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ABSTRACT Multimodal representation learning, which aims to narrow the heterogeneity gap among
different modalities, plays an indispensable role in the utilization of ubiquitous multimodal data. Due to
the powerful representation ability with multiple levels of abstraction, deep learning-based multimodal rep-
resentation learning has attracted much attention in recent years. In this paper, we provided a comprehensive
survey on deep multimodal representation learning which has never been concentrated entirely. To facilitate
the discussion on how the heterogeneity gap is narrowed, according to the underlying structures in which
different modalities are integrated, we category deep multimodal representation learning methods into three
frameworks: joint representation, coordinated representation, and encoder-decoder. Additionally, we review
some typical models in this area ranging from conventional models to newly developed technologies. This
paper highlights on the key issues of newly developed technologies, such as encoder-decoder model, gen-
erative adversarial networks, and attention mechanism in a multimodal representation learning perspective,
which, to the best of our knowledge, have never been reviewed previously, even though they have become the
major focuses of much contemporary research. For each framework or model, we discuss its basic structure,
learning objective, application scenes, key issues, advantages, and disadvantages, such that both novel and
experienced researchers can benefit from this survey. Finally, we suggest some important directions for
future work.

INDEX TERMS Multimodal representation learning, multimodal deep learning, deep multimodal fusion,
multimodal translation, multimodal adversarial learning.

I. INTRODUCTION
To convey the comprehensive information about objects in the
world, various cognitive signals describing different aspects
of the same object are recorded in different kinds of media
such as text, image, video, sound, and graph. In the repre-
sentation learning area, the word ‘‘modality’’ refers to a par-
ticular way or mechanism of encoding information. Hence,
different types of media listed above also refer to modalities,
and the representation learning tasks involving several modal-
ities will be characterized as multimodal.

The associate editor coordinating the review of this manuscript and
approving it for publication was Canbing Li.

Since multimodal data depict an object from different
viewpoints, usually complementary or supplementary in con-
tents, they are more informative than unimodal data. For
example, early research on speech recognition showed that
the visual modality provides information on lip motions and
articulations of the mouth including open and close, thus can
help to improve the speech recognition performance. There-
fore, it is valuable to exploit the comprehensive semantics
provided by several modalities.

However, although it is easy for human beings to perceive
the world through comprehensive information from multiple
sensory organs [3], how to endow machines with analogous
cognitive capabilities is still an open question. One of the
challenges we are confronted with is the heterogeneity gap
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FIGURE 1. Schematic of the common subspace learning (adapted
from [5]), which aims to project the heterogeneous data of different
modalities into a common subspace, where the multimodal data with
similar semantics will be represented by similar vectors.

in multimodal data. As Fig. 1 shows, since the feature vec-
tors from different modalities originally located in unequal
subspaces, the vector representations associated with similar
semantics would be completely different. Here, this phe-
nomenon is referred to as heterogeneity gap, which would
hinder the multimodal data from being comprehensively
utilized by the subsequent machine learning modules [4].
A popular method for addressing this problem is projecting
the heterogeneous features into a common subspace, where
the multimodal data with similar semantics will be repre-
sented by similar vectors [5]. Thus, the primary objective of
multimodal representation learning is narrowing the distribu-
tion gap in a joint semantic subspace while keeping modality
specific semantics intact.

To narrow the heterogeneity gap, numerous researches
with various approaches have been conducted in the past
decades. As a result, the advancement of multimodal rep-
resentation learning has benefited plenty of applications.
For example, by the utilization of fused features from
multimodalities, improved performance can be achieved in
cross-media analysis tasks, such as video classification [6],
event detection [7], [8], and sentiment analysis [9], [10].
Further, via the exploitation of cross-modal similarity or
cross-modal correlation, it becomes possible for us to retrieve
images using a sentence as input or vice versa, which is a task
known as cross-modal retrieval [11]. Most recently, a novel
type of multimodal application, cross-modal translation [12],
has drawn great attention in the computer vision community.
As the name suggests, it strives to translate one modality into
another. Exemplary applications within this category include
image caption [13], video description [14], and text-to-image
synthesis [15].

In recent years, due to the powerful representation ability
with multiple levels of abstraction, deep learning has demon-
strated outstanding results in various applications involving
computer vision, natural language processing, and speech
recognition [16]. Additionally, another key advantage of deep
learning is that a hierarchical representation can be learned
directly using a general-purpose learning procedure, without
requiring a design or selection process of handcrafted fea-
tures. Motivated by this success, deep multimodal represen-
tation learning, which is a natural extension of its unimodal
version, has recently attracted tremendous research attention.

The goal of this article is to provide a comprehensive sur-
vey on deep multimodal representation learning and suggest
the future direction in this active field. Generally, the machine
learning tasks based on multimodal data include three neces-
sary steps: modality-specific features extracting, multimodal
representation learning which aims to integrate diverse fea-
tures from different modalities in a common subspace, and a
reasoning step such as classification or clustering. This paper
mainly focuses on the second step, multimodal representation
learning in deep learning scenarios, and will also make a brief
reference to the other two steps but not go into the details.

The focus of this paper is the key issues on how to nar-
row the heterogeneity gap while keeping modality specific
semantics intact in different multimodal application scenes.
To facilitate the discussion, according to the underlying struc-
tures in which different modalities are integrated, shown as
Fig. 2, we category these methods into three types of frame-
works: joint representation, coordinated representation, and
encoder-decoder. Each framework has its distinct architecture
and approach of integrating multimodal features. Addition-
ally, we review some typical models including probabilis-
tic graphical models (PGM), multimodal autoencoders, deep
canonical correlation analysis (DCCA), generative adversar-
ial networks (GAN), and attention mechanism, which have
either proven to be effective or shown promising results.

The connection between the typical models and the three
frameworks can be seen in Table 1. Each of the typical models
described here can be categorized into one or more of the
frameworks or can be integrated with them. For each type
of framework or model, we will discuss its basic structure,
learning objective, application scenes, key issues, advantages,
and disadvantages, such that both novel and experienced
researchers will benefit from this survey. The key issues
relevant to different frameworks and models will be marked
in bold and summarized in Section IV (Table 3).

Most recently, several surveys [17]–[20] related to
the topic of multimodal learning have been published.
Comparing to previous reviews, the focus of our paper is
distinctive in that we seek to survey the literature from a
cross-perspective of multimodal representation learning and
deep learning, which has never been concentrated fully. For
example, the review proposed by Zhao et al. [17] mainly
focuses on conventional methods. The work proposed by
Baltrušaitis et al. [18] focuses on the challenges of multi-
modal machine learning, as one of the five challenges they
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TABLE 1. The relationship between typical models and three types of
deep multimodal representation learning frameworks. Each of the typical
models may belong to (denoted by X) or can be integrated with (denoted
by

a
) the relevant framework.

defined, representation learning is only a small part of their
concern. From the perspective of multimodal representation
learning, the closest work to ours is that of Li et al. [19]
which concentrates on multi-view representation learning,
including shallow and deep methods, while, by contrast,
ours highlight the latter which have gained more attention
in recent years. From the perspective of multimodal deep
learning, the closest effort to ours is [20] which mainly
reviews the models and applications relying on multimodal
features fusion (categorized as joint representation in ours).
Comparing to [20], in this paper, more types of integration
frameworks and models will be discussed.

In contrast to previous surveys, another difference of ours
is that we highlight on the key issues of newly devel-
oped technologies such as encoder-decoder model, genera-
tive adversarial networks (GAN), and attention mechanism
in a multimodal representation learning perspective, which,
to our best knowledge, have never been reviewed previ-
ously, even though they have become the major focuses
of much contemporary research. For example, previously,
the encoder-decoder models were mainly introduced as one
of the implementation ways used for cross-modal translation
task, while, for the first time, they are discussed further from
the representation learning perspective in this paper.

The rest of this paper is organized as follows: In Section II,
we discuss the key issues on how to narrow the heterogeneity
gap in three types of frameworks. In Section III, we review
the typical models listed in Table 1. In Section IV, we finish
with a conclusion and suggest some future directions in this
active field.

II. DEEP MULTIMODAL REPRESENTATION LEARNING
FRAMEWORKS
To facilitate the discussion on how to narrow the heterogene-
ity gap and inspired by the definitions in [18], according to
the underlying structures illustrated in Fig. 2, we category
deep multimodal representation methods into three types of
frameworks: (i) joint representation, which aims to project
unimodal representations together into a shared semantic
subspace such that the multimodal features can be fused;
(ii) coordinated representation including cross-modal simi-
larity models and canonical correlation analysis, which seeks

TABLE 2. A summary of typical applications of three frameworks. Each
application may include some of the modalities such as audio, video,
image, and text which are denoted by their first letter. Here, different
integration ways are denoted by + (fusion), ∼ (coordination) and→
(translation).

to learn separated but constrained representations for each
modality in a coordinated subspace; (iii) encoder-decoder
models, which endeavors to learn an intermediate represen-
tation used for mapping one modality into another. Each
framework has its way of integrating several modalities and is
shared by some applications. To obtain a general impression
of their possible applications, in table 2, a summary of typical
applications and the relevant modalities involved in these
frameworks has been given.

