
Received October 7, 2019, accepted October 28, 2019, date of publication November 8, 2019, date of current version November 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2952390

SMPKR: Search Engine for Internet of Things
JINE TANG 1, ZHANGBING ZHOU 2,3, LEI SHU 4,5, AND GERHARD HANCKE 6,7
1School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
2School of Information Engineering, China University of Geosciences, Beijing 100083, China
3Computer Science Department, TELECOM SudParis, 91000 Évry, France
4College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
5Lincoln Joint Research Center of Intelligent Engineering, Nanjing Agricultural University, Nanjing 210031, China
6Computer Science Department, City University of Hong Kong, Hong Kong
7Electronic and Computer Engineering Department, University of Pretoria, Pretoria 0002, South Africa

Corresponding author: Jine Tang (tangjine2008@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61702232 and Grant 61772479, and in
part by the Science and Technology Planning Project of Guangdong Province under Grant 2017A050506057.

ABSTRACT The Internet of Things (IoT) has become the infrastructure to widely support ubiquitous
applications. Due to the highly dynamic context setting, IoT search engines have attracted increasing
attention from both industrial and academic field to crawl and search heterogeneous data sources. Today,
a large amount of work on IoT search engines is devoted to finding a particular mobile object device, or a
group of object devices satisfying the constraint on query terms description. However, it still lacks studies
on enabling so-called spatial-temporal-keyword-aware query. Only a few research work simply applies a
keyword or spatial-temporal matching to identify object devices. In this case, it is insufficient to simul-
taneously consider the spatial-temporal-keyword aspect in order to satisfy the user request. To address
this challenge, we develop a new search mechanism over PKR-tree (denoted SMPKR), in which PKR-tree
unifiedly integrates spatial-temporal-keyword proximity with the help of a coding enabled index. Efficient
algorithms are developed for answering range and (enhanced) KNN queries. Extensive experimental results
demonstrate that our SMPKR search engine promotes the efficiency of searching for object devices with
spatial-temporal-keyword constraints in comparison with the state of arts.

INDEX TERMS Internet of Things, spatial-temporal-keyword query, PKR-tree, SMPKR search engine,
range and (enhanced) KNN queries.

I. INTRODUCTION
The Internet of Things (IoT) is one of the topical research
disciplines nowadays, and has become the infrastructure to
widely support ubiquitous applications [1]–[3]. As expected,
an IoT system connects and manages huge numbers of sen-
sors and/or monitoring devices, denoted ‘‘object device’’,
which are capable of continuously providing real-time het-
erogeneous status data of physical objects like forests, air-
ports, vehicles, traffic etc [4]–[6]. This setting promotes
the moving object device search with spatial-temporal-
keyword constraints to be a promising service in the
IoT [7]–[9].

Due to increasing application demands and rapid tech-
nological advances in IoT systems, a lot of effort from
both industry and academia has been put in IoT search
engine [10]–[13]. Without loss of generality, an IoT search

The associate editor coordinating the review of this manuscript and
approving it for publication was Xijun Wang.

engine should have the capability of near-realtimely returning
moving object devices of high relevance with respect to a
certain query in spatial-temporal and keywords aspects. Until
now, there are many existing works that adopt hierarchical
architectures to support construction of IoT search engine.
However, these works are still limited by query constraints,
only supporting searches with relatively simple keyword con-
straint [14]–[16], static location constraint [15]–[17], or cur-
rent state constraint [18]. Snoogle [15] and Microsearch [10],
construct a two-tier distributed hierarchical architecture for
searching with keywords constraints. Keywords are extracted
from textual descriptions, which are then organized in the
form of inverted files responsible for searching sensors at a
local. Dyser [18], builds a two-tier centralized hierarchical
architecture in support of the search for physical entities
with the constraints on both keywords and user-specified
current state. Lately, some researchers focus on construct-
ing IoT search engine for query request with both spatial-
temporal and keywords constraints. Serving as the core of

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 163615

https://orcid.org/0000-0002-3707-069X
https://orcid.org/0000-0002-3195-2253
https://orcid.org/0000-0002-6700-9347
https://orcid.org/0000-0002-2388-3542

J. Tang et al.: SMPKR: Search Engine for Internet of Things

this kind of search engines, index structures apparently are
the foundation. IoT-SVKSearch [19], a multimodal search
engine, constructs a two-tier distributed architecture in the
form of index master server - index node server. Each index
node server consists of a set of hierarchical trees which aim
to index full-text keywords or the timeslot-based dynamically
moving locations of object devices. Thus, the index structure
cannot fully process the spatial-temporal-keyword search of
moving object devices. Though current research achieves
good results for simple types of query constraints, there
are still limitations to be addressed for retrieving the object
devices measurements with dynamically changed content
in real time and fully considering spatial-temporal-keyword
searching constraints simultaneously.

To address this challenge, this paper develops a new search
mechanism over PKR-tree (denoted SMPKR). To be spe-
cific, we present the construction procedure of SMPKR as
follows. First, we give an analysis on the system struc-
ture. Second, we devise effective algorithms to construct a
safe region based on the frequency of query regions. Third,
we focus on designing an index structure, named PKR-tree,
to resolve the problem of how to simultaneously integrate
spatial-temporal-keyword proximity for object devices mov-
ing within safe regions. Finally, we devise algorithms to
support range and (enhanced) KNN search of moving object
devices. Comprehensive performance analysis is presented
afterwards. The contributions of this paper are presented as
follows:
• A three-tier hierarchical search architecture is estab-
lished in IoT system, where a key-based index tree is
constructed for moving object devices to promote query
and communication.

• Predictive safe regions where object devices will move
are determined through structuring the frequent query
regions and traveling time in order to reduce the amount
of sensory data to be transmitted within IoT.

• An index structure is developed to improve the
search performance through simultaneously concatenat-
ing spatial-temporal-keyword binary value of moving
object devices. Our query algorithms, namely range
query and (enhanced) KNN query, are implemented
upon this index structure.

• Extensive experiments are conducted, and evaluation
results demonstrate that SMPKR search engine performs
better in the efficiency of query processing for spatial-
temporal-keyword-based object devices than the state of
arts.

The remainder structure of this paper is given as follows.
In Section II, we present the components and architecture
of our search system. Section III presents how to construct
the predictive safe regions. Section IV present our PKR-tree
index and search algorithms. Section V reports experimental
results. Section VI reviews related works. Section VII sum-
marizes this work.

