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ABSTRACT Pedestrians are vulnerable road users that need proactive protection. While both autonomous
and connected vehicle technologies aim to deliver greater safety benefits, current designs heavily rely on
vehicle-based or on-board sensors and lack strategic real-time interactions with pedestrians who do not
have any communication means. As pedestrians are passively protected by the system, they might be put
into hazardous situations when vehicle-mounted sensors fail to detect their presence. This paper is part of
ongoing research that uses roadside light detection and ranging (LiDAR) sensors to develop a human-in-
the-loop system that brings pedestrians into the connected environment. To proactively protect pedestrians,
accurate prediction of their intention for crossings at locations, such as unsignalized intersections and
street mid-blocks is critical, and this paper presents a modified Naïve Bayes approach for this purpose.
It features a probabilistic approach to overcoming the common deficiencies in deterministic methods and
provides valuable comparisons between feature-based data processing methods, such as artificial neural
network (ANN) and model-based Naïve Bayes approach. A case study was conducted by using a low-cost
16-line LiDAR sensor installed at the roadside. Pedestrians’ crossing intention was predicted at a range
of 0.5–3 s before actual crossings. The results satisfactorily demonstrated the properties of the modified
Naïve Bayes model, as well as its higher flexibility, compared with the ANN approaches in practice.

INDEX TERMS Confidence level, Naïve Bayes, pedestrian crossing intention, roadside LiDAR.

I. INTRODUCTION
Connected-vehicle technology will enable pedestrians, vehi-
cles, roads, and infrastructures to communicate with each
other and share vital traffic information through network
technologies [1]. It provides a greater range than on-
board vehicle equipment, thus allows drivers to receive
alert/warning messages much earlier. A critical input to
connected-vehicle technology is high-resolution trajectory
information of all road users, mainly the real-time pres-
ence, location, velocity, and direction data. Despite the recent
advancements in vision-based trajectory extraction from
image data, video-based sensors still have not overcome their
inherent problems. First, illumination still presents signifi-
cant impacts on video quality and images recorded at night
are hard to process; secondly, although the video is full of
color information, counting accuracy using image data highly
depends on the resolution of cameras and is restricted by the
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distance; and thirdly, privacy issue remains a big concern.
In addition, regardless of the sensing technologies to be used,
there is an urgent need to include unconnected vehicles and
road users such as pedestrians and cyclists into the loop,
considering connected and unconnected vehicles will co-exist
for the next couple of decades or even longer [2].

Three-dimensional (3D) Light Detection and Rang-
ing (LiDAR) sensors provide an innovative way to collect
trajectory-level data under mixed traffic conditions. These
sensors can scan 360◦ surrounding objects and report accu-
rate location of the objects in 3D point clouds without the
influence of illumination conditions. At this moment, LiDAR
sensors are primarily used in autonomous vehicles for detect-
ing road users, lane markers, and obstacles [3]–[6]. In this
research, it was installed at the roadside to detect vehicles and
pedestrians and obtain their real-time trajectories. In general,
autonomous vehicles detect objects within a small range
around the vehicles using high-cost LiDAR sensors, while
cost-efficient roadside LiDAR sensors can detect objects in
an extended range. On-board LiDAR sensors can provide a
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detailed description of objects by intense point clouds, while
data points collected by roadside LiDAR sensors are sparse.
On-board LiDAR sensors must work with other sensors such
as cameras and radars to support the needs for autonomous
driving, but roadside LiDAR sensors can work independently.
Despite its many advantages for real-time and trajectory-level
data collection, deployment of roadside LiDAR sensors has
been fairly limited, due in part to its high cost and in part to its
limited applications. However, recent advancement in LiDAR
technology, intensive competition, and increasingly enlarged
application market will soon make wide deployment possi-
ble. Since the methods for on-board LiDAR data processing
cannot be directly applied to roadside LiDAR, it is imperative
to investigate the essentials of roadside LiDAR ranging from
installation strategies to efficient and effective methods for
both offline and online data processing.