As Fig. 2 shows, beforemultimodal representation learning
can be applied, modality-specific features should be extracted
via appropriate methods. Thus, in this section, we will first
introduce unimodal representation methods which may sig-
nificantly impact the performance, and then start our discus-
sion on three types of frameworks.

A. MODALITY-SPECIFIC REPRESENTATIONS
Although a variety of different multimodal representation
learning models may share similar architectures, the essential
components used for extracting modality-specific features
could be quite different from each other. Here, we will intro-
duce some of the most popular components appropriate for
different modalities, without going into technical details.

The most popular models used for image feature learn-
ing are convolutional neural networks (CNN) such as
LeNet [45], AlexNet [46], GoogleNet [47], VGGNet [48],
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FIGURE 2. Three types of frameworks about deep multimodal representation. (a) Joint representation aims to learn a shared semantic subspace.
(b) Coordinated representation framework learns separated but coordinated representations for each modality under some constraints.
(c) Encoder-decoder framework translates one modality into another and keep their semantics consistent.

and ResNet [49]. They can be integrated into multimodal
learning models and trained together with other components.
However, considering the requirement for sufficient training
data and computation resources, the pre-trained version of
CNN may be a better choice for multimodal representation
learning.

The fundamental works for neural language processing
involve representing words and encoding sentences. A pop-
ular way to represent words is word embedding such as
word2vec [50] or Glove [51] which maps words into a dis-
tributional vector space, where the similarity between words
can be measured. In NLP tasks, a common issue that
should be considered is the unknown word problem, also
known as out-of-vocabulary (OOV) words, that can poten-
tially affect the performance of many systems. To deal with
unknown word issue, character embeddings [52], [53] is a
viable option for representing language inputs. For example,
Kim et al. [52] trained a convolution neural network to yield
word representations based on character-level embeddings.
Bojanowski et al. [53] proposed to learn the vector repre-
sentations of character n-grams, then, by treating each word
as a bag of character n-grams, the embedding of a word
can be obtained by the sum of these vector representations.
Experiments [54], [55] showed that handling OOV issue
properly would improve the performance of NLP systems
considerably.

Recurrent neural networks (RNN) [56] is a powerful tool
for dealing with varying length sequences such as sen-
tences, videos, and audios. Since the activation of the current
hidden state at time t depends on that of all the previ-
ous time steps, it can be seen as a summarization of the
sequence up to step t . However, vanilla RNNs is diffi-
cult to capture long-term dependencies because of the gra-
dient vanishing problem [57]. In practice, a better choice
is long short-term memory (LSTM) [58], [59] networks or
gated recurrent unit (GRU) [60] networks, which has a better
performance in capturing long-term dependencies [61], [62].
Further, bidirectional recurrent neural networks (BRNN) [63]
and the bidirectional edition of LSTM [64] or GRU [65] are
also widely used for capturing the semantics. In addition

to RNN, CNN is another widely used model for extract-
ing salient n-gram features from sentences. Experiments
showed that CNN based models perform remarkably well
in sentence-level classification [66] and sentiment analysis
tasks [67].

As to video modality, since the input of each time step
is an image, its feature can be extracted via the tech-
niques used for handling images. In addition to deep fea-
tures, handcrafted features are still widely used in video
and audio modalities [10], [68]. Further, some toolkits have
been developed to extract handcrafted features. For example,
OpenFace [69] can be used to extract facial features such as
facial landmark, head pose, and eye gaze. Another tool is
Opensmile [70] which can be used to extract acoustic features
includingMel-frequency cepstral coefficients (MFCC), voice
intensity, pitch, and their statistics. After the frames of videos
and audios have been encoded, CNN or RNN networks
aforementioned can be used to summarize the sequences into
individual vector representations.

B. JOINT REPRESENTATION
The strategy of integrating different types of features to
improve the performance of machine learning methods has
long been used by researches. A natural extension of this
strategy in a multimodal setting is the utilization of fused
heterogeneous features. Following this strategy, promising
results have been shown in many multimodal classification or
clustering tasks, such as video classification [6], [21], event
detection [7], [8], sentiment analysis [9], [10], and visual
question answering [23].

To bridge the heterogeneity gap of different modalities,
joint representation aims to project unimodal representations
into a shared semantic subspace, where the multimodal fea-
tures can be fused [18]. As Fig. 2(a) showed, after each
modality is encoded via an individual neural network, both
of them will be mapped into a shared subspace, where the
conceptions shared by modalities will be extracted and fused
into a single vector.

The simplest way for fusing multimodal features is to
concatenate them directly. However, mostly this subspace is
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implemented by a distinct hidden layer, in which the trans-
formed modality specific vectors will be added, and thus
the semantics from different modalities will be combined.
This property can be seen from (1), where z is the acti-
vation of output nodes in the shared layer, v is the output
of modality-specific encoding network, w is the weights
connecting between modality specific encoding layer to
the shared layer and the subscript index denotes different
modalities.

z = f (wT1 v1 + w
T
2 v2) (1)

Other than the fusion process in a distinct hidden layer, usu-
ally called as an additive approach, a multiplicative method
is also adopted in some literature. In a sentiment analysis
task, Zadeh et al. [10] proposed to fuse language, video, and
audiomodalities in a tensor, which is constructed from the out
product of all the modality-specific feature vectors. By this
way, the author intends to exploit either intra-modality or
inter-modality dynamics. The definition of the fused tensor
can be formulated as follows:

zm =
[
zl

1

]
⊗

[
zv

1

]
⊗

[
za

1

]
(2)

where zm denotes the fused tensor, zl , zv, za denotes different
modalities respectively, and ⊗ indicates the outer product
operator. However, since the outer product is cost expensive,
in a more efficient way, Fukui et al. [23] alternatively propose
to utilize Multimodal Compact Bilinear pooling (MCB) to
fuse language and image modalities. Formulated as (3), given
vectors x and q, the proposed method seeks to reduce the
dimension of the outer product x ⊗ q by Count Sketch pro-
jection function 9. Particularly, the count sketch of the outer
product can be decomposed into a convolution of separated
count sketches [71], which means that the computation of an
outer product can be avoided. Further, the authors use Fast
Fourier Transform (FFT) to accelerate the computation.

8 = 9(x ⊗ q)

= 9(x) ∗9(q)

= FFT−1 (FFT (9(x))� FFT (9(q))) (3)

Although the model shown in Fig. 2(a) is designed for the
setting in which parallel data are available during training and
inference steps, the ability to deal with partial data missing
problem in some modalities is also desired, such that more
training data can be exploited or the performance of down-
stream tasks is influenced only slightly in the case of data
missing from one or more modalities. To this end, a widely
used method is training the model via the data including only
some modalities, excluding a modality in different training
epochs [1], [72].

Interestingly, the training trick used for tackling data
missing is also helpful for obtaining modality-invariant
property, which means that the difference of the sta-
tistical distribution between modalities is minimized, or,
in other words, the feature vectors contains minimum

modality-specific characteristics. The work proposed by
Aytar et al. [73] shows that constrained by a statistical reg-
ularization which encourages activations in the intermediate
hidden layers to have similar statistics distribution across
modalities, the modality-invariant property can be strength-
ened. Their model encourages different modalities to be
aligned with each other automatically in the representation
layer, even when the training data is unaligned.

To be more expressive, the learned vector is expected to
fuse complementary semantics form different modalities.
The property, complementary, cannot be guaranteed auto-
matically since joint representation tends to preserve shared
semantics across modalities while ignoring modality-specific
information. A solution is adding extra regularization terms to
the optimization objectives [74]. For example, the reconstruc-
tion loss used in multimodal autoencoders [1] can be consid-
ered as a regularization term playing as a role to preserve
modality independence. Another example is the approach
proposed by Jiang et al. [21], which impose a trace norm reg-
ularization over the network weights to reveal the hidden cor-
relations and diversity of the multimodal features. Intuitively,
if a pair of features are highly correlated, the weights used for
fusing them should be similar such that their contributions to
the fused representation will be roughly equal. Thus, the goal
of trace norm regularization is to discover the relationship
between modalities and adjust the weights of the fusion layer
accordingly. Their experiments in video classification tasks
showed that this regularization term is helpful for improving
performance.

Comparing to other frameworks, one of the advantages
of joint representation is that it is convenient to fuse
several modalities since there is no need to coordinate
modalities explicitly. Another advantage is that the shared
common subspace tends to be modality-invariant, which is
helpful for transferring knowledge from one modality to
another [1], [73]. While one of the disadvantages of this
framework is that it cannot be used to infer the separated
representations for each modality.