TABLE 1. Overview of notations.

II. SYSTEM DESIGN
In this section, we present our system components, then
introduce the hierarchical search architecture. The notations
used in this paper are listed in Table 1.

A. SYSTEM COMPONENTS
The SMPKR search engine typically consists of three differ-
ent kinds of components: object device (OD), sub-index node
(SIN) and primary index node (PIN). We proceed by giving
the description for these components as follows:
• An object device denotes a sensor or monitoring device
attached to a real-world moving object. It can contin-
uously sample the states of physical object and store
the textual description about the object. Apart from that,
object devices can be regarded as spatial objects and
organized into several index tree structures according to
their spatial-temporal-textual features, thus supporting
the retrieval of spatial-temporal-keyword-based search-
ing conditions.

• A SIN is in charge of maintaining sensory data gathered
from object devices in its vicinity in the form of index
trees. Thus, it is usually a static sensor or monitoring
device placed within an area, for instance, a certain loca-
tion in a forest. A SIN is typically powered by batteries,
and equipped with a micro-controller and holds a great

163616 VOLUME 7, 2019

J. Tang et al.: SMPKR: Search Engine for Internet of Things

FIGURE 1. Architecture of SMPKR search engine.

deal of memory. A collection of SINs comes into being
a homogeneous sensor network.

• A PIN has enough storage and computational capacities,
and takes charge of collecting data from different SINs
in the network.

B. SYSTEM ARCHITECTURE
Figure 1 shows the three-tier hierarchical searching archi-
tecture. Intuitively, three tiers in this figure establish two
types of services for (i) information publish, which exploits
ubiquitous sensors and monitoring devices to sense the status
of physical objects, and (ii) IoT search, which facilitates
the searching of physical objects when he/she initiates a
query request. Through the information exchange among
these three tiers, the system can achieve the searching task
efficiently and accurately. The architecture and its tiers are
presented as follows:

• Sensor and monitoring device tier. This tier is in the
bottom of the hierarchy. It involves different kinds of
object devices, which can continuously sense the states
of physical objects.

• Sub-index tier. Each SIN is responsible for managing
object devices located in a specific geographical region.
Meanwhile, such object devices send their textual infor-
mation to the specific SIN with the help of head nodes
(HD) in each tree hierarchy. The corresponding SIN
handles these object devices’ spatial-temporal and tex-
tual information in a single tree structure so as to pro-
mote the searching at the local. Usually, the object’
owner preloads or incrementally uploads its description
to SIN.

• Primary index tier. This tier is on the top of the hierar-
chy. PIN gathers the aggregated object information from
SINs so that it can return a group of SINs that are most
likely to answer the user request. Hence, PIN can be
deemed as the base station of the network, holding all
the objects’ information. As for the traffic, either SINs
transmit information among themselves or SINs behave
as relay nodes between PIN and ODs.

Without loss of generality, the system search performance
depends upon two predominant costs: (i) the wireless com-
munication cost coming from location updates among OD,
SIN, PIN, and (ii) the query evaluation cost at SIN, PIN.
To reduce the communication and evaluation costs, we pro-
pose an innovative approach to let the PIN maintain a pre-
dictive safe region, i.e., a rectangular area, on each moving
object device. The aim of computing predictive safe region
of each object device is to guarantee the current results of all
query requests remain valid as long as all object devices are
residing inside their respective predictive safe regions. In the
following, we propose a solution to find the predictive safe
regions of object devices and construct an index for them to
support range and KNN queries.

III. SAFE REGION CONSTRUCTION
In this section, we first introduce frequent query regions
mining. Next, we present how to construct predictive safe
regions of moving object devices.

FIGURE 2. An example of FQT-tree. (a) A query set. (b) FQT-tree of the
query set.

A. FREQUENT QUERY GRID CELL MINING
To facilitate the mining of frequent query region, we first
divide the spatial area in terms of equal or similar grid cells,
denoted as gc (e.g., the gc(1, 1) as shown in Figure 2a). Then
we use a FP-tree [20], [21] based method to build FQT-
tree for mining frequent query region. Traditionally, FP-tree
represents all information relevant to compact frequency in
a database. In the following, we give the mining procedure
in detail: (i) Order all frequent query grid cells according to
their query times; (ii) Scan each query region and insert the
corresponding frequent query grid cells into FQT-tree as a
branch. Figure 2b gives an example of FQT-tree for the query
set {q1, · · · , q6} shown in Figure 2a. Each node in FQT-tree is
represented in the form of {gc(i, j) : qt}, where qt is the query
times of grid cell gc(i, j). Each branch in FQT-tree denotes

VOLUME 7, 2019 163617

J. Tang et al.: SMPKR: Search Engine for Internet of Things

the traversal path (→) for a query region. As can be seen
in Figure 2b, the start node and end node in the traversal path
of each query region are marked with the same color.

Now, the constructed FQT-tree includes all the frequent
query grid cells. At this case, we can transfer to mine upon
FQT-tree for achieving the frequent query set. It turns out
that all single-branch FQT-trees can produce the full frequent
query set. Hence, given a query grid cell i′, all branches that
contain i′ can be visited by following the linked branch pass-
ing through i′. These branches via i′ compose the query set
Q

⋃
i′, therefore the traversal obtains all frequent query grid

cells in Q
⋃
i′. Based on the foregoing discussion, we give

the main steps to build FQT-tree for Q
⋃
i′ at each iteration:

(i) finding the frequent query grid cells; (ii) revisiting the
branches of Q along the linked branch of i′ and inserting
the corresponding query grid cells in Q

⋃
i′. This iteration

terminates when only one branch is contained in the new
constructed FQT-tree.

FIGURE 3. Travel time structure for frequent query grid cells.

B. PREDICTIVE SAFE REGION CONSTRUCTION
The safe region measures how far an object device can move
without affecting the results of any query request. Figure 3
depicts an example about the travel time intervals from fre-
quent query grid cells to grid cells reachable to them at
time slot t , which is the underlying data structure used in
achieving predictive safe regions. For instance, the travel
time from gc(2, 4) to frequent query grid cell gc(5, 2) takes
5 to 11 minutes, while it takes 11 to 15 minutes to travel
from gc(8, 5) to frequent query grid cell gc(3, 7) at time slot t .
Given the frequent query regions and a certain time interval,
we can easily find out the grid cells that are reachable to them
by visiting this travel time structure [22]. The construction
of travel time structure is done offline when moving object
devices are registered. Thus, it can be fully preloaded into
SMPKR search engine.

