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ABSTRACT Real-time flood forecasting of small- andmedium-sized rivers in areas with scarce hydrological
data is an urgent problem that needs to be solved. Traditional hydrological model parameters cannot be
fully trained owing to a lack of data; thus, results obtained by such models are not satisfactory. We need
a new way to solve the forecasting problem for small- and medium-sized rivers. We found that the time
series of some feature variables have evident change trajectories in spatial dimension, and the change of
some feature variables in the spatial dimension has a decisive influence on flooding processes, such as
the spatial distribution of rainfall. To reflect the change of feature variables in spatial dimension with to
solve the problem of the lack of hydrological data, we constructed a rainfall-flow pattern composed of a
spatial-temporal dynamic time warping algorithm and multi-feature algorithm to measure the similarity of
hydrological time series. In the experimental watersheds, we used rainfall-flow patterns to forecast the short-
term flood streamflow, and satisfactory results were obtained. This suggests that the algorithm is suitable for
hydrological studies and improves the accuracy of real-time flood forecasting for longer forecast periods.

INDEX TERMS Spatiotemporal sequence data, rainfall-flow pattern matching, similarity measurement
algorithm, multi-feature algorithm, ST-DTW algorithm.

I. INTRODUCTION
In China, there are nearly 9,000 small- and medium-sized
rivers, covering an area of 200 to 3000 km2. In recent years,
extreme weather conditions and frequent rapid floods caused
by local heavy rainfall have become the main cause of casu-
alties [1]. According to recorded statistics, flood damage
to small rivers accounts for approximately 70% to 80% of
the total loss of floods [2]. Therefore, accurate and timely
flood forecasting can effectively reduce disaster losses and
improving real-time forecast accuracy is a very important
technical measure in flood control and disaster mitigation [3].

The hydrological conceptual model and data-driven model
are two main methods in flood forecasting research [4]. Over
the years, researchers in the filed have achieved relatively
satisfactory results in the study of flood forecasting for large
rivers in China [5], although research of flood forecasting for
small and medium rivers is just in its infancy. Flooding of
small and medium-sized rivers are short in duration, difficult
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to predict, difficult to prevent, and lack measured hydrologi-
cal data. Therefore, it is difficult to meet the needs of existing
hydrological model parameters, which makes it difficult to
study flood forecasting for such rivers [6].

The data-driven model generally does not consider the
physical mechanism of the hydrological process. It is a black
box method that aims to establish an optimal mathematical
relationship between input and output data [7]. The most
commonly used data-driven model is the regression model.
Owing to the introduction of neural network models, nonlin-
ear time series analysis models, fuzzy mathematical methods,
grey system models, and the development of hydrological
data acquisition capabilities and computational capabilities,
progress with data-driven models has been made by predict-
ing and simulating nonlinear hydrological applications and
the noise complexity of captured data. This has attracted the
attention of hydrologists [8].

In recent years, the rapid development of artificial intelli-
gence (AI) and big data has triggered revolutionary changes
in many research fields [9]–[12]. In the field of hydrology, AI
algorithms are used to extract predictive features embedded
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in historical hydrometeorological data. AI is a popular tool
for capturing linear and nonlinear relationships between flow,
rainfall, climate indices, and related inputs [13], [14]. Popular
AI algorithms include artificial neural networks (ANNs), sup-
port vector machines (SVMs), fuzzy logic, and evolutionary
computations [15]. However, these AI models have their
respective limitations. For example, the limitations of the
ANN model include iterative adjustments to the parameters,
as well as overfitting or overtraining, which can lead to large
errors in the prediction of test samples [16].

Because of the optimization and popularization of deep
learning algorithms, the data-driven model is widely used
in stream-flow forecasting of large rivers. Bai et al. [15]
proposed a daily reservoir inflow prediction model based on
multi-scale depth feature learning. Liu et al. [17] proposed a
method of integrating a stacked automatic encoder (SAE) and
a back propagation neural network (BPNN); they developed
a deep learning method for predictive streams that takes
advantage of the SAE’s powerful feature representation capa-
bilities and the BPNN’s superior predictive power. Other
commonly used deep learning models include long-term
short-term memory (LSTM) networks (a special type of
recurrent neural network). LSTM networks exhibit supe-
rior performance in large watersheds. Kratzert et al. [18]
highlighted the potential of LSTM in hydrological modeling
applications for 241 freely available CAMELS5 watershed
datasets. Some hydrologists expect AI to raise our hydrolog-
ical forecasting capabilities to unprecedented levels, as it has
in many other fields [7]. Indeed, AI has been well applied
to large watershed-rich watersheds with big data. However,
hydrological modeling does not currently perform compara-
bly well in small watersheds. Nevertheless, the hydrological
community still regards the AI model as a valuable supple-
ment to the hydrological conceptual model in hydrological
modeling of small and medium watersheds. In summary,
small-watershed forecasting based on the AI model is limited
in the following two parts:
1) The flow of small and medium-sized river watershed

exports may be affected by upstream or downstream
factors. Previous studies often ignored the spatial char-
acteristics of the model input data and only used the
averaged data within the watershed. For example, if the
rainfall center is close to the watershed exit, the flow at
the watershed exit will peak in a short period of time.