C. COORDINATED REPRESENTATION
Another type of methods popular in multimodal learn-
ing is coordinated representation. As Fig. 2(b) showed,
instead of learning representations in a joint subspace,
coordinated representation framework learns separated but
coordinated representations for each modality under some
constraints [18]. Since the information contained in differ-
ent modalities is unequal, learning separated representa-
tions is beneficial for persevering the exclusive and useful
modality-specific characteristics [31]. Typically, condition
on the constraint types, coordinated representation methods
can be categorized into two groups, cross-modal similar-
ity based and cross-modal correlation based. Cross-modal
similarity based methods aim to learn a common subspace
where the distance of vectors from different modalities can
be measured directly [75], while cross-modal correlation
based methods aim to learn a shared subspace such that the
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correlation of the representation sets from different modal-
ities is maximized [5]. In this section, we will review the
former and leave the latter in Section III-C.
Cross-modal similarity methods learn coordinated rep-

resentations under constraints of similarity measurement.
The learning objective of this model is to preserve
inter-modality and intra-modality similarity structure,
which expects the cross-modal similarity distance associated
with the same semantics or object to be as minimum as
possible, while expects the distance with dissimilar semantics
to be as maximum as possible.

A widely used constraint is cross-modal ranking. Take
visual-text embedding for example, ignoring the regulariza-
tion terms and denoting the matched embedding vectors of
visual and text as (v, t) ∈ D, the optimization objective
can be expressed as a loss function in (4), where α is the
margin, S is the similarity measurement function, t− is the
embedding vectors unmatched to v and v− is the embedding
vectors unmatched to t . Commonly, t− and v− are known
as negative samples which are selected randomly from the
dataset D, and (4) is known as margin rank loss [36].

rankLoss =
∑
v

∑
t−

max(0, α − S(v, t)+ S(v, t−))

+

∑
t

∑
v−

max(0, α − S(t, v)+ S(t, v−)) (4)

Based on the cross-modal ranking constraint, a variety of
cross-modal applications have been developed. For exam-
ple, Frome et al. [34] used a combination of dot-product
similarity and margin rank loss to learn a visual-semantic
embedding model (DeViSE) for visual recognition. DeViSE
firstly pre-trains a pair of deep networks to map images and
their correlated labels into embedding vectors v and t then
leverages the cross-modal similarity model to learn a shared
semantic embedding space for both modalities. Following the
notations in (4), the loss function for each training sample can
be defined as follows:

loss(v, t) =
∑
t−

max(0, α − tMv+ t−Mv) (5)

where M is a linear transformation matrix used for trans-
forming v into the shared semantic embedding space, and the
dot-product between t and Mv is the similarity measurement
used for both training and testing. Under the constraint in
(5), the model is expected to produce a higher dot-product
similarity between matched vectors than between unmatched
ones and subsequently endows images embedding with rich
semantic information which is transferred from language
modality. This idea is also shared by the work proposed by
Lazaridou and Baroni [35], which aims to integrate and prop-
agate visual information into word embeddings. Their exper-
imental results implied that the transferred visual knowledge
is helpful for representing abstract concepts.

Inspired by the success of DeViSE, Kiros et al. [36]
extended this model to learn a joint image-sentence
embedding used for image captioning. They pre-trained a

CNN network to obtain image features v and trained an
LSTM network to encode its relevant sentences into t , then
mapped both encodings into a coordinated embedding space
where the similarity between them can be exploited by a
cross-modal similarity model similar to [34]. Their model
adopted the same similarity measurement used in DeViSE
but employed a bi-directional rank loss formulated in (4)
such that much richer cross-modal relationships can be dis-
covered. This model is also employed in the work pro-
posed by Socher et al. [32], which aims to map sentences
and images into a common space for cross-modal retrieval.
They introduced dependency trees based recursive neural
network (DTRNN) to encode language modality and argued
that the proposed DTRNN is robust to surface changes such
as word order.

Further, Karpathy and Fei-Fei [76] extended this frame-
work to learn a fine-grained cross-model alignment between
words and image regions for generating region-level descrip-
tions of images. Unfortunately, this task suffers from lack-
ing of necessary supervision information. Given images and
their correlated sentences, the one-to-one correspondence
between a word and the region it described is not yet known.
To address this problem, they selected to infer the align-
ment between segments of sentences and the regions of the
image in a cross-modal embedding space. The key idea is
to formulate the image-sentence score as a function of the
individual region-word similarity. Let vi denotes the image
regions and st denotes the words in a sentence, the score
between image k and sentence l is defined as follows:

Skl =
∑
t∈gl

maxi∈gk v
T
i st (6)

where, gk is the set of fragments in image k, gl is the set of
snippets in sentence l and each word st aligns to a unique
best image region. Additionally, assuming that k = l denotes
a matched image-sentence pair, the cross-modal ranking con-
straint can be defined as a loss function in (7), which encour-
ages aligned image-sentences pairs to have a higher score
than misaligned pairs.

rankLoss =
∑
k

∑
l

max (0, 1− Skk + Skl)

+

∑
k

∑
l

max (0, 1− Skk + Slk) (7)

The strategy to measure image-sentence similarity based
on individual region-word scores is also adopted by
Peng et al. [31], who aim to preserve the modality-specific
characteristics by utilizing the fine-grained information
within each modality during the cross-modal correlation
learning. The authors argued that different modalities have
imbalanced and complementary relationships, thus, instead
of measuring the similarity in a common space, they con-
struct an independent semantic space for each modality and
measure the cross-modal similarity in both spaces simultane-
ously. After that, the modality-specific similarity scores will

63378 VOLUME 7, 2019



W. Guo et al.: Deep Multimodal Representation Learning: A Survey

be combined into a final measurement used for cross-modal
retrieval.

In addition to cross-modal ranking, another widely used
constraint is Euclid distance. The mainstream approach
in this category is to minimize the distance of paired
samples [33], [77], [78]. An example is a model proposed
by Pan et al. [33], which aims to learn a visual-semantic
embedding used for generating video descriptions. The
model projects both visual and language representations
into a low-dimensional embedding space, where the dis-
tances between paired samples are minimized such that the
semantics of visual embeddings will be consistent with their
relevant sentences. This constraint can be expressed as a loss
term:

distanceLoss =
∑

(v,s)∈D

‖Tvv− Tss‖22 (8)

where Tv and Ts are transform matrices for video v and
sentence s, v and s are paired samples form dataset D.
Another example is the model for cross-modal matching

proposed by Liong et al. [78], which aims to reduce the
modality gap of paired data by minimizing the difference of
hidden representations over all layers. Suppose that visual
modality v and text modality t are encoded via homogeneous
feed-forward neural networks, the loss can be formulated as
follows:

distanceLoss =
∑L−1

l=1

∑N

i=1

∥∥∥hlit − hliv∥∥∥22 (9)

where l indicates a layer of bothmodality-specific networks, i
indicates a pair of instances of training data and h denotes the
hidden representations. Further, the authors also imposed a
large margin criterion to the distance of unpaired data which
aims to minimize the intra-class distance and maximize the
inter-class distance, such that more discriminative informa-
tion can be exploited. This criterion is defined as follows:{∥∥ti − vj∥∥22 ≤ θ1, if lti,vj = 1∥∥ti − vj∥∥22 ≥ θ2, if lti,vj = −1

(10)

where ti denotes the sentence i, vj denotes image j, and θ1, θ2
are the small and large thresholds respectively. The condition
lti,vj = 1 means that ti and vj belong to the same class,
otherwise, belong to the different class.

Except for learning inter-modality similaritymeasurement,
another key issue of cross-modal applications is to preserve
the intra-modality similarity structure. Awidely used strategy
is classifying the category of learned features such that they
are also discriminative within eachmodality [30], [79]. Addi-
tionally, anothermethod is to keep the neighborhood structure
within each view. The constraint in (10) is one of the imple-
mentations in this group. Another example is the work from
Wang et al. [80], which proposed to learn image-text embed-
dings via coordinated representation model which combines
cross-view ranking constraints with within-view neighbor-
hood structure preservation constraints in the loss function.
Let N (vi) denotes the neighborhood of image vi and N (ti)

denotes the neighborhood of sentence ti, the within-view
neighborhood structure preservation constraints can be for-
mulated as follows:{
d
(
vi, vj

)
+ m < d (vi, vk) ∀vj ∈ N (vi) , ∀vk /∈ N (vi)

d
(
ti, tj

)
+ m < d (ti, tk) ∀tj ∈ N (ti) , ∀tk /∈ N (ti)

(11)

In addition to the applications characterized as find-
ing one modality from another such as cross-modal
retrieval [75], [77], [80] and retrieval-based visual
description [32], another type of application of coordinated
representation is transfer knowledge across modalities, which
may enhance the semantic description capability of the
embeddings in target modality. The basic idea is minimized
the cross-modal similarity of paired multimodal data in a
common subspace during training, such that the embeddings
can capture their shared semantics, which means that the
knowledge has been transferred. Several pieces of litera-
ture mentioned above [33]–[36] can be considered as rep-
resentative examples of this idea. Furthermore, coordinated
representation can also be used for cross-domain transfer
learning which would partially reduce the need for labeled
data. For example, in order to transfer knowledge from a
large-scale cross-media dataset to small-scale one, the works
from Huang et al. [37], [38] proposed to train a pair of net-
works, each for one of the domains, and coordinate them via
minimizing the maximum mean discrepancy (MMD) [81].

Comparing to other frameworks, coordinated repre-
sentation tends to persevere the exclusive and useful
modality-specific characteristics within each modality [31].
Since different modalities are encoded in separated networks,
one of the advantages is that each modality can be inferred
individually. This property is also beneficial for cross-modal
transfer learningwhich aims to transfer knowledge across dif-
ferent modalities or domains. A disadvantage of this frame-
work is that, mostly, it is hard to learn representations with
more than two modalities.