It is worth noting that, given the frequent query regions and
a certain time interval, for the purpose of locating predictive
safe regions of object devices in grid cells reachable to them,
the key is in support of predictive location calculation for
moving object devices in a future reference time relevant to

this time interval. Let us step through the formalization of
predictive location calculation as follows.
Definition 1 (Predictive Location Calculation): Given a

moving object device represented by its location ML(tref) at
reference time tref , its velocity MLV , as well as a travel time
interval [tmin, tmax], the aim is to calculate the object location
ML(tfr) = ML(tref)+MLV (tfr − tref) at the future reference
time tfr ∈ [tref + tmin, tref + tmax].

Given a travel time interval [tmin, tmax] within which SQrb
is a set of grid cells that are reachable to frequent query
regions, we can obtain the predictive safe region for each
object device OD ∈ SQrb through calculating the minimum
bounding rectangle of predictive object locations.

IV. STRUCTURE AND ALGORITHM
This section presents the procedure to construct PKR-tree for
predictive safe regions, and gives algorithms of predictive
range and KNN queries afterwards.

A. INDEX STRUCTURE
It is worth noting that given the object devices within the
range of a SIN, constructing PKR-tree of predictive safe
regions for these object devices can be converted to index
their predictive locations. In this article, we aim to build PKR-
tree based on Bx-tree [23], which in turn is based on B+-tree.
To make PKR-tree easy to implement in real SMPKR search
systems, the PKR-value is proposed to unvaryingly support
B+-trees in the following concatenation (⊕) form:

PKRkey = [TD]2 ⊕ [HV]2 ⊕ [KC]2

TD is the time partition in PKR-tree. HV indicates the
Hilbert-Curve [24] value of object device’s location in TD.
KC is the encoding value of object device’ keywords (see
Section IV-B).

Now, we formally give the expression form of leaf node
and non-leaf node based on PKRkey as follows.
• Leaf node: 〈PKRkey, IDOD, gc, vx , vy, t,PI 〉. IDOD is the
identity of object device. gc denotes the grid cell where
the object device is. (vx , vy) is the velocity at time instant
t . PI is a pointer pointing to the specific information of
object device.

• Non-leaf node: 〈PKRckey, IDHD,PC〉. PKRckey involves
all the index key values of child nodes. IDHD is the
identity of head node that is chosen from object devices
in child nodes. PC is the pointer pointing to child nodes.

Notice that, it is similar in spirit to B+-trees algorithms for
insertion and deletion of object devices in PKR-tree.

B. KEYWORDS ENCODING
For the purpose of efficiently constructing tree index for
query, we strive to encode keywords into an n-dimension
binary vector through a context-free text mapping method.
Then we map the vector from n-dimension to 1-dimension so
as to achieve another numeric component for index construc-
tion. In this article, we adopt Hilbert Spatial Filling Curve for
this mapping and obtain KC .

163618 VOLUME 7, 2019

J. Tang et al.: SMPKR: Search Engine for Internet of Things

FIGURE 4. An example of pair coding.

Definition 2 (Pair Coding Function): Given a keyword
S1 = c1c2 · · · cn, and a binary vector S2 = b0b1 · · · bm−1
(n < m) where bi(i ∈ [0,m − 1]) is initialized as 0,
S1 → S2 is a pair encoding function such that bi = 1 only
when H (cj, cj+1) = i, where H (cj, cj+1) ∈ [0,m − 1])(j ∈
[1, n− 1])) is the hash value of (cj, cj+1).

We use an example in Figure 4 to explain the pair coding
procedure: (i) split keyword abcdefgh into seven pairs as ab,
bc, cd, de, ef, fg, gh, according to the principle that each
pair of adjacent characters is joined together; (ii) set the
corresponding hash values of ab, bc, cd, de, ef, fg, gh as
H1,H2,H3,H4,H5,H6,H7, respectively; (iii) set the value
of dual encoding function as D and suppose that the binary
bit length of D is M , which is initialized as 0; (iv) modulo
with regards toM forH1,H2,H3,H4,H5,H6,H7, and set the
corresponding binary bit as 1 according to the model value.
For example, if M = 6, then the initial D = 000000. If the
model values are 1, 2, 5, 6, then D′ = 110011.
Summary: It is observed that the storage of keywords

incurs data redundancy and an n-bit string may be transmit-
ted by a less number of bits without any information loss.
Consequently, keywords can be encoded and compressed to
achieve better transmission efficiency and lower processing
overhead, which is more desirable for extremely resource
constrained sensor nodes. Pair coding algorithm adopts lossy
compression method, corresponding to setting binary bit dig-
its of keywords. Due to the bit number of keywords being
the specific value obtained through data compression, it is
not changed with the length of keywords. Although lossy
compression consumes a certain amount of accuracy, con-
forming to bit matching is only a necessary condition for
keywordsmatching. Hence, the search algorithm,which takes
a filtering approach that filters most of object devices whose
keywords are not consistent with query conditions, can reduce
the complexity of keywords matching.

C. DISCUSSION
Some one may concern whether PKRkey is reasonably
designed for index construction. The foregoing discussion
indicates PKRkey assigns higher priority to sequence values
than to location mapping values. This design is attractive

since the object devices related to user request are usually
much less than unrelated object devices. UsingPKRkey, object
devices that have spatial-temporal-keyword related to each
other will tend to be stored closely, which reduces the cost of
processing spatial-temporal-keyword-aware queries. In gen-
eral, the closer the PKRkey values, the more similar the object
devices, and thus, the more efficiently the matched nodes
are accessed. In light of advantages existed in our SMPKR
search engine, predictive range and KNN query algorithms
are developed upon PKR-tree to improve the efficiency of
object devices searching task.

D. PREDICTIVE RANGE QUERY
A Predictive Range Query aims to retrieve all object devices
predicted to be inside a query regionQr after a time periodQt .
Broadly speaking, when a predictive range query comes,
the following steps are executed on SMPKR search engine:
• The user first queries PIN, that returns SINs which may
include object devices relevant to query request.