2) Meteorological and hydrological data in small and
medium watersheds are often scarce, and the number of
training samples rarely reaches the optimal value for an
AI model.

Flood forecasting in small and medium-sized watersheds
is influenced by many factors, such as soil water content
and rainfall center location. The initial soil water content
and the movement trajectory of rainfall play an important
role; however, these factors are not easy to measure directly,
resulting in a small amount of data obtained. To address these
limitations, this study proposes a short-term flood forecasting
model using feature factor decomposition in conjunction with

weather-time rainfall-flow pattern matching. The input to the
model includes soil water and rainfall from the watershed.
The output of the model is the flood flow at the watershed
exit for the next 10 h. The main contributions of the study are
summarized below.
1) We propose a decomposition method of input features

to mine the implicit rainfall-flow model. The multi-
feature algorithm extends one-dimensional features to
multi-dimensional features for rainfall-flow pattern
matching. The proposed spatial-temporal dynamic time
warping (ST-DTW) algorithm combines the measure-
ment of temporal and spatial distances.

2) We propose a rainfall-flow pattern matchingmethod that
overcomes the paucity of hydrological data in small and
medium watersheds. In contrast to traditional machine
learning models, pattern matching does not require large
amounts of training data to achieve optimal results.

3) We propose the use of hydrological data from wet
and dry watersheds to construct rainfall-flow patterns.
In addition, we verify the superiority of the proposed
model from two aspects: model simulation performance
and real-time prediction accuracy.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 introduces the preliminaries.
Section 4 presents details of the rainfall-flow patterns. Model
data and experiments are introduced in Section 5. Finally,
Section 6 offers some conclusions and suggestions for future
work.

II. RELATED WORK
The rainfall flow model is divided into a physics-based
hydrological conceptual model and a data-driven model. The
hydrological conceptual model proposes hypotheses, gen-
eralizations, and mathematical simulations of hydrological
phenomena on a physical basis. The data-driven model only
obtains information from the data, regardless of the charac-
teristics and processes of the hydrological system.

A. CONCEPTUAL MODEL BASED ON
HYDROLOGICAL PROCESS
The hydrological conceptual model describes the hydrologi-
cal processes of its components, such as the process of water
circulation in nature. The model simulates the flow process of
the watershed by simulating the flow and the river evolution
processes of the flow in the watershed. As early as the 1960s,
the distribution of climatic conditions and uneven spatial
variation to watersheds has been discovered by hydrologists,
and its impact on the rainfall-flow relationship of watersheds
has been studied. Several well-known physical models were
developed from the 1970s to the mid-1980s, such as the
American Stanford model [19], the Sacramento model [20],
the Japanese tank model [21], and the Chinese Xinanjiang
model [22]. In addition, the European SHE model [23] is
the first highly representative distributed hydrological model,
which was developed in 1986.
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The structure of hydrological conceptual models is limited
insofar as it is not yet possible to describe each of these sub-
processes rigorously using mathematical equations derived
from consideration of the physical attributes of watershed.
In addition, they are limited in actual use because their opti-
mization method determines the dependence of the model
parameters on the measured rainfall-flow data.

B. DATA DRIVEN MODEL BASED ON AI ALGORITHM
The data-driven stream-flow prediction model captures
linear and nonlinear relationships between stream-flow, rain-
fall, climate indices, and related inputs [13], [24]. Conven-
tional black box time series models such as least squares
(LS), autoregressive (AR), autoregressive moving average
(ARMA), multiple linear regression (MLR), and stepwise
cluster analysis (SCA) have been applied to hydrological
forecasting [25]. However, these models cannot handle non-
linear hydrological processes.

In the past two decades, hydrologists have developed
AI models to address the abovementioned limitations and
simulate nonlinear hydrological processes. In recent years,
the development of artificial neural networks has been rel-
atively fast. Hsu et al. [26] proposed the use of an ANN
for typical rainfall-flow forecasting problems. The method
is designed to estimate the parameters and systems of ANN
networks quickly and accurately, and to estimate uncertainty
as well. However, the limitation of the ANNmodel is that the
appropriate architecture must be designed through training
and testing, and a small architecture may not have enough
data for the ANN model to learn.

Guo et al. [27] used an SVM to predict monthly stream-
flow, demonstrating that SVM offer a promising hydrological
prediction method. Compared with physical models, an SVM
requires less data and performs well in real-time predictions.
Compared with the ANN model, an SVM has better general-
ization capabilities and a higher prediction accuracy.