D. ENCODER-DECODER
Recently, Encoder-decoder framework has been widely used
for multimodal translation tasks which map one modal-
ity into another, such as image caption [13], [39], video
description [14], [41], and image synthesis [15], [82]. Typi-
cally, as shown in Fig. 2(c), the encoder-decoder framework
is mainly composed of two components, an encoder, and
a decoder. The encoder maps source modality into a latent
vector v, and then, based on the vector v, the decoder will
generate a novel sample of target modality.

Althoughmost of the encoder-decodermodels contain only
an encoder and a decoder, some of the variants can also
be composed of several encoders or decoders. For example,
Mor et al. [83] proposed a model to translate music across
musical instruments, where a single encoder and several
decoders are involved. The shared encoder is responsible for
extracting domain-independent music semantics, and each
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decoder will reproduce a piece of music in the target domain.
An example including two encoders is the image-to-image
translation model proposed by Huang et al. [84]. It consists
of a content encoder and a style encoder, each is responsible
for part of the duty.

The generalized learning objective of encoder-decoder
models, take visual description as an example [41], can be
expressed as follows:

θ∗ = argmax
θ

∑
(V ,S)

log p(S|V ; θ ) (12)

which maximizes the log likelihood of the sentence S given
the corresponding visual content V and the model parame-
ters θ . Further, assuming that each word in the sequence is
produced in order, the log probability of the sentence can be
expressed as:

log p(S|V ; θ ) =
N∑
t=0

log p
(
Swt |V , Sw1 , . . . , Swt−1

)
(13)

where Swi represents the ith word in the sentence and N is the
total number of words.

Superficially, the latent vector learned by the encoder-
decoder model seems to relate only to the source mode, but
in fact, it closely relates to both source and target modalities.
Since the flowing direction of the error correction signal
is from the decoder to the encoder, the encoder is guided
by the decoder during training. Subsequently, the generated
representation tends to capture the shared semantics from
both modalities.

To capture shared semantics more effectively, a popular
solution is keeping the semantic consistency among modali-
ties via some regularization terms. It depends on the coordi-
nation between the encoder and the decoder. Both the correct
understanding of semantics in source modality and the perti-
nent generating of novel samples in targetmodality are impor-
tant for success. Take image caption [85] as an example,
the description generated by the decoder may cover multiple
visual aspects of an image including objects, attributes such
as color and size, backgrounds, scenes and spatial relation-
ships, hence, the encoder has to detect and encode necessary
information correctly, and further, the decoder will be respon-
sible for reasoning high-level semantics and generating gram-
matically well-formed sentences.

An example of explicitly considering the semantic con-
sistency between modalities is the model proposed by
Gao et al. [42], which aims to translate videos into sentences.
To tackle this problem, on the one hand, they maximized
the likelihood formulated in (13) such that sentences can be
generated correctly, on the other hand, they minimized the
representation difference in a common subspace such that
their semantics are correlated with each other. Suppose that
v denotes the visual features, s denotes the sentence embed-
dings, and R denotes a matrix used for linearly projecting
s into the subspace where v located, the consistency con-
straint can be written as loss term in (14). Another example

is the work proposed by Reed et al. [15], which endeavors
to translate characters into pixels via Generative adversarial
network (GAN) [82]. In their model, within each class,
the similarity between the source and target encodings is
maximized such that the semantics in both modalities will
keep consistent. Since the models of image synthesis are
mostly implemented by GAN, more example of this task
will be left to Section III-D which concentrates on generative
adversarial learning.

loss = ‖v− Rv‖2F (14)

On condition that the semantic consistency between
modalities has been modeled explicitly, this framework can
be used to learn cross-modal semantic embedding. For exam-
ple, based on the encoder-decoder framework, Gu et al. [86]
proposed to learn cross-modal embeddings used for retrieval.
Their model translates each of the modality into another
via distinct encoder-decoder networks and expects that the
generated images or sentences are similar to their sources.
In this model, the similarity between the generated sentence
and its corresponding reference sentences is measured by a
standard evaluation metric like BLEU [87], and the similarity
between images is measured by a discriminator which is
responsible for distinguishing whether an image comes from
the generator or not.

In early works [88], [89], the representation of visual
modality is usually a fixed visual semantic list such as objects
and their relationship which is detected explicitly by the
encoder. Then based on n-gram language models or sentence
templates, a sentence is generated by the decoder. In this way,
the problem is simplified. However, it is difficult for these
models to deal with large vocabulary or to model complex
sentence structure [41].

Recently, a more accessible way of representing source
modality is encoding essential information into a single vec-
torial representation [14]. Comparing to traditional methods,
it is more convenient for neural networks to encode informa-
tion and generate samples. However, using the single vector
as a bridge, it is challenging for both encoder and decoder
to translate semantics between modalities. A problem for
the encoder is that the high-level vectorial representation
distilled from the source may lose some information which
is useful for generating target modality [13]. Also, another
problem will arise in decoder once RNN models are used for
generating a long sequence. The information contained in the
original representation vector will be diminished during its
delivery through time steps.

Attention mechanism has become a popular solution for
both aforementioned problems. Rather than merely using a
single vector resulting from the last step of the encoder,
attention mechanism allows utilizing the intermediate rep-
resentations which distribute among time steps in an RNN
network [90] or localized regions in a CNN network [91].
For the encoder, this mechanism relieves the requirement that
the full information should be integrated into a single vector,
and thus gives more flexibility to the design of encoder.
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FIGURE 3. The model of deep multimodal RBM (adapted from [96]),
which models the joint distribution over image and text inputs.

On the other hand, for the decoder, this mechanism provides
an ability to concentrate on the part of the scene selectively
and dynamically during the prediction process. Due to its
ability to select the prominent features, attention mechanism
has been successfully used in a variety of neural networks and
has demonstrated its unique power in improving performance
in many applications [90]–[92]. Considering its significance
on multimodal representation learning, we will take a more
detailed look at its impact in Section III-E.

To address the encoding and decoding problems of
multimodal sequence, deep reinforcement learning (DRL)
is another promising solution, in which either encoding
or decoding of a sequence can be treated as sequential
decision-making problem. For example, via deep reinforce-
ment learning, Chen et al. [93] proposed to train a feature
selection module used for determining whether an input
at time step t should be included or not during encod-
ing, such that salient features can be involved while noise
will be excluded. Conversely, an exemplary application
of deep reinforcement learning during decoding is image
captioning [94], [95].

Comparing to other frameworks, one of the advantages of
the encoder-decoder framework is its being able to generate
novel samples of target modality condition on the representa-
tions of source modality. On the contrary, the disadvantage
of this framework is that each encoder-decoder can only
encode one of the modalities. Further, the complexity in
designing the generator should be taken into consideration,
since the technique for generating plausible target is still on
its development.

III. TYPICAL MODELS
In this section, some typical models in deep multimodal
representation learning will be summarized. They range from
conventional models, including probabilistic graphical mod-
els, multimodal autoencoders, and deep canonical correlation
analysis, to newly developed technologies, including gen-
erative adversarial networks and attention mechanism. The
typical models described here can be categorized into one or
more of the frameworks above introduced or can be integrated
with them.

A. PROBABILISTIC GRAPHICAL MODELS
In the deep representation learning area, probabilistic graph-
ical models include deep belief networks (DBN) [97] and

deep Boltzmann machines (DBM) [98]. Although both of
them are trained from stacked restricted Boltzmann machines
(RBM) [99] layer wisely, their structures are different. The
former is a partially directed model which consists of a
directed belief network and an RBM layer, while the latter
is a fully undirected model.

An example of probabilistic graphical models is multi-
modal DBN proposed by Srivastava and Salakhutdinov [72].
By adding a shared RBM hidden layer on top of
modality-specific DBN, it learns a joint representation
across modalities. Another model also from Srivastava and
Salakhutdinov [96] is multimodal deep Boltzmann machines
which alternatively using DBMs as the basic units for pro-
cessing data from eachmodality. As a fully undirected model,
the states of hidden units will influence each other across
modalities. Hence, the modality fusion process is distributed
across all hidden units of all layers.

The learning objective of multimodal probabilistic
graphical models is tomaximize the joint distribution over
modalities. Take multimodal DBM as an example which is
illustrated in Fig. 3, suppose that each modality is encoded
via a DBM with two hidden layers, the joint distribution can
be written as:

P(vm, vt , θ) =
∑

h(2)m ,h
(2)
t ,h(3)

P(h(2)m , h
(2)
t , h

(3))

(
∑
h(1)m

P(vm, h(1)m , h
(2)
m ))

(
∑
h(1)t

P(vt , h
(1)
t , h

(2)
t )) (15)

where vm, vt denote image and text input respectively, θ
denotes the parameters, hm = {h

(1)
m , h

(2)
m }, ht = {h

(1)
t , h

(2)
t }

denotes the hidden layers in each modality and h(3) denotes
the shared representation layer.