• Upon the returned list of SINs, the user performs a dis-
tributed range query along PKR-tree to find a qualified
answer (see Algorithm 1).

Algorithm 1 RangeQuery
Require: RT : the root of PKR-tree

Qr : the query range
Qky: the query keywords
Qt : the query time interval

Ensure: QR: the query result
1: QKC ← the encoding value for QkC
2: [QTDmin,QTDmax]← the time partition interval in Qt
3: {[QHVsk ,QHVek]} ← HLVconvert(Qr)
4: foreach QTD ∈ [QTDmin,QTDmax] do
5: foreach ϑ ∈ {[QHVsk ,QHVek]} do
6: [Qskey,Qekey]← [QTD⊕ ϑ ⊕ QKC]
7: end for
8: end for
9: Queue.push(RNset , RT)
10: while RNset 6= ∅ do
11: rn← Queue.pop(RNset)
12: if rn is a leaf node and passes query conditions

evaluation then
13: QR← QR ∪ rn
14: else if [Qskey,Qekey] ∩ rn.STKckey 6= ∅ then
15: CLset ← the child nodes of rn
16: Queue.push(RNset , CLset)
17: end if
18: end while

Algorithm 1 presents main steps of the range query in each
SIN local region. Initially, we find the encoding value for
query keywords detailed in Section IV-B (line 1). For each
query time partition, we obtain the interval range of query key
through the aggregation of binary values from time partition
(line 2), a set of 1-dimensional Hilbert value intervals (line 3),

VOLUME 7, 2019 163619

J. Tang et al.: SMPKR: Search Engine for Internet of Things

and keyword encoding (line 4-8). The node key range is used
by the head nodes in each level of PKR-tree to carry on
judgment and pruning (line 14), until leaf nodes satisfying
the range query requirement are found (line 12-13). The
time complexity of traversing PKR-tree is O(nqp × nql × n),
where nqp is the number of query time partitions, nql is the
number of query range intervals, and n is the number of object
devices. Usually, nqp and nql are constant (nqp� n, nql � n).
Therefore, the time complexity of Algorithm 1 can be derived
as O(n).

E. PREDICTIVE KNN QUERY
A predictive KNN query aims to retrieve k nearest object
devices predicted to be with the highest probability to show
up around query point Ql after a time period Qt . Similar to
predictive range query, when a predictive KNN query comes,
the following steps are executed on SMPKR search engine:
• The user first queries PIN, that returns a ranked list of
SINs which may include KNN object devices according
to distance constraints.

• Then, the user performs a distributed KNN query from
the returned list of SINs to retrieve k qualified answers
(see Algorithm 2).

Algorithm 2 KNNQuery
Require: RT : the root of PKR-tree

Ql : the query location
Qky: the query keywords
Qt : the query time interval
k: the number of nearest neighbors

Ensure: QR: the query result

1: Dk = 2
√
π
[1−

√
1− (kN)

1
2

2: rq =
Dk
k

3: flag← 1
4: while flag do
5: R← GetRange(Ql, rq)
6: nu← RangeQuery(RT , R, Qky, Qt)
7: QR← QR ∪ nu
8: if k neighbors are found then
9: R← GetRange(Ql, rk)
10: nu← RangeQuery(RT , R, Qky, Qt)
11: QR← QR ∪ nu
12: flag← 0
13: else
14: rq← Nextradius()
15: flag← 1
16: end if
17: end while

It is noteworthy that KNN query is a gradual extended
range query. It starts with an initial search radius r and
extends r by an increment until KNN results are returned.
Both r and increment are set to Dk/k as that in [23], where
Dk is the estimated distance between the query location and
its k ′-th nearest safe region. We have the following equation

to estimate Dk with N as the total number of locations in a
unit space:

Dk =
2
√
π
[1−

√
1− (

k
N
)
1
2 (1)

To answer KNN query, HV and KC values for each time
partition TD are incorporated to form search space. We also
explore the search order in search space so as to obtain the
query result as soon as possible.
• Search Space. Suppose it requires n rounds of range
enlargement, for each round i, we denote starting and
ending points of the corresponding one-dimensional
search interval by HVsi and HVei, respectively. Then,
the search space of n rounds can be given by:

{TD⊕ KC ⊕ [HVsi,HVei], i ∈ [1, n]}

• Search Order. Observe that [HVsi,HVei] with smaller
i has a shorter spatial distance to the query location.
Therefore, TD⊕ KC ⊕ [HVsi,HVei]
with smaller i has the priority to search firstly.

On the basis of Algorithm 1, Algorithm 2 presents theKNN
query procedure in each local SIN region. Initially, we obtain
the query radius through computing the estimated distance
between the query location and the k ′-th nearest neighbor
(line 1-2). In each time partition, the funtionGetRange() con-
structs the search range centered at the query location (line 5).
RangeQuery() is used to retrieve query results within the
search range R (line 6). If KNN results are returned, the query
range will be refined by calculating the distance between the
query location and the k-th nearest neighbor found so far
(line 8-11). In case less than k neighbors are found, the query
radius is enlarged to start a new round of search (line 14).
The time complexity of Algorithm 1 is O(n), since the time
complexity of traversing the PKR-tree for k nearest neighbors
is O(nqnd ×n), where nqnd is the number of query rounds and
n is the number of object devices. Usually, nqnd is a constant
and nqnd � n. Therefore, the time complexity of Algorithm 2
can be derived as O(n).

F. ENHANCED KNN QUERY
Notice that KNN query results are the object devices sorted
based on their spatial-temporal-keyword relevance scores.
At this case, Algorithm 2 is not much enough when ranking
object devices by seamlessly combining their spatial, tem-
poral and keywords features. In this article, we consider to
compute the temporal-keyword relevance [25], [26] along
with the spatial relevance to achieve the overall relevance
score and return the k most relevant object devices.
Keywords Relevance: For simplicity, we consider the fol-

lowing ones to calculate keywords relevance: (i) The inverse
document frequency (idf). It is quantified by measuring the
inverse of frequency of keyword kwd appearing in object
devices’ documents; (ii) The term frequency (tf). It is quan-
tified by the raw frequency of kwd inside an object device’s
document d ; (iii) The document length. It is quantified by

163620 VOLUME 7, 2019

J. Tang et al.: SMPKR: Search Engine for Internet of Things

measuring the total number of keywords in the document.
In this article, we adopt a simple and very common formula to
evaluate the keywords relevance between an object device’s
document d and a query q as follows.