This study is focused on using roadside LiDAR to cap-
ture pedestrians’ real-time trajectories and estimating their
crossing intention at unsignalized intersections. In previous
research, the authors have developed a systematic approach
for automatic background filtering, lane identification, pedes-
trian and vehicle detection and tracking, and integration
of multiple roadside LiDAR sensors [7]–[9], which laid a
solid foundation for this study. Majority of the studies on
estimation of pedestrian behavior are based on on-board
video sensors. Hashimoto et al. [10] proposed a probabilistic
model based on Dynamic Bayesian Network (DBN) for pre-
dicting pedestrian behaviors at signalized crosswalks. This
model integrated the information of intersection context and
pedestrian behaviors. A particle filter was used to estimate
pedestrian states, including position, crossing decision, and
motion type. The evaluation showed that the proposed model
was able to recognize the pedestrian crossing decision in a
few seconds from the traffic signal and pedestrian position
information, which was assumed to have been obtained from
the connected vehicles. However, this assumption is difficult
to satisfy since the number of connected vehicles on the roads
is limited at present, and thus difficult to provide enough
data to test the model. Schneemann and Heinemann [11]
proposed a context-based feature descriptor in combination
with a support vector machine (SVM) classifier for detecting
pedestrian crossing intention in urban environments. The
descriptor captured the movement of pedestrians relative to
the road and the spatial layout of other scene elements in a
generic manner. It showed that context-based data are good
indicators for crossing prediction, but the prediction may be
delayed due to lack of information about pedestrians’ posture
and body movement. Contextual information is not easy for
a standalone on-board system to obtain, but it is critical for
advanced vehicle safety systems. Kwak et al. [12] proposed
an algorithm to predict a pedestrian’s intention using images
captured by a far-infrared thermal camera mounted on a mov-
ing car at night. Using the dynamic fuzzy automata (DFA)
method based on spatial-temporal features (e.g., the dis-
tance between the curbs and the pedestrians, pedestrians’

speed, and head orientation), the performance of the pro-
posed model was better than the models based on Markovian
analysis.

All of the aforementioned methods were developed to
serve autonomous vehicles via image processing. As LiDAR
data are point clouds that do not have pixel information,
the algorithms used in image processing cannot be applied to
LiDAR data processing directly. Völz et al. [13] introduced a
Quantile Regression method to predict pedestrians’ time-to-
cross when approaching a crosswalk using on-board LiDAR
data. The quantile information depicted the complexity and
variability of typical pedestrian behaviors and was used to
provide a time interval for the possible crossings and an
estimation for the associated uncertainty through the size of
the time interval. The results showed that Quantile Regression
Forest (QRF) produced better results than Linear Quantile
Regression (LQR)when the time-to-cross was less than 3 sec-
onds. The largest challenge for this method is how to quickly
detect pedestrians’ motion change. If pedestrians are blocked
by vehicles or roadside objects, it is almost impossible for
on-board sensors to detect them. In the authors’ previous
work [14], we trained a deep autoencoder-artificial neu-
ral network (DA-ANN) model using pedestrian trajectories
extracted from roadside LiDAR data to predict whether or not
a pedestrian walking along the sidewalk will cross the road.
However, the model was deterministic in nature thus could
only give Yes or No answer (i.e., crossing or non-crossing)
without any confidence level information, which limits its
application in practice.

In this paper, the authors proposed a probabilistic model
based on modified Naïve Bayes method and pedestrian tra-
jectories extracted from roadside LiDAR sensors to predict
pedestrian crossing intention before actual arrival at cross-
ing facilities with real-time and quantitative confidence level
information. The procedure of prediction includes pedes-
trian trajectory acquisition, pedestrian feature extraction,
prediction model training and evaluation. The results of
the case study demonstrated the effectiveness of the pro-
posed model for predicting pedestrian crossing intention at
0.5 to 3 seconds ahead of actual crossings. A compari-
son analysis was also provided in the case study, which
compared the Naïve Bayes results with the results from a
deterministic artificial neural network (ANN) approach and
verified the proposed probabilistic approach outperforms the
deterministic model in real-world situations with adjustable
key parameters. For example, the warning threshold of
pedestrian crossing signals can be set according to actual
requirements.