Fuzzy logic algorithms solve the uncertainty of a model
by determining the relevant input variables [28]. The most
widely used fuzzy logic algorithm is the adaptive-network-
based fuzzy inference system (ANFIS). El-Shafie et al. [29]
used the ANFIS to construct a monthly stream-flow predic-
tion model. The experimental results showed that the fuzzy
system can deal with the inaccuracy and ambiguity of hydro-
logical data, and that the ANFIS model is better at dealing
with the prediction of high water-level scenarios in large
rivers.

Savic et al. [30] first used the gene programming (GP)
method in evolutionary computation (EC) to model rainfall
flow, with the ability to reduce the large number of parameters
required to identify conceptual model calibrations. The GP
method clearly gives the form of a determined function, and
has a greater ability to capture rainfall-flow relationships
compared with the ANN.

Traditional data-drivenmodels do not consider the physical
process of the rainfall-flow pattern, which leads to an attempt
to utilize all available hydrological data. This considerably

increases the feature dimensions and requires a large number
of training parameters [31]. In addition, ignoring the spatial
feature of the input data leads to inaccuracies and uncertain-
ties in complex data-driven model predictions [32].

III. PREPARED KNOWLEDGE
1) PRINCIPAL COMPONENT ANALYSIS
Principal component analysis (PCA) is probably the most
popular multivariate statistical technique used in most dis-
ciplines, and it is often used for data preprocessing and
dimensionality reduction [33]. The main function of PCA is
that it can represent more information with fewer variables,
which are several interrelated variables. The goal of PCA
is to extract important information from variables and then
reduce the data dimension by preserving important informa-
tion, simplifying the complexity of the problem, and reducing
consumption. The PCA is described as follows:

Y =
n∑
i=1

UX , 1 ≤ i ≤ n, (1)

where U = (ui1, ui2, · · · , uin) denotes weight,
X = (x1, x2, · · · , xn) denotes the original variable, and
Y = (y1, y2, . . . , yn) is the new variable changed by X .

2) DYNAMIC TIME WARPING
The dynamic time warping (DTW) algorithm was first pro-
posed by Fumitada Itakura. It can be used to solve the similar-
ity measure of non-equal time series. However, its application
is more extensive, especially in the field of speech recogni-
tion, where it is used for the identification of isolated words,
gesture recognition, data mining, and information retrieval.

In actual experiments, a situation that is often encountered
is that of two time series of differing lengths having a high
similarity in their overall shape (similar to speech similarity);
additionally, the situation occurs where one of the time series
needs to be distorted using dynamic programming such that
the two time series are as similar as possible. The main idea
of DTW is to use dynamic programming to extend or shorten
two similar time series to obtain the shortest distance between
them. This shortest distance is called the shortest warping
path, which is the DTW distance.

Consider time series Q and test time series C , with lengths
n and m, respectively, that is,

Q = q1, q2, . . . , qi, . . . , qn
C = c1, c2, . . . , ci, . . . , cn (2)

It is understood that the speech sequence Q has n frames, and
the feature value of the ith frame is qi. Similarly, the speech
sequence C has m frames, and the feature value of the ith
frame is ci.

As shown in Fig. 1, a matrix of size n ∗m can be skillfully
constructed with the (i, j) element corresponding to the dis-
tance d(qi, cj) of the two points qi and cj, which represents the
similarity between each point of time series Q and each point
of time series C . There is a plurality of distance formulas for
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FIGURE 1. Illustration of warped path.

the calculation of the similarity. The Euclidean distance is
generally adopted, namely, d(qi, cj) = (qi−cj)2. Each matrix
element (i, j) indicates the alignment of the point qi with point
cj. The algorithm aims to find a path through several grid
points of this grid. The point through which the path passes is
the point at which the two time series are aligned. This path
is defined as a warping path and is represented by W .
The k th element of the regular path W is defined as

Wk = (i, j)k , andW defines the mapping of the time series Q
and C , such that the warping paths of Eq. 3 can be obtained.

W = w1,w2, . . . ,wk , . . . ,wk
max(m, n) ≤ K < m+ n− 1 (3)

The warping pathW must satisfy the following constraints:
in (a − a′) ≤ 1 and wk = (m, n), the selection of the
warping path points must satisfy the order of the sequences.
The warping path must start from the lower left corner and
complete the entire path to the upper right corner.

If wk−1 = (a′, b′), the next point wk = (a, b) for the path
must satisfy (a − a′) ≤ 1 and (b − b′) ≤ 1. When the point
cannot bematched, it can only be aligned with its neighboring
points. This ensures that every coordinate inQ and C appears
in W .
If wk−1 = (a′, b′), then the next point wk = (a, b) for the

path must satisfy 0 ≤ (a− a′) and 0 ≤ (b− b′). The warping
path W must be monotonic; this is necessary to ensure that
the broken lines in Fig. 1 do not intersect. Once the above
constraints are satisfied, the warping path can only select
three directions— up, right, or diagonal.