Unlike the strategy which connects different modalities via
a shared representation layer, Feng et al. [28] tended to max-
imize the correspondence between modalities layer wisely.
At each equivalent hidden layer, two RBMs from different
modalities are connected respectively by a correlation loss
function. In this way, the essential cross-model correlation
for cross-modal retrieval is captured.

By fusing modalities together in a unified latent space,
probabilistic graphical models can be used to learn
the essential cross-modal correlations. Based on multi-
modal deep belief networks, several applications such
as audio-visual emotion recognition [25], audio-visual
speech recognition [27], and information trustworthiness
estimation [100] have been reported. Also, based on
multimodal deep Boltzmann machines, several solutions
used for human pose estimation [101] and video emotion
prediction [26] have been proposed.

One of the advantages of probabilistic graphical models is
that they can be trained in an unsupervised fashion, allowing
the use of unlabeled data. Another advantage comes from
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FIGURE 4. The model of bimodal autoencoder (adapted from [1]), which
aims to learn a shared representation across audio and video modalities.

their generative nature, which makes it possible to gener-
ate the missing modality condition on the other ones [96].
However, due to the expensive approximate inference algo-
rithm, a crucial disadvantage of multimodal deep Boltzmann
machines is its considerably high computational cost [102].

B. MULTIMODAL AUTOENCODERS
Autoencoders is popular for its ability to learn representations
in an unsupervised manner, no labels are needed [103]. The
basic structure of autoencoders includes two components,
one is an encoder and the other is a decoder. The encoder
converts the input into a compressed hidden vector, also
known as latent representation, while the decoder endeavors
to reconstruct the input based on this latent representation
such that the reconstruction loss is minimized.

Inspired by denoising autoencoders [104], Ngiam et al. [1]
extended the autoencoders to a multimodal setting. They
trained a bimodal deep autoencoder to learn a shared rep-
resentation across audio and video modalities. Showed as
Fig. 4, in this model, two separated autoencoders are com-
bined in the common latent representation layer while keep-
ing their encoders and decoders independent. To capture the
cross-modal correlations robustly, depended on the shared
representation, each modality can be reconstructed, even
when one of the modalities is absent. Let (xi, yi) denotes a
pair of inputs and (x̂i, ŷi) denotes their reconstructed outputs,
the basic optimization objective of this model is tominimize
the reconstruction loss of both modalities formulated as
follows:

Loss =
∑N

i=1
(
∥∥xi − x̂i∥∥22 + ∥∥yi − ŷi∥∥22) (16)

Similar to the work fromNgiam, Silberer and Lapata [105]
proposed a variant to learn semantic representations from tex-
tual and visual input. In addition to reconstruction loss, a clas-
sification loss is also optimized simultaneously to ensure the
ability that different objects can be discriminated based on the
learned latent representations. Another variant is the model
proposed by Wang et al. [106] which imposed orthogonal
regularization on the weights to reduce the redundancy in the
learned representation.

Other than learning representation in a common subspace,
Feng et al. [11] proposed to learn a couple of independent
while correlated representation for each modality. In their
model, eachmodality is encoded via individual autoencoders.
In addition to the reconstruction loss of both modalities,
the model minimizes the similarity loss between modalities
such that the correlation between them can be captured.
The author implied that a balance between both losses is
vital for higher performance. This idea is also adopted by
Wang et al. [107] who assigned separated weights to recon-
struction loss of different modalities.

Besides the above-mentioned models, autoencoders are
also used for extracting intermediate features. Generally,
this type of models can be characterized as two stages of
learning strategy. In the first step, based on unsupervised
learning, the modality-specific features are extracted via
separated autoencoders. Then, in the next step, a particular
supervised learning procedure will be imposed to capture
the cross-modal correlations. For example, based on autoen-
coders, Liu et al. [6] extracted modality-specific features sep-
arately, then fused them in a neural network via supervised
learning. Another instance is the work of Hong et al. [108],
which learns a mapping from one modality to another based
on the features learned from autoencoders.

The first advantage of autoencoders is that the learned
latent representation can preserve the dominant semantic
information of input data. In the view of the generativemodel,
since the input can be reconstructed from this latent repre-
sentation, it is believable that the critical factors for gener-
ating the input have been encoded. The second advantage
is that it can be trained by unsupervised manner, without
labels required. However, since this model is mainly designed
for general purpose, in order to improve its performance in
specific tasks, additional constraints or supervised learning
process should be involved.

C. DEEP CANONICAL CORRELATION ANALYSIS
Canonical correlation analysis (CCA) [109] is a method
originally used for measuring the correlation between a
pair of sets. In the multimodal representation learning sce-
nario, given two sets of data x[x1,x2, · · · , xn] ∈ Rn×dx and
y[y1,y2, · · · , yn] ∈ Rn×dy , where each pair (xi, yi) is a data
sample including two modalities, CCA aims to find two sets
of basis vectors wx and wy used for mapping multimodal
data into a shared d dimensional subspace, such that the
correlation between the projected representations, Px = wTx x
and Py = wTy y, is maximized [5], [110]. In the case each set
x and y has a zero mean, the objective function can be written
as (17), where ρ denotes the correlation coefficient, and C
denotes the covariance matrix.

ρ = max
wx ,wy

corr(wTx x,w
T
y y)

= max
wx ,wy

wTx Cxyw
T
y√

(wTx Cxxwx)(wTy Cyywy)
(17)
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Since ρ is invariant to the scale of wx or wy, the opti-
mization objective can be further reformed as a constrained
optimization problem as follows:

max
wx ,wy

wTx Cxyw
T
y s.t. w

T
x Cxxwx = 1, wTy Cyywy = 1 (18)

The basic CCA is limited to modeling linear relation-
ship, regardless of the truth of probability distribution in
different data views. To address this problem, many exten-
sions have been proposed. One of the non-linear exten-
sions is kernel CCA [111] which transforms the data into a
higher dimensional Hilbert space before applying the CCA
method. However, KCCA suffers from poor scalability [112],
in that its closed form solution requires computation of
high time complexity and memory consumption. Alter-
natively, some approximation methods such as Nyström
method [113], incomplete Cholesky decomposition [114],
partial Gram Schmidt orthogonalization [115], and block
incremental SVD [116] can be used to speed up this model.
Another drawback of KCCA is its poor efficiency, which
results from its requirement of accessing to all training sets
when transforming an unseen instance [117].

A new extension of CCA is deep CCA [117], which aims
to learn a pair of more complex non-linear transformation for
different modalities. The basic structure of this model can be
illustrated by Fig. 2(b), where each modality is encoded by a
deep neural network, then in a common subspace, the canon-
ical correlation between modalities is maximized. Let Hx =
fx(x, θx) and Hy = fy(y, θy) are non-linear transformation
functions implemented by neural network which mapped x
and y into a shared subspace, the optimization objective is to
maximize the cross-modality correlation between Hx and
Hy formulated as follows:

max corr(Hx ,Hy) = max
θx ,θy

corr(fx(x, θx), fy(y, θy)) (19)

Comparing to a particular kernel function used in KCCA,
the non-linear function learned from the neural network is
far more general. Hence, DCCA exhibits better performance
in adaptability and flexibility. Meanwhile, as a parametric
method, DCCA scales better with data size and does not
require to reference to train data during testing.

Commonly, a maximized correlation objective focuses on
learning the shared semantic information but tends to ignore
modality specific knowledge. To address this problem, extra
regularization terms should be considered. For example,
Wang et al. [118] proposed a variant of DACC name deep
canonically correlated autoencoders (DCCAE). In addition
to maximize the correlation between views, this model also
minimizes the reconstruction error of each view via autoen-
coders architecture. The role of additional autoencoders can
be interpreted as a regularization item which aims to raise the
lower bound of mutual information between views.

So far, most DCCA based applications can be character-
ized as predicting one modality given another, while DCCA
can also be used to generate novel samples. Based on the
probabilistic interpretation of CCA [119], Wang et al. [120]

proposed an extension named deep variational canonical cor-
relation analysis (VCCA). As a generative model, VCCA
enables us to obtain unseen samples of each view. The basic
probabilistic interpretation of CCA assumes that two views
of observed variable x and y are generated according to
conditional probabilities p(x|z) and p(y|z), where z is a latent
variable shared by both views. Other than a linear assumption
between x, y and z, implemented via DNN network, VCCA
aims to model a non-linear relationship among them, which
potentially has a stronger representation power. Specifically,
the optimization objective of VCCA is a variational lower
bound of the likelihood which can be expressed as a sum over
data samples. Hence, the model can be trained via stochastic
gradient descent method conveniently.

A challenge for DCCA is its relatively poor scala-
bility. Directly inherited from basic CCA, the standard
correlation function couples all training samples together
and cannot be expressed as a sum of all data samples.
Thus, Andrew et al. [117] choose a batch-based algorithm
(L-BFGS) to optimize the network. However, it computes
gradients over entire data samples and requires high memory
volume which is infeasible for large datasets. In order to
improve the scalability of DCCA, some efforts have been
made. Wang et al. [121], [122] adopted a stochastic opti-
mization method with large mini-batch to approximate the
gradients. As a result, the problem of memory consumption
is relieved.