This paper is structured as follows: Section II intro-
duces the LiDAR sensors and data. Section III presents
the methodology for pedestrian crossing intention prediction
with roadside LiDAR sensors. Section IV introduces a com-
prehensive case study to show the model training process and
performance evaluation. Section V concludes the findings
and discusses future work.
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FIGURE 1. Sample LiDAR data from Veloview.

II. LiDAR SENSOR AND DATA
In this research, a 360◦ 16-line VLP-16 LiDAR sensor man-
ufactured by Velodyne was used. 16 lasers rotate horizontally
by an internal motor with a speed of 5 to 20 rotations per sec-
ond, which can generate about 300,000 3D points per second.
It can scan over a range of 2 meters (6.5 feet) to 100 meters
(328 feet), with a 30◦ vertical field of view (+/−15◦ with
2◦ interval). The VLP-16 LiDAR sensor reports coordinates
in spherical coordinates (r, ω, α), which can be converted
to Cartesian coordinates (x, y, z). The output LiDAR data
include the location information of measured points relative
to the LiDAR sensor in XYZ coordinates, intensity, laser ID,
azimuth, the distance between a data point and the sensor, and
timestamp [15]. Fig. 1 shows a sample LiDAR data frame
visualized by the Veloview software that comes with the
LiDAR product. There were pedestrians, vehicles, bushes,
buildings and ground surfaces in the raw LiDAR data, but
only pedestrians and vehicles were the objects of interest.

III. PROPOSED PROBABILISTIC PREDICTION MODEL
The proposed prediction model predicts crossing probabili-
ties of pedestrians walking on a sidewalk or at an intersec-
tion corner in a time interval. First, it was trained offline
using pedestrians’ historical trajectory-level movement fea-
tures, which were extracted from roadside LiDAR data.
Then the real-time probabilistic crossing intention prediction
was achieved by applying a pedestrian’ current movement

features to the trained model and obtaining a predicted result.
A final prediction of this pedestrian at the current time was
made based on the predicted results for the current and two
previous time intervals. At last, a deterministic ANN model
was also tested and evaluated with the same datasets, thus
allowing a fair comparison of the two models.

A. PEDESTRIAN TRAJECTORY ACQUISITION
From raw roadside LiDAR data to road users’ real-time
trajectories, the authors have developed a complete roadside
LiDAR data processing procedure in the previous works [9].
The main steps were in the order of background filtering, lane
identification, object clustering, pedestrian/vehicle classifi-
cation, and tracking. The extracted trajectories include XYZ
position, the total number of data points, distance to LiDAR,
tracking ID, frame number, velocity, direction, timestamp,
and pedestrian/vehicle label of each road user. Pedestrian
trajectories were the initial data for pedestrian crossing inten-
tion prediction. While going through the details of these
methods is unnecessary and beyond the objective of this
paper, for illustrative purpose, Fig. 2(a-f) show the results
after each step of data processing. Fig. 2(a) presents the raw
LiDAR data in a 3D Cartesian coordinate system; Fig. 2(b)
shows LiDAR point clouds after background filtering. The
remaining noise points will be excluded in the following
clustering step; Fig. 2(c) demonstrates the identified road
boundaries; Fig. 2(d) shows the clustering and classification
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FIGURE 2. (a) Raw LiDAR data. (b) LiDAR data after background filtering. (c) Road lane identification. (d) Clustering and classification.
(e) Extracted trajectories of pedestrians and vehicles. (f) Speed information of pedestrians and vehicles.