For the above constraints, there are many rules for the
constraint path that satisfies the constraint, and the shortest
cumulative distance path is needed, which is defined as

DTW (Q,C) = min{

∑K
k=1

wk
} (4)

where the denominator K is used to compensate for the
warping path W of different lengths. The dynamic program-
ming approach requires the determination of a warping path

FIGURE 2. Rainfall-flow pattern prediction process.

with the smallest distance. Matching the two sequences Q
and C from the point (0, 0), each time a point is reached,
the distance calculated by all previous points is accumulated.
After reaching the end point (n,m), the distance is the final
total distance, indicating the degree of similarity between the
time series Q and C .

As shown in Eq. 5, the cumulative distance γ (i, j) is the
current grid point distance d(i, j), which is the grid point
qi. The sum of the Euclidean distances of the cjs is the
cumulative distance of the smallest neighboring element that
can reach that point.

γ (i, j) = d(qi, cj)+min

 γ (i− 1, j− 1)
γ (i− 1, j)
γ (i, j− 1)

 (5)

IV. CONSTRUCTION OF RAINFALL-FLOW PATTERNS
The specific process of the rainfall-flow pattern structure is
shown in Fig. 2. The first step is the input of original flood
data,which includes historical flow and rainfall data. The sec-
ond step, data preprocessing, is mainly feature extraction
and spatiotemporal distribution of rainfall. For the third step,
we introduce two similar matching algorithms for rainfall-
flow patterns. Finally, for the fourth step, we output a forecast
of the stream-flow.

A. DATA PREPROCESSING
The two pattern matching algorithms use their own data
preprocessing methods.

1) DATA PREPROCESSING OF THE MULTI-FEATURE
ALGORITHM
The multi-feature algorithm is a hydrological sequence sim-
ilarity calculation method, which mainly uses the method
of dimensionality reduction to measure the similarity of
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FIGURE 3. Feature extraction of Rainfall-flow pattern. The dotted line
denotes the flow of the flood. The column chart denotes the
measurement of each rainfall station in Figure (a). Figures (b)–(d) denote
four features after the extraction of the rainfall-flow pattern.

hydrological processes. The idea of the hydrological multi-
feature algorithm is to extract the most important feature
variables in the flooding process and to transform the simi-
larity of the flooding process into the similarity of the time
series of the feature variables. As shown in Fig. 3, PCA and
expert experience are used to analyze and screen multivariate
hydrological feature variables. We observe that four feature
variables have the greatest impact on small- and medium-
sized rivers: area rainfall, rainfall trend, cumulative area rain-
fall, and soil moisture content. Accordingly, in this section,
we introduce four important feature variables in detail.

Area rainfall is a physical quantity that describes the aver-
age precipitation per unit area over an entire watershed. It can
better reflect the precipitation over the entire area objectively.
The area rainfall is calculated as Eq. 6:

R
(
tp
)
=

n∑
i=1

ri
(
tp
)
HTiAi (6)

where R
(
tp
)
is the area rainfall at the tp during the flood

process; ri
(
tp
)
represents the rainfall measured by the ith rain

station at the tp; Ai is the sub-watershed area of the ith rainfall
site as a percentage of the total area of the study watershed; n
is the number of rainfall stations in the entire watershed; and
HTi is the influence of the confluence time.
Cumulative area rainfall reflects the amount of precipita-

tion in the area for a period of time. The cumulative area
rainfall is calculated as Eq. 7:

Sump =
1
S

n∑
i=1

t0∑
t=0

(Si ∗ P(i)t ) (7)

where Sump is the cumulative area rainfall; S denotes the area
of the watershed; Si represents the area of the sub-watershed;
i represents the number of rainfall stations; t0 represents the
forecast time point; and P(i)t represents the rainfall at station
i at time point t .

The standard deviation of the rainfall is used to compare
the magnitude of rainfall trend intensity over time, and is
calculated as Eq. 8:

RIt =

√√√√1
n

n∑
i=1

(P(i)t − µt )2 (8)

where RIt is the rainfall trend intensity at time point t; i
represents the number of rainfall stations; P(i)t represents
the rainfall at station i at time point t; and µt is the average
rainfall of i rainfall stations at time t .
The soil water content has a very fine division in the

hydrology discipline and is divided into the upper layer ten-
sion water, the lower tension water, and the deep tension
water. The soil moisture content in this paper is expressed
as Eq. 9:

WM = WUM +WLM +WDM (9)

whereWM represents the soil moisture;WUM represents the
upper layer tension water; WLM represents the lower layer
tension water; and WDM represents the deep tension water.

2) DATA PREPROCESSING OF THE ST-DTW ALGORITHM
The measure of the similarity of the ST-DTW algorithm is
based on the matrix data. We therefore first need to rasterize
the flood-related data and generate a rasterized sequence of
rainfall of distribution matrices. Rainfall data is an important
determinant of the evolution of the flooding process. The
accumulation of rainfall indirectly reflects the degree of soil
moisture content, the amount of area rainfall, and the loca-
tion of the center of the rainstorm. In this study, we mainly
rasterize the rainfall data and finally generate the sequence of
rainfall distribution matrices.