SMId,q =

∑
kwd Wd,kwdWq,kwd

WdWq

=

∑
kwd ln(1+ fd,kwd) ln(1+

n
fkwd

)√∑
kwd W

2
d,kwd

√∑
kwd W

2
q,kwd

(2)

where n is the number of object devices’ documents. fd,kwd
indicates the frequency of kwd in d . fd,kwd =

fd,kwd
max(fd,kwd)

is the normalized fd,kwd . fkwd is the number of documents
containing kwd . Wd,kwd captures the tf score while Wq,kwd
captures the idf score. Wd represents document length and
Wq stands for query length.
Temporal Relevance: Each timespan in the object device’s

document can be associated with a series of time cells.
As such, we can use the analogous ideas used in keywords
relevance to determine the temporal relevance between an
object device’s document d and a query q as

SMI ′d,q =

∑
cWd,cWq,c

W ′dW
′
q

=

∑
c ln(1+ fd,c) ln(1+

n
fc
)√∑

cW
2
d,c

√∑
k W

2
q,c

(3)

where n is the number of object devices’ documents. fd,c =
Td∩c
c indicates the frequency of time cell c in d , which is

measured by the area of overlap between the document times-
pan Td and c divided by the area of c. fd,c =

fd,c
max(fd,c)

is the
normalized fd,c. fc is the number of documents containing c.
Wd,c captures the tf score while Wq,c captures the idf score.
W ′d represents document length and W ′q stands for query
length.
Spatial Relevance: The spatial relevance of an object

device’s document d is represented by the inverse of the
distance between the center location of d and that of spatial
scope s, given as follows.

SMI ′′d,q =
1

dist(Centerd ,Centers)
(4)

Spatial-Temporal-Keyword Relevance: Based on Eq. 2,
Eq. 3 and Eq. 4, the aggregation function F can be used to
calculate the spatial-temporal-keyword relevance entirely.

F = α · SMId,q + β · SMI ′d,q + (1− α − β) · SMI ′′d,q (5)

G. PERFORMANCE ANALYSIS
This section gives a cost model to predict the performance
of our IOT search engine leveraging PKR-tree. Notice that
index I/O cost comes from the node traversal to visit nodes
that may contain satisfactory object devices. To facilitate this
discussion, we consider a total search range A as a constant
that includes |L| locations, the tree fanout f as a constant,

TABLE 2. Parameters and values.

as well as a query scope Qs. The cost function is presented as
follows:

IOtree = O(
|Qs|
A

logf |L|−1∑
h=0

f h) ≈ O(|Qs||L|) (6)

Eq. 6 indicates that the tree traversal cost is mainly depen-
dent on the size ofQs and the size of PKR-tree, which, in turn,
is affected by |L|.

V. IMPLEMENTATION AND EVALUATION
In this section, we evaluate the performance of our pro-
posed SMPKR search engine, including query response time,
query accuracy, and message complexity. We mainly focus
on object devices and SIN interaction because object devices,
SIN and head nodes communicating between them are power
constrained and computationally challenged devices, while
PIN is a resource-rich device. This makes the performance of
object devices, SINs and head nodes crucial for the validity
of the searching system.

A. EXPERIMENTAL ENVIRONMENT
Synthetic datasets of 10,000 moving object devices are pro-
duced from the Network-based Generator [27]. We extract a
road network map from check-in records over 10,000 Beijing
taxi cabs and divide the corresponding spatial region into
N × N squared grid cells. The grid width is set according to
the minimum and maximum step length it takes from moving
object devices randomly distributed. Each grid cell is indi-
cated by a Hilbert value and stores the object devices updated
in it. Therefore, all record information about an object device
formulate a trajectory in a sequence of grid cells series.
Notice that the check-in records of each taxi cab contain its
ID, grid coordination, as well as the check-in time. We can
obtain the travel time interval mentioned in Section III-B by
calculating the average minimum and maximum time that
is taken by the object devices moving among the grid cells
at time interval t . Hence, we can efficiently make full the
travel time data structure before starting experiments offline.
Besides, we randomly choose documents from a real dataset
such as China Daily [28] and attach them to each object
device as keywords. All the index structures and algorithms
are implemented by Java. All experiments are conducted on a
laptop with an Intel(R) Core(TM) i5-5200U CPU 2.20GHZ,
8Gmemory, 64 bits operating system. The parameters applied
in the experiment are listed in Table 2.

VOLUME 7, 2019 163621

J. Tang et al.: SMPKR: Search Engine for Internet of Things

To evaluate the SMPKR (SK) search performance, the fol-
lowing searching methods are chosen as the comparative
benchmarks:
• Chained Structure (CS): A set of object devices con-
nected in the form of chained structure.

• Snoogle (SL) [15]: An information retrieval system con-
structed on sensor networks for the real world.

• IoT-SVK (IS) [19]: A real-time multimodal search
engine mechanism implemented for the Internet of
Things.

B. PREPROCESSING TIME
Initially, we study the preprocessing time of SMPKR search
engine, including, (i) keywords encoding time, (ii) safe region
construction time, and (iii) PKR-tree construction time. This
one-time processing is done offline when moving object
devices and users’ queries are registered. The experimental
result is shown in Figure 5. Generally, keywords encoding
time increases linearly along with the number of keywords.
We also observe that the safe region and PKR-tree con-
struction time are very efficient, because it takes only about
7 seconds and 2200 seconds respectively for the construction
purpose.

FIGURE 5. Preprocessing time.

C. SMSTK QUERY PERFORMANCE
Figure 6a and 6b illustrate the range query time. Generally,
it increases alongwith the number of object devices and query
range length. As presented in the construction procedure of
PKR-tree, the object devices are organized according to their
spatial-temporal-keyword proximity. Therefore, it requires to
retrieve all object devices inside searching key ranges. This
induces the increase in query response time.

Figure 6c and 6d illustrate the KNN query time. Generally,
it tends to increase with the dataset of object devices and the k
value. This is due to the fact that KNN queries are dependent

FIGURE 6. SMSTK query time.

on their searching rounds, i.e, the size of k , and the range
query time in each round.