results of two pedestrians and two vehicles in one sample data
frame; Fig. 2(e) and Fig. 2(f) show the trajectories and speed

information of the same pedestrians and vehicles during a
three-second interval as an example.
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B. MODIFIED NAÏVE BAYES PREDICTION MODEL
For classifying sequence data such as trajectories, feature-
based classifications (e.g., SVM and ANN) and distance-
based classifications (e.g., K nearest neighbor) can only
provide classification labels for the sequence without the
information of quantitative confidence levels, while model-
based classifications (e.g., Naïve Bayes, Markov Model, and
Hidden Markov Model) assume that sequences in a class are
generated by an underlying model and described by proba-
bility distributions. The Naïve Bayes sequence classifier is a
basic generative model [16] and can be trained efficiently in
a supervised learning setting by learning conditional prob-
abilities of features in different classes, even with a small
dataset [17], this makes it suitable for predicting pedestrian
crossing intention in real time. It requires a strong (naïve)
assumption that all features in the sequences must be inde-
pendent of each other. The algorithm of Naïve Bayes classi-
fication is summarized as follows:

Given:
A sequenceX= (x1, x2, . . . , xn) has n independent features.

xi (i = 1, 2, . . . , n) represents each of the n features.
Class: Y= (y1, y2, . . . , yj) represents j classes. ym (m= 1,

2, . . . , j) represents each of the j classes.
Classify the sequence X into one of the above classes.
According to the Bayes’ theorem:

P
(
yj|x1, x2, . . . , xn

)
=

P
(
yj
)
P
(
x1, x2, . . . , xn|yj

)
P (x1, x2, . . . , xn)

=
P
(
yj
)∏n

i=1 P
(
xi|yj

)
P (x1, x2, . . . , xn)

P
(
yj|x1, x2, . . . , xn

)
∝ P

(
yj
)∏n

i=1
P
(
xi|yj

)
ŷj = argmax

y
P
(
yj
)∏n

i=1
P
(
xi|yj

)
(1)

where P(yj|x1,x2,. . . ,xn) is the conditional probability of
assigning a sequence (x1,x2, . . . ,xn) to each of j possi-
ble classes yj.

∏n
i=1 P

(
xi|yj

)
represents the multiplication

of each conditional probability P(xi|yj)(i = 1, 2, . . . , n).
argmax

y
p(yj)

∏n
i=1 P(xi|yj) gives a value y at which

p(yj)
∏n

i=1 P(xi|yj) is maximized. ∝ means proportional to
and ŷj means an estimation of yj value.
According to (1), the sequence X will be classified into the
class that has the highest conditional probability value ŷj.

Based on the obtained trajectory information, the values
of each feature are discrete. For example, Fig. 3 shows
the data distribution of extracted pedestrian trajectories with
crossing/non-crossing labels in terms of velocity (mph) and
direction (rad) features using 20 crossing trajectories and 20
non-crossing trajectories (for better illustration) as examples.
It is easy to find that the direction values of blue crossing
points were relatively clustered within a range of 2.3 to
2.5rad, while the velocity values of orange non-crossing
points were relatively aggregated within the 2.0 to 3.5mph
range. In order to apply the Naïve Bayes algorithm, the values

FIGURE 3. Sample trajectory data in velocity and direction features.

of each feature should be segmented into different ranges
for probability calculation and the optimal combination of
features was used as the input of the Naïve Bayes model.
Therefore, how to determine the best segmentation of the data
in each feature needs to be solved first.

The main idea for segmentation is to divide each type of
feature data into different ranges and then require the total
number of data points in each range to satisfy the mini-
mal amount requirement (PointThres). The number of ranges
was predefined between the minimal number of divisions
(Nsegmin) and the maximal number of divisions (Nsegmax).
The training data (TData) with labels were first divided into
Nsegmax ranges, and checked to ensure the data in each
range satisfy the PointThres requirement. If not, the num-
ber of ranges was decreased by one and then checked the
requirement again. This way, the maximal allowable number
of segmentations (MaxAllowseg) can be obtained. Note that
for cases in which the number of segmentations was less
thanMaxAllowseg, the data in each segmentation always met
thePointThres requirement. After obtaining theMaxAllowseg
information, probabilities can be calculated for the cases
where the number of segmentations ranged from one to
MaxAllowseg. The output of the training process was a trained
prediction model that included the probability information
for all the allowable segmentations. The training algorithm
is described in Algorithm 1.