As shown in Fig. 4, the shape of a river watershed after
rasterization is shown as a gray grid. A grid edge represents
the actual distance of 1km. After rasterization, the river water-
shed is a matrix of 10 rows by 8 columns. Based on the
rainfall data obtained from the rainfall stations in the river

VOLUME 8, 2020 39717



Y. Zhu et al.: Flood Prediction Using Rainfall-Flow Pattern in Data-Sparse Watersheds

FIGURE 4. Rainfall spatial distribution matrix.

FIGURE 5. Rainfall spatiotemporal distribution matrices sequence.

watershed, the rainfall data of the river watershed are filled
in with the rasterization matrix of the river watershed; areas
outside the watershed are filled with zeros. In this manner,
the rainfall rasterized matrix in unit time is generated, and
we call this the rainfall distribution matrix. Because a flood
lasts for several hours, it corresponds to multivariate rainfall
distribution matrices. Multivariate rainfall distribution matri-
ces form a sequence of rainfall distribution matrices, which
is shown in Fig. 5.

B. ALGORITHM FOR THE RAIN-FLOW PATTERN
MATCHING
1) MULTI-FEATURE ALGORITHM
The hydrological multi-feature algorithm is used to calculate
the similarity between 2 flood process sequences.

The multi-feature variable time series similarity measure
calculation is refined into three steps: firstly, input the his-
torical flood process data and real-time flood process data;
secondly, the flood process data are formatted into a feature
variable time series; and finally, the time series similarity
algorithm is used to calculate the sequence similarity (here
we use the DTW algorithm to calculate the similarity of
the time series). Ultimately, it is the historical flood process
most similar to the real-time flood process that is sought in
historical floods, and the historical flood process is used to

make short-term predictions of real-time floods.

Dis(SA, SB) =
n∑
i=1

Ui ∗ Di, s.t.
n∑
i=1

Ui = 1, (10)

where SA = {S1, S2, · · · , Sn}, SB = {S ′1, S
′

2, · · · , S
′
n},

Di = DTW (Si, S ′i ), and Ui ∈ U (|U | = n) is a kind of weight
computed by PCA.Moreover, n is set 4 based on our practical
problem.

2) ST-DTW ALGORITHM
To resolve the problem of similarity measure in hydrological
studies using time series involving spatial dimension, this
study proposes the ST-DTW algorithm. First, to satisfy data
format requirements of the ST-DTW algorithm, the original
data in the hydrological field were rasterized. Thereafter,
the ST-DTW algorithm is described in detail. The descrip-
tion is mainly divided into two sections. The first section
describes the similarity measure between the rainfall dis-
tribution matrices, and the second section further describes
the similarity measure of the rainfall distribution matri-
ces. Finally, the pseudocode of the ST-DTW algorithm is
developed.

a: SIMILARITY MEASURE OF RAINFALL SPATIAL
DISTRIBUTION MATRIX
A similarity measure between two rainfall distribution matri-
ces is proposed. The two rainfall distribution matrices are
R and T , where R is standard template rainfall distribution
matrix and T is the rainfall distribution matrix of the test
template; both are rainfall distribution matrices of n rows and
m columns. The similarity between two matrices is defined
as follows.
Definition 1, (Matrix(R,T )): Distance of two rainfall distri-

bution matrices.

Matrix(R,T ) =


DR1T1 DR1T2 . . . DR1Tn
DR2T1 DR2T2 . . . DR2Tn
DR3T1 DR3T2 . . . DR3Tn
...

...
. . .

...

DRmT1 DRmT2 . . . DRmTn

 (11)

where DRmTn represents the distance between the mth row
vector Rm of the standard rainfall distribution matrix R and
the nth row vector Tn of the template rain distribution matrix
T (where the distance is calculated using the DTW).

e.q 1: The row vector of the rainfall distribution matrix
denotes a division of the watershed into n subwater-
sheds, with each strip having an area of 1 ∗ m(km2).
In practical applications, the calculated distance rep-
resents the similarity of rainfall over two long strips.
Fig. 4 shows the rainfall distribution matrix in 10 rows
and 8 columns (n = 10,m = 8). The Matrix(R,T )
of two rainfall distribution matrices is the similarity
matrix of 10 rows and 10 columns, in which the row
vectors are 1 ∗ 8 matrix.
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Definition 2, (Dis(R,T )): The distance of the two
Matrix(R,T ).

Dis(R,T ) = Min
{
DisWarping(Matrix(R,T ))

}
(12)

where DisWarping(Matrix(R,T )) is the distance correspond-
ing to each warping path in the matrix Matrix(R,T ), which
takes the minimum distance as the distance of the cor-
responding distance matrix; that is, the distance between
the rainfall distribution R matrix and the rainfall distribu-
tion matrix T . In hydrology, this represents the degree of
similarity of rainfall over the watershed at two points in
time.

b: SIMILARITY MEASURE OF RAINFALL TEMPORAL
DISTRIBUTION MATRICES
The previous section introduced the similarity measure-
ment algorithm for two rainfall distribution matrices. There-
after, we introduce the similarity calculation between the
two sequences of rainfall distribution matrices (such as the
sequence of rainfall distribution matrices shown in Fig. 5.
Definition 3, (SR:) The training sequence of rainfall distri-

bution matrices.