Recently, a more efficient optimization solution named
Soft CCA, which requires lower computation complexity, has
been proposed by Chang et al. [123]. Unlike to traditional
CCA which constrains the correlation matrix over the train-
ing batch to be an identity matrix, Soft CCA relaxes this
constraint to a loss in (20), which minimizes the L1 loss
of off-diagonal element in constraint matrix. By expressing
CCA objective as a loss function, Soft CCA avoids some
computationally expensive operations such as matrix inver-
sion and singular value decomposition (SVD). Thus, Soft
CCA is effective and more scalable in computation.

LSDL =
∑k

i=1

∑k

j 6=i

∣∣φij∣∣ (20)

Comparing to another type of model in the coordi-
nated framework, cross-modal similarity method, one of
the advantages of DCCA is that it can be trained in an
unsupervised manner. Due to these advantages, DCCA has
been widely used for various multi-view and multimodal
learning tasks including word embedding in a multilingual
context [124], [125], acoustic features representation [121],
matching images and text [29], music retrieval [126], and
speech recognition [127], [128]. On the contrary, the draw-
back of DCCA is the higher computation complexity which
may limit its scalability in data size.

D. GENERATIVE ADVERSARIAL NETWORK
Generative adversarial network (GAN) is an emerging deep
learning technique. As an unsupervised learning method,
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FIGURE 5. The conceptual structure of basic generative adversarial
networks.

it can be used for learning data representation without
involving labels, which will significantly lower the depen-
dence on manual annotations. Also, as a generative method,
it can be used for generating high-quality novel samples
according to the distribution of training data. Since 2014,
after being proposed by Goodfellow et al. [82], the genera-
tive adversarial learning strategy has been successfully used
for various unimodal applications. One of the best-known
applications is image synthesis [82], [129], [130], which gen-
erates high-quality images according to a random input
drawn from a normal distribution. The other success-
ful examples including image-to-image translation [131]
and image super-resolution [132]. Most recently, generative
adversarial learning strategy is further extended to multi-
modal cases such as text-to-image synthesis [15], [44], visual
captioning [40], [43], cross-modal retrieval [30], multimodal
features fusion [4], and multimodal storytelling [133]. In this
section, we will briefly introduce the fundamental concepts
of GAN and discuss its role in multimodal representation
learning.

Generally, a generative adversarial network is composed of
two components, a generative networkG playing as a genera-
tor and a discriminative networkD playing as a discriminator,
contesting with each other. The network G is responsible
for generating new samples according to the learned data
distribution. While the network D aims to discriminate the
difference between an instance generated by network G and
an item sampled from the training set. Commonly, both com-
ponents,G andD, are implemented via deep neural networks.
The generator G can be considered as a function mapping

a vector in latent space, z, into a sample in data space, and
this mapping can be formulated as G(z; θg) → x, where
θg is the parameters of G. Similarly, the discriminator D
can be formulated as D(x, θd ) → p, mapping a matrix or
a vector into a scalar probability value predicting whether
a sample is drawn from training data or not, where θd is
the parameters of D and p ∈ (0, 1). Although G generates
novel samples from distribution Pg(x), it endeavors to capture
the ground truth Pdata(x). Once the distribution Pg estimates
Pdata well enough, the discriminator D will be confused,
and its prediction accuracy will be lowered. Theoretically,
Goodfellow et al. [82] shows that the global optimum can be
achieved on condition that Pg = Pdata. In such a case, the dis-
criminator is unable to distinguish the difference between

them, and the predicted probability pwill be 0.5 for all inputs.

min
G

max
D

V (G,D) (21)

V (G,D) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)(1− logD(G(z))) (22)

The optimization objective of GANs is a solution of (21),
where function V (G,D) is the cross-entropy loss of discrim-
inator D which formulated in (22). During the training pro-
cess,G andDwill be updated in an iterative paradigm. While
one of the components is updated, the parameters of another
one will keep fixed. In step one, given samples from either
generator or training dataset, the discriminator is trained to
tell them apart. This objective is achieved by maximizing
function V . On the other hand, in step two, the generator is
trained to produce samples sufficient to confuse the discrim-
inator. This objective is achieved by minimizing the func-
tion V . In such an adversarial manner, both subnets evolve
alternately.
Comparing to classic representation learning methods,

a visible difference for GANs is that the learning process
of data representation is not straightforward. It is rather in
an implicit paradigm. Unlike traditional unsupervised rep-
resentation methods, such as autoencoders, which learns a
mapping from data to latent variables directly, GANs learns
a reverse mapping from latent variables to the data samples.
Specifically, the generator maps a random vector into a dis-
tinctive sample. Thus, this random signal is a representation
corresponding to generated data. On condition that Pg fits
Pdata well, this random signal is a good enough representation
for realistic training data.
However, despite the success of GANs in image synthesis,

a disadvantage of basic GANs is that the latent representation
is hard to be interpreted since such a random representation
has no connectionwithmeaningful semantics. To improve the
interpretability of this latent representation, Chen et al. [134]
introduced a semantically meaningful method name Info-
GAN which separates the random noise vector into several
groups, z and c = (c1, . . . , cL). By maximizing the mutual
information between latent variable c and generator distribu-
tionG(z, c), the model encourages the different ci to represent
uncoupled salient attributes. As a result, a modification on the
value of ci will lead to a change of its relevant data attributes
such as shape or style.

Another disadvantage of basic GANs is its lacking of
a direct mapping from data to latent space which is crit-
ical for representation learning in traditional tasks such
as retrieval and classification. To address this problem,
some techniques equipped with an additional inference net-
work have been proposed [135], [136]. Other typical models
which can translate representations between data space and
latent space bi-directionally include Adversarially Learned
Inference model (ALI) [137] and Bidirectional Generative
Adversarial Networks (BiGANs) [138]. In these models,
the generator comprises a pair of parallel networks: a decoder
used for mapping a latent vector z into a novel sample x̂,
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FIGURE 6. The conceptual structure of text-to-image generative
adversarial networks.

and an encoder which is responsible for inferring ẑ from x.
The decoder and the encoder will be optimized jointly such
that the tuples

(
x̂, z

)
and

(
x, ẑ

)
are similar enough to fool the

discriminator.
Most recently, generative adversarial learning strategy has

been extended to multimodal representation cases, mainly
including cross-modal translation and retrieval. Although in
both applications, the core role of adversarial learning is
narrowing the distribution difference between modalities,
their focuses are slightly different. Specifically, in cross-
modal translation applications, GANs will help the encoder
to capture shared semantic concepts amongmodalities, while,
in cross-modal retrieval, given paired multimodal inputs, they
will help the coupled encoders to yield paired representations
that are similar enough in common subspace.

In cross-modal translation area, take text-to-image syn-
thesis as an example, one of the key challenges is to prop-
erly encode visual concepts such as object categories, colors
and location from text descriptions into a vector such that
another modality can be generated correctly according to this
intermediate representation. To address this problem, based
on conditional generative adversarial nets (CGAN) [139],
Reed et al. [15] proposed an end-to-end architecture to train
the text encoder. As Fig. 6 illustrated, in this model, the text
input acted as the condition is encoded into vector T ,
then T along with a noise vector Z are translated into
an image, after that, the discriminator will tell whether T
and the image encoding V is compatible or not. To gain a
visually-discriminative vector representation of text descrip-
tions, the optimization objective is a structured loss [140]
formulated as follows:

1
N

∑N

n=1
1(yn, fv(vn))+1(yn, ft (tn)) (23)

where {(vn, tn, yn) , n = 1, . . . ,N } is the training set,1 is the
0-1 loss, vn are the images, tn are the text descriptions, and yn
are the class labels. Classifiers fv and ft are defined as follows:

fv(v) = argmax
y∈Y

Et∼T (y)

[
φ(v)Tϕ(t)

)
] (24)

ft (t) = argmax
y∈Y

Ev∼V(y)

[
φ(v)Tϕ(t)

)
] (25)

where ϕ denotes the text encoder, φ denotes the image
encoder, T (y) denotes the text set belongs to class y and

likewise V(y) for images. Via optimizing loss function (23),
the adversarial process between G and D will not only guide
the generator to align images with the text descriptions but
also help the text encoder to capture shared visual semantic
concepts among modalities.

To improve the performance of text-to-image synthesis,
several models [44], [141], [142] which share the same basic
structure illustrated in Fig. 6 have been proposed. In differ-
ent ways, they improved the text encoder such that visual
information from text descriptions can be encoded more
explicitly. Zhang et al. [44] adopted a sketch-refinement pro-
cess to generate photo-realistic images. Conditioned on text
descriptions, their model firstly sketches a low-resolution
image and then generates a high-resolution image in the
refinement stage. Also, in this model, in order to improve
the diversity of the synthesized images, they introduce a
Conditioning Augmentation technique to encourage the text
encoding to be smooth in the latent conditioning space.
In [141], Reed et al. combined object location information,
which is provided by bounding boxes or key points, with
the text descriptions to describe what content to draw in
which location. Other than using a sentence as the condi-
tion, Johnson et al. [142], instead, proposed to use a scene
graph as the input of the translation network. To process the
scene graphs, in the proposed model, a graph convolution
network is designed to encode the nodes and edges informa-
tion into representation vectors. Comparing to unstructured
text, the structured scene graphs which describe objects and
their relationships explicitly will help for generating complex
images.