For the evaluation process, the inputs were unclassified
data (Data), trained prediction model, and probability thresh-
old for crossing warning (WarnThres). If there is no predic-
tion model, the probability of correctly predicting crossing
or non-crossing intention is 50%. This WarnThres parameter
can be adjusted based on actual needs. A lower WarnThres
value means there is a higher possibility of crossing inten-
tion prediction, which improves pedestrian safety. Given
a data record, the data value of each feature can be fit-
ted into one appropriate range/interval based on the trained
model. Since the features were independent of each other,
the corresponding probabilities can be multiplied directly.
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Algorithm 1 Training Process
Input: TData, Nsegmin, Nsegmax, PointThres.
Output: MaxAllowseg, Count, Interval, Probability

(Trained prediction model).
Begin
1. DataRange← (max(TData)-min(TData))
2. Total← length (TData)
3. // Find the maximal allowable number of segmentations.
4. For i = Nsegmax:-1:Nsegmin
5. Unit← DataRange/i
6. For j = 1: i
7. Interval(j)← min(Data) + j∗Unit
8. Count(j)← n∈interval(j-1, j)
9. Endfor
10. If min(Count) ≥ PointThres
11. MaxAllowseg← i
12. Break
13. Endif
14. Endfor
15. // Calculate probabilities for all the allowable number

of segmentations.
16. For t = 1: MaxAllowseg
17. Probability(t) = Count (t)/Total
18. Endfor
19. Return: MaxAllowseg, Count, Interval,

Probability.

Considering the different segmentations, two maximal prob-
abilities for crossing and non-crossing labels were chosen,
and the corresponding segmentations were considered as the
optimal segmentations. It cannot be guaranteed that the sum
of these two probabilities will be equal to one, since the
chosen segmentations may be different for crossing and non-
crossing cases. The next step was to normalize two selected
maximal probabilities. If the normalized maximal crossing
probability is greater than the predefined WarnThres value,
the data record will be assigned a crossing label. Otherwise,
the data record will be classified into the non-crossing case.
The evaluation algorithm is described in Algorithm 2.

In order to improve prediction accuracy against incorrect
predictions occurring in a small number of frames along
the entire trajectory, three continuous frames were used for
aggregate prediction. The final crossing/non-crossing label
was determined by combining the prediction results for the
current frame and the two previous frames by the majority
rule. The final probabilities were used to provide quantitative
confidence level information for crossing and non-crossing
predictions.

IV. CASE STUDY
A. MODEL TRAINING
In this study, a VLP-16 LiDAR sensor with 10Hz rotation
frequency was horizontally installed (about 6ft above the
ground [18]) at the intersection of North Sierra Street and

Algorithm 2 Evaluation Process
Input: Data, WarnThres, Prediction Model (Probability).
Output: Classification label with quantitative confidence

level information.
Note: Crossing (label = 1) and Non-crossing (label = 0).
Begin
1. // Find the max probability for label = 1 case and
label = 0 case.

2. P(label=1)← Data, Probability
3. P(label=0)← Data, Probability
4. Pmax(label=1)← max(P(label=1))
5. Pmax(label=0)← max(P(label=0))
6. // Normalization.
7. P’max(label=1)←
Pmax(label=1)/(Pmax(label=1) +
Pmax(label=0))

8. P’max(label=0)←
Pmax(label=0)/(Pmax(label=1) +
Pmax(label=0))

9. // Determine the classification label.
10. If P’max(label=1) ≥WarnThres
11. Label← 1 (Crossing)
12. else
13. Label← 0 (Non-crossing)
14. Endif
15. Return: Label, P’max.

FIGURE 4. Google Maps of the selected intersection.