SR =
{
Rt1 ,Rt2 ,Rt3 , . . . ,Rtn

}
(13)

Definition 4, (ST :) The test rainfall distribution matrices
sequence.

ST =
{
Tt1 ,Tt2 ,Tt3 , . . . ,Ttm

}
(14)

where Rtn represents the training rainfall distribution matrix
at time tn and, and Ttm represents the test rainfall distribution
matrix at time tm.
Definition 5, (Dis(SR,ST )): Distance between the training

sequence of rainfall distribution matrices SR and the test
sequence of rainfall distribution matrices ST .

Dis(SR,ST ) = DTW (SR, ST ) (15)

Definition 6, (Matrix(SR,ST )): The distance of two different
matrices sequence Dis(SR,ST ).

Matrix(SR,ST ) =


Dis(Rt1 ,Tt1 ) . . . Dis(Rt1 ,Ttm )
Dis(Rt2 ,Tt1 ) . . . Dis(Rt2 ,Ttm )
Dis(Rt3 ,Tt1 ) . . . Dis(Rt3 ,Ttm )

...
. . .

...

Dis(Rtn ,Tt1 ) . . . Dis(Rtn ,Ttm )

 (16)

c: ST-DTW ALGORITHM PROCESS
As shown in Fig. 6, the ST-DTW algorithm structure is
divided into two layers. The first layer calculates the similar-
ity of two sequences of rainfall distribution matrices using the
DTWalgorithm, and the second layer calculates the similarity
of rainfall distribution matrices.

From the first layer: the lengths of the standard template
and test template of the sequence of rainfall distribution
matrices are 3 4, respectively. Because of Dis(SR,ST ) =

FIGURE 6. Rainfall distribution matrices sequences similarity hierarchical
calculation.

DTW (SR, ST ), we need to calculate the DTW distance
between the sequences SR and ST . Similar to the one-
dimensional DTW algorithm, we need to construct a matrix
of n∗m (where n andm represent the lengths of the stand tem-
plate and test template of the sequence of rainfall distribution
matrices).

e.q 2: We construct a 3 ∗ 4 matrix, as shown in the first
layer in Fig. 6. The difference between this algorithm
and the one-dimensional DTW algorithm is that the
one-dimensional DTW is a matrix between points that
calculates the distance between the points. ST-DTW
replaces points with matrices; that is, it calculates the
distance between rainfall distribution matrices, where
d(1, 1) is the distance between the rainfall distribution
matrix Rt1 at the time of t1 of the standard template
of the rainfall distribution matrices sequence and the
rainfall distribution matrix Tt1 at the time of t1 of
the test template of the rainfall distribution matrices
sequence. Similarly, d(2, 4) is the distance between
the rainfall distribution matrix Rt2 at time t2 of the
standard template of the rainfall distribution matrices
sequence and the rainfall distribution matrix Tt4 at
time t4 of the test template of the rainfall distribution
matrices sequence. The distance between two rainfall
distribution matrices is calculated using Eq. 11 inDef-
inition 1 and Eq. 12 in Definition 2. After calculating
the distance matrix of size 3 ∗ 4 in the first layer,
the minimum cumulative distance is obtained, which
is the similarity between the standard template and
test template of the sequence of rainfall distribution
matrices.
The matrix shown in the second layer in Fig. 6 is
an expanded description of the first level d(2, 4) dis-
tance calculation. The distance d(2, 4) = Dis(Rt2 ,Tt4 )
between two rainfall distribution matrices, d ′(1, 1)
represents the DTW distance between the first row
vector (Rt2 )1 of the rainfall distribution matrix Rt2 and
the first row vector (Tt4 )1 of the rainfall distribution
matrix Tt4 . The distance matrix Matrix(Rt2 ,Tt4 ) of two
rainfall distribution matrices is calculated using Eq. 12
in Definition 2.
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Algorithm 1 Similarity Between SR and ST
Require: SR = {Rt1 ,Rt2 , . . . ,Rtn}; ST = {Tt1 ,Tt2 , . . . ,Ttn};

LSR ;LST ; MatrixRows;
Ensure: Dis(SR,ST );
1: procedure generateMatrix(SR,ST )
2: while i ≤ LSR do
3: while j ≤ LST do
4: Dis(Rti ,Ttj ) = generateMatrix(Rti ,Ttj )(Rti ,Ttj )
5: end while
6: end while
7: return Dis(SR,ST ) = Min{DisWarping(Matrix(SR,ST ))}
8: end procedure
9: procedure generateMatrix(Rti ,Ttj )(Rti ,Ttj )
10: while x ≤MatrixRows do
11: while y ≤MatrixRows do
12: D((Rti )x,(Ttj )y)

= DTW ((Rti )x , (Ttj )y)
13: end while
14: end while
15: return Dis(Rti ,Ttj ) = Min{DisWarping(Matrix(Rti ,Ttj )}
16: end procedure

V. EXPERIMENT
This section describes the experiments in detail, including
datasets, experimental methods, performance criteria, exper-
imental results, and analysis.