D. QUERY PERFORMANCE COMPARISON
1) FREQUENT QUERY
Figure 7 shows the comparison of query time and query
accuracy for these four searching schemes when query ranges
are conducted for 100 times and an average value is adopted.
Generally, SMPKR performs the best on query processing
time as shown in Figure 7a. This is because constructing and
indexing safe regions from frequent query set can guarantee
higher query stability and query accuracy.

FIGURE 7. Query performance.

In this article, we estimate the query accuracy for the
frequent range query and KNN query as follows:

QueryAccuracy =
|QueryResult − ActualResult|

ActualResult
We set the object devices number as 1000 and k as 10 to

test query accuracy. Figure 7b shows the estimated query
accuracy of 100 frequent range queries (FRQ) and KNN
query (KNNQ). The main observations are as follows: (i) CS
and SL perform the best in query accuracy; (ii) Next only
to them is our SMPKR searching scheme; (iii) IS does

163622 VOLUME 7, 2019

J. Tang et al.: SMPKR: Search Engine for Internet of Things

FIGURE 8. Query time.

the worst. The reason is that (i) safe region is constructed from
the estimated prediction positions in SMPKR and (ii) index
is constructed from the mapped grid centers in IS. Experi-
mental results show that SMPKR and IS generate less query
time at the cost of losing some query accuracy. Generally,
our SMPKR searching scheme outperforms other searching
schemes due to a better trade-off between query accuracy
(almost one hundred percent) and query time (more than two
seconds).

2) QUERY WITH VARIOUS PARAMETER SETTINGS
Figure 8 gives range and KNN query time performance for
these four searching schemes with different parameter set-
tings. Without loss of generality, we assume that query and
object device have a high matching degree on keywords.

This figure shows that SMPKR searching scheme per-
forms the best, benefiting from the index and pruning of
concatenated key value on spatial, temporal and keywords.
Generally, the pruning performance is the dominant factor for
the query process, and hence, has more impact on the query
performance. We also notice that a better searching scheme
consists of two components: (i) the number of pruning judge-
ment conditions, named as NPC (including spatial, temporal
and keywords constraints), and (ii) the strength of pruning
hierarchy, named as SPH. Consequently, we present pruning
performances of these four searching schemes in Table 3.
Without loss of generality, the less number of the pruning
judgment conditions a searching scheme sets up, the stronger
the pruning hierarchy a searching scheme constructs, and the
better the query performance that the searching scheme can
achieve. Besides, these four searching schemes take more
time for range and KNN queries as the number of object
devices increases. The reason is similar to what we have
presented for previous experiments. In addition, the cost of
these four searching schemes except CS tends to increase

TABLE 3. Pruning performance.

when the query range length and k value increase, whereasCS
maintains a constant performance. In fact, CS needs to search
all the object devices no matter how long the query range
length is and how many ranked object devices are accessed.

3) MESSAGE COMPLEXITY
To further compare these four searching schemes, this set of
experiment implements our range and KNN query schemes
to test message complexity. In what follows, we explain
how to determine message complexity: (i) a query sent to
SIN, or transmitted to PIN or to object devices is counted
as one message unit; (ii) an answer with m retrieved object
devices is counted as m message units because the message
length increases along with m.

FIGURE 9. Message complexity.

Figure 9 showsmessage complexity of these four searching
schemes. We find that all these schemes show an increas-
ing cost in message complexity by varying object devices
number, as the number of PINs and object devices over-
lapping or within the same query range grows with object
devices number. We also observe that our SMPKR search
engine performs the best, mainly because of the better prun-
ing performance, which contributes to less messages to be
forwarded. Next, we evaluate query message complexity by
changing the query range length and k . The performance
trend of these four searching methods except CS increases
with the query range length and k . Nonetheless, CS performs

VOLUME 7, 2019 163623

J. Tang et al.: SMPKR: Search Engine for Internet of Things

the worst and the cost increment is almost zero since it needs
to query all the object devices regardless the increasing in
the query range length and k . Further, SL and IS perform
better than our SMPKR searching scheme for smaller query
range length. In fact, a smaller query range includes less or no
object devices, and thus less messages are to be forwarded.
However, our SMPKR searching scheme needs less forward-
ing messages as the increasing of query range length, since
more object devices may be included in a bigger query range,
and thus Sl and IS do worse when object devices provide a
larger query result set for a larger query range length. In terms
of k impact, our SMPKR searching scheme performs the best
while CS does the worst, due to the same reason for why the
query time is dependent on the pruning performance, shown
in Table 3. Generally, the efficient pruning ability promotes
the capability of our SMPKR searching scheme to achieve
better query performance.

VI. RELATED WORK AND COMPARISON
In this section, we give a review of existing research works in
IOT search engine and spatial-temporal-keyword query.

A. IOT SEARCH ENGINE
Yap et al. [16] design MAX system, which uses tags instead
of sensors to sense the physical entities and store their tex-
tual information. MAX system is well-suited for queries that
are frequently changed because of the pull mode adopted.
However, a high communication overhead occurs since it
requires to broadcast themessages to each tag and sub station.
Wang et al. [15] propose Snoogle for pervasive environ-
ments search, in which the entity is described by a set of
keywords and saved in sensor nodes. A two-tier hierarchi-
cal architecture is constructed for querying matched entities
via keywords. However, it is difficult to apply Snoogle in
large-scale network environment since the data transmission
mode is inefficient. In general, the search processes of these
systems exploit keyword matches for sensors static informa-
tion. They are not well suitable to retrieve the dynamically
sampled sensory values in large-scale network environments.
Ostermaier et al. [18] propose a real-time search engine,
namely Dyser, which presents the real-world objects and
sensors by Web pages. The predictive mechanism proposed,
workingwell in searching efficiency, makes the search engine
applied in networking environment that is resource con-
strained. However, the index is still relevant to keywords
and can only retrieve the latest states of physical objects.
Ding et al. [19] propose a hybrid real-time search engine,
called IoT-SVK, upon spatial-temporal, and keyword condi-
tions. IoT-SVK tends to use the same grid regions to denote
the original curve path, thus having the capability of support-
ing dynamic location changes of sensors. However, it is still a
combination structure by separately considering two aspects
(i) spatial-temporal feature and (ii) keywords, which has an
influence on searching efficiency in certain extent.