11th Street in Reno, Nevada to collect field data for 30 min-
utes (18,000 frames). The case study analyzed the pedestrian
trajectories on the east side of North Sierra Street, and the
selected crosswalk was marked with a red rectangle in Fig. 4.
Three main pedestrian approach directions were southbound,
northbound, and westbound. In total, 598 crossing trajec-
tories (17,511 trajectory data points) and 622 non-crossing
trajectories (17,786 trajectory data points) within the selected
study area were extracted from the collected roadside LiDAR
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FIGURE 5. Sample pedestrian trajectory data.

data. These trajectories recorded each pedestrian’s walking
behavior 3 to 0 seconds before actual crossing/non-crossing
at the crossing facility. Fig. 5 demonstrates sample pedestrian
trajectories extracted from roadside LiDAR data. The LiDAR
sensor was located at the origin (0,0) and not shown in the
plot. These trajectories were used for model training and
evaluation.

Using the obtained pedestrian trajectory data, four features
– X position (m), Y position (m), Velocity (mph), and Direc-
tion (rad), were selected for model training. Without losing
the generality, the authors assumed these four features were
independent of each other in practice [19], [20].

Based on the proposed modified Naïve Bayes algorithm,
the minimal number of segmentations (Nsegmin) and max-
imal number of segmentations (Nsegmax) were set to one
and ten, respectively. The required minimal number of data
points (PointThres) in each segmentation was five. Using the
modified Naïve Bayes method, a pedestrian crossing inten-
tion prediction model was obtained.

B. MODEL EVALUATION
To validate and evaluate the performance of the trained pedes-
trian crossing intention prediction model, a testing dataset
collected from the same intersection that had not been seen
by the trained model was applied to the obtained model.
Here, ten crossing and ten non-crossing trajectories from
the testing dataset were used to demonstrate the prediction
process and results as examples. The probability threshold for
crossing warning (WarnThres) was equal to 40.0%. In Fig. 6,
the crossing trajectory 1 shows the pedestrian’s walking path
from 3 to 0 seconds before actual crossing. The blue and red
dots represent the correct and incorrect crossing predictions.
If the total predicted time length is T and the current time
is t , then the Time-to-Cross is equal to T − t (e.g., the time

FIGURE 6. Crossing prediction for a sample crossing trajectory.

before actual crossing). It is easy to see that the probability of
crossing predictions became increasingly higher as the pedes-
trian approached to the crossing facilities. At three seconds
before crossing, the predicted probability for that pedestrian
to cross the road upon arrival at the crossing facility was
only 39.9% (less than WarnThres 40.0%, therefore gave an
incorrect prediction – non-crossing), while the probability
increased to 86.5% at one second before crossing. At the
moment of actual crossing, the predicted probability for
crossing was 100.0%.

For all ten crossing (label = 1) and ten non-crossing
(label = 0) trajectories, prediction accuracies based on Time-
to-Cross are listed in Table 1(a) and Table 1(b). Note
that since the crossing warning threshold was set to 40%
(less than 50%, which is randomly guessing), there was
a higher probability of correct predictions in crossing
than non-crossing. The total average prediction accura-
cies of crossing and non-crossing pedestrians with 40%
warning threshold were roughly 97% and 84%, respec-
tively. The performance/accuracy of the prediction model
is restricted by: 1) pedestrians have greater motion vari-
ability than vehicles, which makes prediction more diffi-
cult, especially for irrational behaviors; 2) the collected
LiDAR data for pedestrians at farther distances are lim-
ited, which affects the detailed description of pedestri-
ans’ behaviors; 3) the accuracy of extracted trajectory
information.

To examine the model’s property in real-time calculation,
we implemented the algorithm in MATLAB and recorded
the computation time on a regular Dell desktop (Intel Core
i7-4790 CPU (3.60G Hz) and 16GB of RAM), it took only
about 0.20 milliseconds to process one single trajectory data
point and make a prediction, which was ideal for real-time
applications.
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TABLE 1. (a) Prediction accuracy for ten crossing trajectories. (b) Prediction accuracy for ten non-crossing trajectories.