In the cross-modal retrieval area, the main role of GANs is
to help the coupled encoders to yield paired representations
that are similar enough in common subspace. The key idea
is mapping paired inputs into a common subspace such that
the discriminator cannot distinguish which modality a feature
comes from. According to the input contents of the dis-
criminator, the typical structures of cross-modal adversarial
models can be generalized into two categories. In the first cat-
egory, which is illustrated in Fig. 7(a), the inputs of themodal-
ity discriminator are features generated by encoders. While in
the second category illustrated by Fig. 7(b), the inputs are data
samples. The rest of this section, we will describe both types
of learning strategies.

As Fig. 7(a) showed, the cross-modal adversarial model
of the first category is composed of two generators and a
discriminator. Each generator is a feature encoder used for
mapping either text or images into a common latent subspace,
where features from different modalities can be compared
directly. The desired goal is to narrow the distribution gap of
different modalities, which means that the data with a similar
semantic from different modalities may be mapped into the
adjacent points in common space. During training, the gen-
erators seek to yield modality-invariant representations; on
the contrary, a modality classifier, also the discriminator of
GANs, is used for discriminating where a feature comes
from. Once the discriminator cannot distinguish the source
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FIGURE 7. Two methods used for improving modality-invariant property via adversarial learning. The key idea is mapping paired inputs into a
common subspace such that the discriminator cannot distinguish which modality a feature comes from. (a) Discriminate which modality a
feature comes from. (b) Discriminate whether the input is a pair or not.

of feature vectors, the distribution gap of different modalities
will be minimized accordingly.

Based on the learning strategies of the first category,
several models used for cross-modal retrieval have been
proposed [4], [30], [143]. In these models, the adversarial
process is served to enforce the distributions of projected
representations from different modalities to be closer to each
other. The main difference between them is the way how
to preserve the intra-modality and inter-modality similarities
simultaneously. For example, Wang et al. [30] proposed to
learn presentations that are modality-invariant and discrimi-
native. In addition to the modality classifier, a label predictor
is also integrated into this model to keep the learned features
discriminative within each modality. Further, a triplet mar-
gin rank constraint is added to the label classifier such that
inter-modality similarity can be preserved.

Peng et al. [4] proposed to learn discriminative common
representation for bridging the heterogeneity gap. In their
model, the generator is formed by a cross-modal autoencoder
with weight-sharing constraint, and the discriminator is com-
posed of two kinds of discriminative modules: intra-modality
and inter-modality discriminators. The generator seeks to
project multimodal inputs into common subspace with two
useful properties, keeping semantic consistency within each
modality and distribution consistency among modalities,
on the contrary, the discriminators tries to detect the inconsis-
tency. Specifically, the intra-modality discriminator aims to
distinguish generated reconstruction feature from the original
input, while the inter-modality discriminator endeavors to tell
which modality a feature comes from.

The model proposed by Xu et al. [143] aims to learn
cross-modal representations which are maximally correlated
and statistically indistinguishable in the common subspace.
They decompose the whole problem into three loss terms: an
adversarial loss which is utilized to minimize the statistical
difference between distributions of different modalities, a fea-
ture discrimination loss which ensures the representations to
be discriminative within each modality, and a cross-modal
correlation loss which is responsible for keeping cross-modal
similarity structure. Specifically, the cross-modal correlation
loss is measured by the square distance between pairs of

samples come from different modalities. If a pair come from
the same category, its distance will be minimized. Otherwise,
it is maximized.

As Fig. 7(b) showed, the cross-modal adversarial model
of the second category contains an encoder-decoder network,
which translates one modality into another. For example,
given a pair of input (v, t), the encoder maps t into a rep-
resentation vector, then the decoder, playing as the generator,
maps this vector into a reproduced sample v̂. The generated
sample v̂ is expected to sufficiently similar to v, such that the
reproduced pair (v̂, t) is considered as a real pair by the dis-
criminator. On condition that the learned representation can
be translated into another modality soundly, it is believable
that the cross-modal invariant property has been preserved.
An example in this category is the model proposed by Gu
et al. [86] which integrated a generative adversarial network
in their model to train a text encoder. In the following, more
examples will be shown to demonstrate how this model can
be used in practice.

Zhang et al. [144] adopted GANs to model cross-modal
hashing in an unsupervised fashion. In addition to preserving
inter-modality and intra-modality correlations in the common
hash space, the property preserving manifold structure across
different modalities is also desired in their model. Given a
sample from a modality, the generator is trained to select a
sample from another modality located in the same manifold.
Then, the discriminator will determine whether the generated
pair of samples belonging to the same manifold structure or
not. Here, the hash codes play a key role for both generator
and discriminator. Specifically, the generator selects samples
conditioned on hash codes; also, the discriminator judges
their correlation between modalities based on hash codes.
The adversarial learning process is used for enhancing the
property of preserving cross-modal manifold structure in a
common hash space.

Wu et al. [145] extended CycleGAN [146] to learn
cross-modal hash functions on the condition without paired
training samples are available. CycleGAN can be seen as a
special case of the second category, which includes a pair
of encoder-decoder, each of them is designed to translate
one modality into another. For example, given an input v,
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FIGURE 8. The typical structure of key-based attention mechanism. The attention module uses the current state (ht ) as a key to search
salient elements in the source ({ai }).

the model translates v into t , and then t is reversely translated
back to v̂, it is expected that v ≈ v̂. Similarly, given an input t ,
a reconstructed t̂ is expected to roughly equal with t . Based on
the cycle-consistent constraint in both modalities, the model
can be trained in the absence of paired training samples.

One of the advantages of GAN is that it can be trained
by unsupervised learning which will significantly lower the
dependence on manual annotations. Another advantage is
its powerful ability to generate high-quality novel samples
according to the distribution of training data. However,
though a unique global optimum is existent theoretically,
it is challenging to train a GAN system which may suffer
from training instability, either ‘‘collapsing’’ or failing to
converge [147]. Although several improvements have been
proposed [147]–[150], the way for stabilizing the training of
GANs remains an open problem.

E. ATTENTION MECHANISM
Attention mechanism allows a model to focus on specific
regions of a feature map or specific time steps of a feature
sequence. Via attention mechanism, not only an improved
performance can be achieved, but also better interpretabil-
ity of feature representations can be seen. This mecha-
nism mimics the human ability to extract the most discrim-
inative information for recognition. Rather than using all
of the information at once, the attention decision process
prefers to concentrate on the part of the scene selectively
which is needed [151]. Recently, this method has demon-
strated its unique power in improving performance in many
applications such as visual classification [152]–[154], neu-
ral machine translation [155], [156], speech recognition [92],
image captioning [13], [91], video description [42], [90],
visual question-answering [24], [157], cross-modal retrieval
[31], [158], and sentiment analysis [22].

According to whether a key is used during selecting part of
the features, attention mechanism can be categorized into two
groups: key-based attention, and keyless attention. Key-based
attention used a key to search for salient localized features.
Take image caption as an example [13], its typical structure
can be illustrated as Fig. 8, where a CNN network encodes
the image into a feature set {ai}, and then an RNN network
decodes the input into hidden states {ht }. In time step t ,
the output yt is predicted based on ht and ct , where ct is the
salient feature summarized from {ai}. During the process of

extracting the salient feature ct , the current state ht in decoder
plays as a key and the encoder states {ai} play as a source
to be searched [159]. The computation method of attention
mechanism [13], [156] can be defined as (26) to (28), and the
compatibility scores between the key and the sources can be
evaluated via one of the three different functions listed in (29).

eti = score(ai, ht ) (26)

αti =
exp(eti)∑L
i=1 exp(eti)

(27)

ct =
∑L

i=1
αtiai (28)

score(ai, ht ) =


hTt ai
hTt Waai
vTa tanh(Wa[ht ; ai])

(29)

Key-based attention is widespread in visual description
applications [13], [90], [160], where an encoder-decoder net-
work is commonly used. It brings us an approach to evaluate
the importance of the features within a modality or among
modalities. On the one hand, attention mechanism can be
used to select the most salient features within a modality,
on the other hand, it can be used to balance the contribution
among modalities during fusing several modalities.

In order to recognize and describe objects contained in
the visual modality, a set of localized region features, which
potentially encode different objects distinctly, would be more
helpful than a single feature vector. By selecting the most
salient regions in an image or time steps of a video sequence
dynamically, both system performance and noise tolerance
can be improved. For example, Xu et al. [13] adopted atten-
tion mechanism to detect salient objects in an image and
fused them with text features in a decoder unit for captioning.
In such a case, guided by current text generated in time step t,
the attention module will be used to search local regions
appropriate for predicting next word.