Generally, current proposals can hardly facilitate mobile
object devices search in IoT. This paper proposes SMPKR

searching engine that can well improve the searching effi-
ciency, since it adopts an integrated key value in building the
spatial index.

B. SPATIAL-TEMPORAL-KEYWORD QUERY
Li et al. [26] propose a spatial index called IR-tree, which
supports document retrievals leveraging the unified repre-
sentation of textual and spatial relevances. However, it does
not consider the time factor. Khodaei et al. [25] consider
the time factor and develop a hybrid index structure along
with textual aspect of documents in a unified inverted list
manner. However, it does not consider the spatial factor.
Nepomnyachiy et al. [29] further consider both the time
and spatial-keyword aspects. They propose to shrink tempo-
ral searching space by time-stamped data. Thereafter, they
employ a shallow tree to search over spatial and textual
dimensions. Mehta et al. [30] propose two hybrid indexes
to support spatial-temporal and spatial-keyword queries,
which further incorporate keyword information and temporal
dimension to realize spatial-temporal-keyword query. Unfor-
tunately, the two methods proposed are still required to treat
the three factors into two structures. Hoang-Vu et al. [31]
handle keywords, time and space features within a single
index structure for efficiently answering spatial-temporal-
keyword queries. However, mapping the keywords into num-
bers is strictly monotone for constructing spatial partitioning
structure.

In general, most of current index technologies adopt com-
bined structures to treat one or several aspects of space, time
and text issues. Instead, we propose a single index structure
named PKR-tree, which explores the concatenated key value
of spatial, temporal and textual components. Therefore, our
SMPKR can improve the retrieve performance significantly
by key pruning.

VII. CONCLUSION
In this paper we have proposed an innovative IOT search
engine SMPKR over mobile object devices. Generally, a
PKR-tree index structure is constructed through applying
safe region and keyword encoding strategy to establish con-
catenated spatial-temporal-keyword key values. Predictive
range and (enhanced) KNN query algorithms are developed
over our SMPKR search engine, which also supports fre-
quent query operations. Extensive experiments have been
conducted, and the results show that this SMPKR search
engine improves the search efficiency for spatial-temporal-
keyword-aware object devices in comparison with the state
of arts.

REFERENCES
[1] S. Li, L. Xu, and S. Zhao, ‘‘The Internet of Things: A survey,’’ Inf. Syst.

Frontiers, vol. 17, no. 2, pp. 243–259, 2015.
[2] B. Xu, L. D. Xu, H. Cai, C. Xie, J. Hu, and F. Bu, ‘‘Ubiqui-

tous data accessing method in IoT-based information system for emer-
gency medical services,’’ IEEE Trans. Ind. Informat., vol. 10, no. 2,
pp. 1578–1586, May 2014.

163624 VOLUME 7, 2019

J. Tang et al.: SMPKR: Search Engine for Internet of Things

[3] F. A. Turjman and S. Alturjman, ‘‘Context-sensitive access in industrial
Internet of Things (IIoT) healthcare applications,’’ IEEE Trans. Ind. Infor-
mat., vol. 14, no. 6, pp. 2736–2744, Jun. 2018.

[4] F. Zhang, M. Liu, Z. Zhou, andW. Shen, ‘‘An IoT-based online monitoring
system for continuous steel casting,’’ IEEE Internet Things J., vol. 3, no. 6,
pp. 1355–1363, Dec. 2016.

[5] T. Qiu, K. Zheng, M. Han, C. L. P. Chen, and M. Xu, ‘‘A data-emergency-
aware scheduling scheme for Internet of Things in smart cities,’’ IEEE
Trans. Ind. Informat., vol. 14, no. 5, pp. 2042–2051, May 2018.

[6] E. Park, Y. Cho, J. Han, and S. J. Kwon, ‘‘Comprehensive approaches to
user acceptance of Internet of Things in a smart home environment,’’ IEEE
Internet Things J., vol. 4, no. 6, pp. 2342–2350, Dec. 2017.

[7] A. Shemshadi, Q. Z. Sheng, and Y. Qin, ‘‘ThingSeek: A crawler and search
engine for the Internet of Things,’’ in Proc. 39th Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr., 2016, pp. 1149–1152.

[8] P. Barnaghi and A. Sheth, ‘‘On searching the Internet of Things: Require-
ments and challenges,’’ IEEE Intell. Syst., vol. 31, no. 6, pp. 71–75,
Nov./Dec. 2016.

[9] J. Pan, R. Jain, S. Paul, T. Vu, A. Saifullah, and M. Sha, ‘‘An Internet
of Things framework for smart energy in buildings: Designs, prototype,
and experiments,’’ IEEE Internet Things J., vol. 2, no. 6, pp. 527–537,
Dec. 2015.

[10] C. C. Tan, B. Sheng, H. Wang, and Q. Li, ‘‘Microsearch: A search engine
for embedded devices used in pervasive computing,’’ ACM Trans. Embed-
ded Comput. Syst., vol. 9, no. 4, 2010, Art. no. 43.

[11] H. Ma and W. Liu, ‘‘A progressive search paradigm for the Internet of
Things,’’ IEEE MultimediaMag., vol. 25, no. 1, pp. 76–86, Jan./Mar. 2018.

[12] Y. Zhou, S. De, W. Wei, and K. Moessner, ‘‘Search techniques for the Web
of Things: A taxonomy and survey,’’ Sensors, vol. 16, no. 5, p. 600, 2016.

[13] S. Pattar, R. Buyya, K. R. Venugopal, S. S. Iyengar, and L. M. Patnaik,
‘‘Searching for the IoT resources: Fundamentals, requirements, compre-
hensive review, and future directions,’’ IEEE Commun. Surveys Tuts.,
vol. 20, no. 3, pp. 2101–2132, 3rd Quart., 2018.

[14] K.Aberer,M.Hauswirth, andA. Salehi, ‘‘Infrastructure for data processing
in large-scale interconnected sensor networks,’’ in Proc. Int. Conf. Mobile
Data Manage., 2007, pp. 198–205.

[15] H. Wang, C. C. Tan, and Q. Li, ‘‘Snoogle: A search engine for perva-
sive environments,’’ IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 8,
pp. 1188–1202, Aug. 2010.