In addition, we conduct a set of experiments to validate
rainfall-flow pattern based on hydrological data released by
the China Shaanxi and Zhejiang hydrology Administration.
The experiments are designed to investigate the following
three research questions:

I RQ1: Is the simulated performance of the rainfall-flow
pattern better than the baselines as it becomes worse as
the forecast timestep increases?

I RQ2: Does rainfall-flow pattern outperform deep learn-
ing models or approaches?

I RQ3: Does watersheds with different soil water content
affect forecasting accuracy?

A. DATA SETS
Watersheds with different soil water content have different
rainfall-flow patterns. We selected two study watersheds: a
watershed in drought with less annual average rainfall (the
Heihe watershed, Shanxi, China); and a wet watershed with
more annual average rainfall (the Changhua watershed, Zhe-
jiang, China). The hydrological and precipitation stations in
the Changhua and Heihe watersheds are shown in Fig.7 and
Fig.8, respectively.

As shown in Table 1, we selected hydrological data of the
Changhuawatershed from 1998 to 2010, containing 31 flood
events. Correspondingly, the hydrological data of the Heihe
watershed from 2003 to 2012 contained 29 flood events.
In the Changhua watershed, we selected data from 1998 to
2008 as a training set, and data from 2009 to 2010 as a test
set. In theHeihewatershed, we selected the data from 2003 to

TABLE 1. Details of watershed datasets.

FIGURE 7. The boundary of the Changhua watershed, as well as the
marking of hydrological stations and rainfall stations in the watershed.

FIGURE 8. The boundary of the Heihe watershed, as well as the marking
of hydrological stations and rainfall stations in the watershed.

2010 as a training set, and the data from 2011 to 2012 as a
test set. The data collection frequency of rainfall stations and
hydrological stations in the Changhua and Heihe watersheds
is hourly.

B. BASELINE MODELS
In what follows, we compare our two proposed models
with three baseline models. The first baseline is a tradi-
tional statistical method, and the second baseline is a classic
machine learning method. The third baseline is a deep learn-
ing method. We detail them as follows:
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TABLE 2. RMSE comparison among various models in simulating stream-flow for next 1-10 h in the Changhua watershed.

FIGURE 9. Description of the flood forecasting process.

I Autoregressive integrated moving average (ARIMA),
a classic time series model used to predict flooding in
hydrological studies in the 1990s [34].

I Support vector machine (SVM), an AI model based
on structural risk minimization that uses the local
rainfall and stream-flow data to predict the future
stream-flow [35].

I Long short-term memory (LSTM): A time series model
used to predict future river stream-flow by consider-
ing past hydrological, past rainfall, and future weather
forecast data [36].

C. EXPERIMENTAL METHODS
A flood process of the experiment is shown in Fig. 9. When
selecting the flood process in the historical flood data, starting
point of the flood process is at time t = 0 in the figure, and
t = tmax is the onset of the flood peak. The starting forecast
time is t = t0, and the forecast period is set to t1 ∼ t10.
Our models and baseline models were completely imple-

mented on a computer workstation with an NVIDIA TITAN
V GPU running the Ubuntu 16.04 operating system using the
Python 3.6 programming language. The input step size of our
models was the length of time from the onset of rainfall to
the starting forecast point. For the baseline models, we used
input and parameter settings based on the best results in the
papers [34]–[36]. In particular, for the deep learning model
(LSTM), the structure was constructed using the TensorFlow
software library, with the learning rate (LR) set to 0.001 and
the batch size set to 128.

D. PERFORMANCE CRITERIA
In this subsection we present three common real-time hydro-
logical forecasting indicators.
I Root mean square error.
To illustrate the degree of dispersion of the sample,

the mean square error is calculated as Eq. 17

RMSE =

√√√√1
n

n∑
i=1

(
yprei − y

mea
i

)2 (17)

where yprei is the predicted flow at time i; ymeai denotes the
measured flow at time i; and n denotes the number of test set
samples.
I Predicting the time error of the flood peak.

T = |max(T pre)− max(Tmea)| (18)

where max(T pre) is the time at maximum forecast flow, and
max(Tmea) is the time at maximum measured flow.
I Predicting the flow value error of the flood peak

D =
|max(ypre)− max(ymea)|

max(ymea)
× 100% (19)

where max(ypre) is the maximum value of forecast flow, and
max(ymea) is the maximum value of measured flow.

