics. These articles
are summarized in this section by commenting each article
individually.

One important aspect of deep learning applications for
automotive systems is functional safety. ISO26262 estab-
lishes requisites and guidelines but does not specify software
requirements for machine learning applications [143] that
are relevant for its real-case application. In [144], authors
study the robustness of a lightweight application devoted
to road segmentation. They focus on code and control
flow errors but also on data processing errors. They also
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TABLE 10. Algorithm and data information for the miscellaneous section: task, classifier, dataset, preprocessing and performance.

TABLE 11. Implementation information for the miscellaneous section: platform, hardware used, language and libraries, classes and the speed achieved.

investigate the effects of numerical representation, conclud-
ing that fixed-point numbers offer more robustness towards
faults because they do not compress numbers around 0.
Finally, they also investigate the effect of faults depending
on the layer where they occur. The conclusion is that few
studies have been carried out on fault injection for machine
learning applications and that regulatory constraints should
incorporate these methodologies in order to bring standard-
ization into place.

One topic that has not appeared along this review is HMI
(Human Machine Interface). Automotive industry is chang-
ing the way in which the user interacts with the car: from
push and rotational buttons to smart devices. In [145], authors
develop a gesture recognition application based on data com-
ing from smartwatch sensors (gyroscope and accelerometer).
The recognized gestures include twisting, swiping, tapping
and others. Their purpose is to navigate through a hierarchical
menu with two special gestures defined to enter and exit
the gesture recognition mode. This helps to reduce battery
consumption since only the specific sensors are used when
the system looks for a gesture. To identify pre-defined ges-
tures they use Finite StateMachines and Cultural Algorithms.
The use of FSMs has the advantage of having linear time
complexity compared to other algorithms such as HMM,
DTW or NN and also, that the number of variables does not
increment exponentially as, for example, in HMM.

Following these lines, as classical mechanical buttons are
getting off automotive surfaces and voice and gesture recog-
nition technologies are in place, it has been a surprise not
finding many articles devoted to voice recognition embed-
ded in automotive systems. The reason might be that voice
recognition studies are not focused directly into automotive
contexts but the opposite, automotive is seen as a specific
application and studies focus in other, easier to manage,
contexts. Another probable cause might be that embedding
machine learning models for voice recognition is consid-
ered not enough interesting since a good connection to a
server can be found in most automotive situations. The most
probable reason, however, is a conjunction of the previous

given causes: studies covering speech recognition to embed-
ded devices in the automotive context are not common. In this
review, only one article has been found regarding embedded
voice recognition for automotive systems, [146], and dates
back to 2002. In it, authors apply Spectral Subtraction (SS)
for removing noise in the signal and semi-continuous Hid-
den Markov Models for the recognition of different words.
To reduce latency and maintain accuracy, they implement
different strategies such as converting SS to fixed-point com-
putations and transforming Gaussian distributions to partial
spaces represented by small numbers of code words.

Looking for a place to park is a common time-wasting
activity in big cities. Hence, it surprises that parking assis-
tance has not appeared profusely in the articles hit by the
review. Smart parking solutions reduce the time spent seeking
a parking space and are one of the requirements for smart
city plans since it would reduce traffic density and pollution,
and increase welfare of drivers. In [147], they propose a
network of cameras for parking space detection linked to a
server and aweb application (stacked into gogglemaps) being
able to indicate free parking spaces nearby. Detection of free
parking spaces is carried out with a NVIDIA Jetson TX1
board, a custom light CNN and two datasets PKLot [150] and
CNRPark [151] achieving good results. 99% accuracy and
142 fps. In [148], they implement a Parking Line Warning
System based on VGG-16 [152] and a NVIDIA Jetson TX2
by using 4 mounted cameras as an AVM (Around View
Monitoring).

Another topic related to parking would be maneuvering
assistance during parking. In [149], they build an autonomous
maneuvering system for parking. They use vehicle dynam-
ics based on Extended Kalman filters and SLAM to pro-
vide feature vectors for detecting segmentation points of the
movement during parking. To identify such points they use
a General Radial Basis Function (GRBF) classifier that, due
to its fuzzy-like interpretability and lightweight structure, is a
good choice for Resource-Constrained devices. The summary
of key points of the articles in this last section is found
in Tables 10 and 11.
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V. CONCLUSION
This study performs a systematic review about Resource-
Constrained machine learning applications for ADAS. The
originally proposed question is How a Machine Learning
model can be implemented into an embedded or Resource-
Constrained platform devoted to ADAS tasks? Covering and
to answer this question. At the same time, we have also tried
to answer some of the secondary questions that stemmed from
themain question: which type ofmodels were used, howwere
they modified to fit in every selected hardware platform from
a diversity of them, among others.

The review and collection of information has been con-
ducted satisfactorily and structured in fivemajorADAS tasks:
(1) vehicle and pedestrian detection; (2) driver’s state, behav-
ior and identification; (3) traffic sign recognition; (4) road
segmentation and understanding and (5) miscellaneous. From
the initial search that obtained 1839 research papers accessed,
we end up with 23, 14, 14, 8 and 5 papers respectively
for the previous tasks relevant for ML and embedded
solutions.

The cross comparison between studies that would be the
next step of a systematic review, has been difficult in some
cases and failed in most of them. The main difficulty is that,
unlike medical studies, there is not a common or shared
method for carrying out the study. For example, if the pur-
pose is to measure the improvement of a certain type of
quantization or compression method and compare it to other
methods, the ideal situation would be to have all the other
variables unchanged (ceteris paribus). But this is not the
common situation where the dataset, hardware, labelling and
classification objects change among studies

Nevertheless, this impossibility to conduct a fair cross
comparison among articles it is not an impediment to obtain
satisfactory information regarding the primary and secondary
questions. As a whole, we have seen how researchers embed
machine learning models into Resource-Constrained plat-
forms and devoted to ADAS tasks, which was our original
intention with this review. The conclusion is that there are
two key decisions.

The first one is model modification or selection. SVM is
often chosen because, once trained, is a lightweight model
and does not need any modification. Other deep learning
models, such as CNNs, represent more computing demand-
ing models and several techniques appeared to adapt these
networks to resource-constrained devices: quantization, layer
fusion, model compression and pruning among others.

The second decision refers to the implementation platform.
In this case, three main groups appeared: embedded boards,
ASIC/FPGAs and smartphones. Regarding the embedded
boards, stand out those which have an internal GPU, such as
the NVIDIA Jetson or Tegra family. This eases the deploy-
ment and adaptation of deep learning models.

Regarding ASICs and FPGAs, they offer the possibility
to map the network to the hardware thus improving both
speed and energy savings. Last, there has been an increase in
the usage of smartphones for ADAS applications since they

use low-power embedded devices (that have often related
families for the embedded domain). Although smartphones
are not precisely scarce resource, models such as deep
neural networks still need to be adapted. For this reason,
it has been useful to consider them in the review, since
many of the techniques previously commented apply for
this case.

Lastly, it has been possible to see how researchers often
structure their algorithms: preprocessing, ML model and
application-specific task. Preprocessing is a highly image-
or sensor-dependent step as well as the dataset selection. For
example, in the case of traffic light recognition, color segmen-
tation is recursively used while in drivers’ state, wearables are
mainly used. When cameras are used, a preprocessing step is
added to reduce image size and most commonly used models
are SVM or CNN.

Some final recommendations from this review, oriented to
improve faster and clearer research on ML for ADAS, refer
to the need to: first, establish common grounds for same
tasks to get fair cross comparison and to avoid misguiding
results, and second, report speed and energy for embedded
implementations.
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