[16] K.-K. Yap, V. Srinivasan, andM.Motani, ‘‘MAX: Human-centric search of
the physical world,’’ in Proc. 3rd Int. Conf. Embedded Netw. sensor Syst.,
2005, pp. 166–179.

[17] A. Kansal, S. Nath, J. Liu, and F. Zhao, ‘‘SenseWeb: An infrastructure
for shared sensing,’’ IEEE MultimediaMag., vol. 14, no. 4, pp. 8–13,
Oct. 2007.

[18] B. Ostermaier, K. Römer, F. Mattern, M. Fahrmair, and W. Kellerer,
‘‘A real-time search engine for the Web of Things,’’ in Proc. IEEE Conf.
Internet Things, Nov./Dec. 2010, pp. 1–8.

[19] Z. Ding, Z. Chen, and Q. Yang, ‘‘IoT-SVKSearch: A real-time multimodal
search enginemechanism for the Internet of Things,’’ Int. J. Commun. Syst.,
vol. 27, no. 6, pp. 871–897, 2014.

[20] J. Han, J. Pei, and Y. Yiwen, ‘‘Mining frequent patterns without candidate
generation,’’ ACM SIGMOD Rec., vol. 29, pp. 1–12, Jun. 2000.

[21] G. Grahne and J. Zhu, ‘‘Fast algorithms for frequent itemset mining using
FP-trees,’’ IEEE Trans. Knowl. Data Eng., vol. 17, no. 10, pp. 1347–1362,
Oct. 2005.

[22] A. M. Hendawi, M. Ali, and M. F. Mokbel, ‘‘Panda: A generic and scal-
able framework for predictive spatio-temporal queries,’’ GeoInformatica,
vol. 21, no. 2, pp. 175–208, 2017.

[23] C. S. Jensen, L. Dan, and B. C. Ooi, ‘‘Query and update efficient B+-tree
based indexing of moving objects,’’ in Proc. 30th Int. Conf. Very Large
Data Bases, 2004, pp. 768–779.

[24] R. Uddin, C. Ravishankar, and V. Tsotras, ‘‘Indexing moving object tra-
jectories with Hilbert curves,’’ in Proc. 26th ACM SIGSPATIAL Int. Conf.
Adv. Geograph. Inf. Syst., 2018, pp. 416–419.

[25] A. Khodaei, C. Shahabi, and A. Khodaei, ‘‘Temporal-textual retrieval:
Time and keyword search inWeb documents,’’ Int. J. Next-Gener. Comput.,
vol. 3, no. 3, pp. 288–312, 2012.

[26] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D.-C. Lee, and X. Wang, ‘‘IR-
tree: An efficient index for geographic document search,’’ IEEE Trans.
Knowl. Data Eng., vol. 23, no. 4, pp. 585–599, Apr. 2011.

[27] T. Brinkhoff, ‘‘A framework for generating network-based moving
objects,’’ GeoInformatica, vol. 6, no. 2, pp. 153–180, 2002.

[28] [Online]. Available: http://www.chinadaily.com.cn/

[29] S. Nepomnyachiy, B. Gelley, W. Jiang, and T. Minkus, ‘‘What, where, and
when: Keyword search with spatio-temporal ranges,’’ in Proc. Workshop
Geograph. Inf. Retr., 2014, pp. 2:1–2:8.

[30] P. Mehta, D. Skoutas, and A. Voisard, ‘‘Spatio-temporal keyword queries
for moving objects,’’ in Proc. 23rd SIGSPATIAL Int. Conf. Adv. Geograph.
Inf. Syst., 2015, Art. no. 55.

[31] T.-A. Hoang-Vu, H. T. Vo, and J. Freire, ‘‘A unified index for spatio-
temporal keyword queries,’’ in Proc. 25th ACM Int. Conf. Inf. Knowl.
Manage., 2016, pp. 135–144.

JINE TANG received the Ph.D. degree from the
China University of Geosciences, Beijing, China,
in 2014. She is currently an Associate Profes-
sor with the School of Artificial Intelligence,
Hebei University of Technology, Tianjin, China.
Her research interests include process-aware infor-
mation systems, spatial-temporal database, sensor
network middleware, and data security.

ZHANGBING ZHOU received the Ph.D. degree
in computer science from the Digital Enter-
prise Research Institute (DERI), Galway, Ireland,
in 2010. He worked as a Software Engineer with
Huawei Technologies Company Ltd., Beijing,
China, for one year. He served as a member for the
Technical Staff at Bell Laboratories, Lucent Tech-
nologies, Beijing, for five years. He is currently a
Professor with the China University of Geo-
sciences, Beijing, and an Adjunct Professor with

TELECOM SudParis, Évry, France. He has authored over 100 refereed
articles. His research interests include process-aware information systems
and sensor network middleware. He has served as an Associate or Guest
Editor of over ten journals.

LEI SHU received the B.Sc. degree in computer
science from South Central University for Nation-
alities, China, in 2002, the M.Sc. degree in com-
puter engineering from Kyung Hee University,
South Korea, in 2005, and the Ph.D. degree from
the Digital Enterprise Research Institute, National
University of Ireland, Galway, Ireland, in 2010.
He is currently a Distinguished Professor with
Nanjing Agricultural University, China, and a Lin-
coln Professor with the University of Lincoln,

U.K. He is also the Director of the NAU-Lincoln Joint Research Center
of Intelligent Engineering. He has published over 400 articles in related
conferences, journals, and books in the area of sensor networks. His H-index
is 46 and i10-index is 172 in Google Scholar Citation. He was recently
elected as a member of the EU Academy of Sciences. He has been serving
as an Associate Editor for the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,
the IEEE Communications Magazine, the IEEE NETWORK, the IEEE SYSTEMS

JOURNAL, IEEE ACCESS, the IEEE/CAA JOURNAL OF AUTOMATIC SINICA, and
Sensors.

GERHARD HANCKE received the B.Eng. and
M.Eng. degrees from the University of Pretoria,
South Africa, in 2002 and 2003, respectively, and
the Ph.D. degree in computer science from the
Security Group, the University of Cambridge’s
Computer Laboratory, in 2008. He is currently an
Associate Professor with the City University of
Hong Kong, Hong Kong. His research interests
are system security, embedded platforms, and dis-
tributed sensing applications for the Internet of
Things.

VOLUME 7, 2019 163625