E. EXPERIMENTAL RESULTS AND ANALYSIS
We compare the effectiveness of our models with the baseline
models on the two watershed datasets. First, we show the
best simulated performance of each model in Table2 and
Table3. Second, to explore the proposed real-time prediction
performance of the models, we calculated the average time
error T (Fig.10(a)) and the average stream-flow value error
D (Fig.10(b)) in all flood peaks. Finally, to visualize the real-
time forecasting effect of the proposed model, we selected a
real-time flood forecasting event from the Changhua water-
shed (Fig.11(a)) and the Heihe watershed (Fig.11(b)).

1) STUDY THE MEASURED PERFORMANCE OF
VARIOUS MODELS
For the simulation performance measured in terms of the
RMSE of various models, the results of experiments on
the Changhua and Heihe watershed dataset are shown
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TABLE 3. RMSE comparison among various models in simulating stream-flow for next 1-10 h in the Heihe watershed.

FIGURE 10. Performance comparisons of real-time prediction by the
three three baseline models and our models. (a) Comparison of real-time
prediction performance T(defined in Eq. 18) of various models.
(b) Comparison of real-time prediction performance D(defined in Eq. 19)
of various models.

in Table 2 and 3, respectively. It is quite apparent that the
deep learning LSTM model in the three baseline models
has a best simulation performance (have minimum RMSE
value, the smaller is the better). The RMSE performance of
proposed models are comparable to the best in three baseline
models. In addition, as the simulation timestep increases,
the RMSE of each model correspondingly improved. In par-
ticular, the RMSE increase in our multi-feature and ST-DTW
models converges, compared with the RMSE increase of the
three baseline models.

FIGURE 11. Comparison with the ground truth river stream-flow and
real-time predicted stream-flow computed by the three baseline models
and our models.

Our rainfall-flow pattern is not a traditional AI model.
Compared with the deep learning model, the multi-feature
and ST-DTWmodels are not limited by the training samples,
which are insufficient to support the performance degradation
caused by the increase of simulation timestep.

2) STUDY THE REAL-TIME FORECAST PERFORMANCE
OF VARIOUS MODELS
The real-time forecasting performance of a model is the focus
of hydrologists researching small and medium watersheds.
The real-time forecasting performance is mainly reflected in
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the peak position, which is generally measured by the time
error and stream-flow value error of the flood peak.

Our proposed multi-feature model and ST-DTW model
perform better than the baseline models in terms of the time
error T (defined in Eq. 18) of the flood peak. As shown
in Fig.10(a), there is no doubt that the deep learning
model (LSTM) has the best real-time prediction performance
(the smaller T value is, the better) among the three baseline
models. It is worth noting that the Multi-feature model and
ST-DTW model have outstanding T values compared with
the baseline models on the datasets of the two watersheds.
This shows that our models have an absolute advantage in
terms of flood warning capability for small and medium
rivers.

As shown in Fig.10(b), the proposed multi-feature and
ST-DTW models have a performance D (defined in Eq. 19)
that is similar to that of the LSTMmodel. This shows that our
models offer no significant advantage in terms of the error of
the peak stream-flow value.

However, although the LSTM is the best performing
model, it has a flood predicting process line that is unsmooth
for real-time forecasting. As shown in Fig.11, the LSTM
model has fluctuations in the flood forecasting process line
on the two watershed datasets.

3) STUDY THE REAL-TIME FORECAST PERFORMANCE IN
DIFFERENT SOIL WATER CONTENT WATERSHEDS
Different soil water content watersheds have their own
rainfall-flow patterns, especially for dry and wet watersheds.
As shown in Table 2 and 3, the degree of deterioration of
various models on the Heihe watershed data increases with
increasing simulation times.

In addition, as shown in Fig.11, the real-time flood forecast
lines of various models on theHeihewatershed data are more
dispersed. In particular, the process line fluctuations after 6 h
are more obvious. Moreover, as shown in Fig.11(b), com-
pared with theChanghuawatershed, theHeihewatershed in a
drought-ridden area has amore complex rainfall-flow pattern,
which makes it more challenging to mine with ordinary AI
models to achieve the desired effect with small datasets.

VI. CONCLUSION
Traditional AI models do not achieve expected results when
real-time forecasting is performed on small and medium
watersheds with limited hydrological data. Thus, we devel-
oped a different model: using a rainfall-flow pattern based
on historical rainfall and flood flow data for real-time pre-
dictions of short-term flood stream-flow. Our models predict
the flood process line in real-time using hydrological feature
extraction and spatial-temporal metrics for similar rainfall-
flow patterns. The experimental results based on the datasets
of variousmodels in wet and drought-riddenwatersheds show
that the proposed models offer considerable advantages in
accurately predicting the peak time of floods in real time.

In future research, to improve the sample size and qual-
ity of small and medium watershed data, we will explore

the fusion of radar rainfall data with ground station data.
Moreover, we will endeavor to test the rainfall-flow pat-
tern over large watersheds with ample hydrometeorological
data. And we will consider large-scale watershed discharge
forecasts and other types of discharge forecasts (such as
urban underground drainage and high-sand rivers) forecasts.
Finally, a fusion of radar rainfall data and ground station data
could be developed.
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