TABLE 2. Sensitivity analysis for crossing warning threshold.

Next, the authors also conducted a sensitivity analy-
sis of prediction accuracy and crossing warning threshold
(WarnThres). As shown in Table 2, with a decrease of the
crossing warning threshold, the crossing prediction accuracy
increased, and non-crossing prediction accuracy decreased.
It indicates that if the goal is to ensure the accuracy of
crossing prediction is as good as possible, the crossing warn-
ing threshold should be decreased, while if the prediction

accuracies for both crossing and non-crossing are sought,
the crossing warning threshold should be increased to a
relatively high value. Therefore, the selection of the warn-
ing threshold depends on the objective of applications in
practice.

To further evaluate the performance of the trainedmodified
Naïve Bayes crossing prediction model, the authors further
conducted a comparison analysis by using the same training
and testing datasets to train and evaluate a model based on
the ANN. The backpropagation (BP)-neural network is a
multilayer feed-forward artificial neural network [21]. It is
composed of an input layer, hidden layer(s), an output layer,
and neurons in each layer. The input data is fed into the input
layer. Then, the activity of each hidden layer is determined
by the inputs and the weights that connect the input layer and
hidden layer. A similar process occurs between the hidden
layer and output layer. The transmission from one neuron
in one layer to another neuron in the next layer is indepen-
dent. The output layer produces the estimated outcomes. The
comparison information (error) between target outputs and
estimated outputs is given back to the input layer as a guide
to adjust the weights in the next training round. Through
this iteration process, the neural network gradually learns
the inner relationship between input and output by adjusting
the weights for each neuron in each layer to reach the best
accuracy. When the minimal error is reached, or the number
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of iterations is beyond the predefined value, the training
process is terminatedwith fixedweights [22]. The determined
ANN model structure and functions are summarized as
follows:

1) Feature Selection: X position, Y position, Velocity,
Direction.

2) The number of hidden layers: 1
3) The number of hidden neurons: 5
4) Training function: Scaled conjugate gradient backprop-

agation.
5) Transfer function: Soft max transfer function.
6) Performance function: Mean squared error perfor-

mance function.

The average prediction accuracies for all collected crossing
and non-crossing trajectories were around 91% and 93%,
respectively. The results clearly indicated the proposed mod-
ified Naïve Bayes model had advantages over the ANN
model in the following two main aspects: 1) it can pro-
vide quantitative confidence level information for prediction
results; and 2) the crossing warning threshold parameter
can be adjusted according to the actual needs in real-world
situations.

V. CONCLUSION
This paper presents a new probabilistic approach to predicting
pedestrians’ crossing intention before their actual arrival at
the crosswalk using roadside LiDAR sensors. The proposed
model is based on a modified Naïve Bayes method and
trajectory-level movement data and featured by providing
real-time and quantitative confidence level information with
the predictions. The major steps include pedestrian trajectory
acquisition, pedestrian feature extraction, prediction model
training and evaluation. A comprehensive case study demon-
strated the effectiveness of the proposed method using real
data, and the trained modified Naïve Bayes prediction model
had more flexible applications in pedestrian crossing pre-
dictions than the popular ANN model. Applications of such
developments not only support proactive protection of pedes-
trians in future connected-vehicle environments, moreover,
probabilistic predictions with adjustable parameters can also
help with other real-world applications as a standalone safety
enhancement technology, such as real-time warning systems
at unsignalized intersections and mid-block crosswalks, and
in smart signals to automatically adjust the start and termi-
nation time of pedestrian phases. Ongoing and future studies
along this path are being focused on model evaluation and
adjustments with an increased level of data variety and com-
plexity. A new experimental site is being developed at the City
of Las Vegas with multiple 32-laser LiDAR sensors installed
at critical locations for better detection. With much heavier
pedestrian volume and more versatile pedestrian behaviors,
advanced pedestrian behavior prediction models would be
expected.
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