For locating local features more accurately, several atten-
tion models have been proposed. Yang et al. [157] proposed
a stacked attention network for searching image regions.
They suggested that multiple steps of search or reasoning are
helpful to locate to fine-grained regions. In the beginning,
the model locates one or more local regions in the image by
attention using language features as a key and then combines
the attended visual and language features into a vector, which

VOLUME 7, 2019 63387



W. Guo et al.: Deep Multimodal Representation Learning: A Survey

also plays as a key used for next iterator. After K steps,
not only the appropriate local regions are located, but both
features are fused. Zhu et al. [161] proposed a structured
attention model to capture the semantic structure among
image regions, and their experiments showed that this model
is capable of inferring spatial relations and attending to the
right region. Chen et al. [162] proposed to incorporate spatial
and channel wise attentions in a CNNnetwork. In theirmodel,
not only local regions but also channels of CNN features are
filtered simultaneously.

So far, attention models are mostly trained using indirect
cues because of lacking explicit attention annotations. Alter-
natively, Gan et al. [163] trained the attention module using
direct supervision. They collected link information between
visual segments and words from several datasets and then
utilized the link information to guide the training of attention
module explicitly. The experiments showed that improved
performance could be achieved.

Balancing the contribution of different modalities is a
key issue that should be considered during fusing multi-
modal features. By contrast to concatenation or fixed weights
fusion methods, an attention-based method can adaptively
balance the contributions of different modalities. Several
pieces of research [90], [91], [164] have been reported that
dynamically assigning weights to modality-specific features
condition on a context is helpful to improve application
performance.

Hori et al. [90] proposed to tackle multimodal fusion based
on attention for video description. In addition to attending
on specific regions and time steps, the proposed method
highlights attending on modality-specific information. After
modality-specific features have been extracted, the atten-
tion module produces appropriate weights to combine fea-
tures from different modalities based on the context. In a
cross-modal retrieval task, Chen et al. [164] adopted a similar
strategy to adaptively fuse modalities and filter out unrelated
information within each modality according to search keys.

Lu et al. [91] introduced an adaptive attention frame to
determine whether including a visual feature or not during
generating the caption. They argued that some words such as
‘‘the’’ are not related to any visual object. Therefore, no visual
feature is needed in this case. Suppose that the visual feature
is excluded, the decoder would just depend on the language
features to predict a word.
Keyless attention is mostly used for classification or regres-

sion task. In such an application scene, since the result is
generated in a single step, it is hard to define a key to guide
the attention module. Alternatively, the attention is applied
directly on the localized features without any key involved.
The computation functions can be illustrated as flow:

ei = score(ai) (30)

αi =
exp(ei)∑L
i=1 exp(ei)

(31)

ci =
∑L

i=1
αiai (32)

score(ai) =

{
vT ai
vT tanh(Wai)

(33)

Due to the nature to select prominent cues from raw input,
keyless attention mechanism is suitable for a multimodal
feature fusion task which suffers from issues such as semantic
confliction, duplication, and noise. Through the attention
mechanism, it provides us an approach to evaluate the rela-
tionship between parts of modalities, which may be com-
plementary or supplementary. By selecting complementary
features from different modalities and fusing them into a
single representation, the semantic ambiguity could be eased.

The advantage of attention mechanism in multimodal
fusion has been proven in many applications. For example,
Long et al. [165] compared four multimodal fusion methods
and demonstrated that attention based method is the most
effective one for addressing the video classification problem.
They performed experiments in different setups: early fusion,
middle-level fusion, attention-based fusion, and late fusion,
which corresponding to different fusion points. The experi-
mental result also shows that attention based fusion method
is robust across various datasets. Some other researches also
demonstrated the promising perspective of attention based
methods for multimodal features fusion [166], [167].

A special issue on multimodal feature fusion is fusing fea-
tures from several variable length sequences such as videos,
audios, sentences or a set of localized features. A simple way
to tackle this problem is fusing each sequence independently
via the attention mechanism. After each sequence has been
combined into a weighted representation with a fixed length,
they will be concatenated or fused into a single vector. This
way is beneficial for fusing several sequences, even in the
case that their lengths are different, which is commonly
seen in a multimodal dataset. However, such a simplified
method does not explicitly consider the interaction between
modalities, and thus may ignore the fine-grained cross-modal
relationships.

A solution to model the interactions between attention
modules is constructing a shared context as an extra condition
for the computation of modality-specific attention modules.
For example, Lu et al. [24] proposed to construct a global
context by calculating the similarity between visual and text
features. Nam et al. [158] used an iterative strategy to update
the shared context and modality-specific attention distribu-
tion. Firstly, modality-specific features will be summarized
based on attention modules, then they are fused into a context
used for next iterator.

Recently, a novel learning strategy named multi-attention
mechanism, which utilizes several attention modules to
extract different types of features from the same input data,
has been exploited. Generally, each type of feature locates in
a distinct subspace and reflects different semantics. Hence,
the multi-attention mechanism is helpful in discovering dif-
ferent inter-modal dynamics. For example, Zadeh et al. [22]
proposed to discovery diverse interactions between modal-
ities using multi-attention mechanism. At each time step t ,
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TABLE 3. A summary of the key issues, advantages and disadvantages for each framework or typical model described in this paper. One thing should be
mentioned is that both cross-modal similarity model and deep canonical correlation analysis (DCCA) are belonged to coordinated representation
framework.

the hidden states hmt from all modalities were concatenated
into vector ht , then multi-attentions will be applied on ht to
extract K different weighted vectors which reflect distinctive
cross-modal relationships. After that, all the K vectors are
fused into a single vector which represents the shared hidden
state across modalities at time t .

Another example is the model form Zhou et al. [167],
which fused heterogeneous features of user behavior based on
multi-attention mechanism. Here, a user behavior type can be
seen as a distinctive modal, because different types of behav-
iors have distinctive attributes. The author supposed that the
semantics of user behavior can be affected by the context.
Hence, the semantic intensity of that behavior also depends
on the context. Firstly, themodel project all types of behaviors
into a concatenated vector denoted as S, which is a global
feature and plays as the context in the attentionmodule. Then,
S is projected into K latent semantic sub-spaces to represent
different semantics. After that, the model fuses K sub-spaces
through attention module.

One of the advantages of attention mechanism is its capa-
bility to select salient and discriminative localized features,
which can not only improve the performance of multimodal
representations but also lead to better interpretability. Addi-
tionally, by selecting prominent cues, this technique can also
help to tackle issues such as noise and help to fuse comple-
mentary semantics into multimodal representations.

IV. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we provided a comprehensive survey on deep
multimodal representation learning. According to the under-
lying structures in which different modalities are integrated,

we category deep multimodal representation learning meth-
ods into three groups of frameworks: joint representation,
coordinated representation, and encoder-decoder. Addition-
ally, we summarize some typical models in this area, which
range from conventional models to newly developed tech-
nologies, including probabilistic graphical models, multi-
modal autoencoders, deep canonical correlation analysis,
generative adversarial networks, and attention mechanism.
For each framework or model, we describe its basic struc-
ture, learning objective, and application scenes. Additionally,
we also discuss their key issues, advantages, and disadvan-
tages which have been briefly summarized in Table 3.

When coming into the learning objectives and key issues
in all kinds of learning frames or typical models, we can
clearly see that the primary objective of multimodal repre-
sentation learning is to narrow the distribution gap in a joint
semantic subspace while keeping modality specific semantic
intact. They achieve this objective in different ways: joint
representation framework maps all modalities into a global
common subspace; coordinated representation framework
maximizes the similarity or correlation between modalities
while keeping each modality independent; encoder-decoder
framework maximizes the condition distribution among
modalities and keep their semantics consistent; probabilistic
graphical models maximize the joint probability distribution
across modalities; multimodal autoencoders endeavor to keep
modality specific distribution intact by minimizing the recon-
struction errors; generative adversarial networks aims to nar-
row the distribution difference between modalities by an
adversarial process; attention mechanism selects salient fea-
tures from modalities, such that they are similar in local
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manifolds or such that they are complementary with each
other.

With the rapid development of deep multimodal repre-
sentation learning methods, the need for much more train-
ing data is growing. However, the volume of the current
multimodal datasets is limited because of the high cost of
manual labeling. The acquirement of high-quality labeled
datasets is extremely labor-consuming. A popular solution to
address this problem is transfer learning, transferring gen-
eral knowledge from the source domain with a large-scale
dataset to target domain with insufficient data [168]. Trans-
fer learning has been widely used in the multimodal repre-
sentation learning area and has been shown to be effective
in improving performance in many multimodal tasks. One
of the examples is the reuse of pre-trained CNN network
such as VGGNet [48], ResNet [49], which can be used for
extracting image features in a multimodal system. The sec-
ond example is word embeddings such as word2vec [50],
Glove [51]. Although these representations of words are
trained only on general-purpose language corpora, they
can be transferred to other datasets directly even without
fine-tuning.

In contrast to the widespread use of convenient and effec-
tive knowledge transfer strategy in image and language
modality, similar methods are not yet available within audio
or video modality. Hence, the deep networks used for extract-
ing audio or video features would more easily suffer from
overfitting due to the limited training instances. As a result,
in many applications such as sentiment analysis and emotion
recognition which based on fused multimodal features, it is
relatively hard to improve the performance when only audio
and video data are available. Alternatively, most works have
to increasingly rely on a stronger language model. Although
some efforts have been made to transfer cross-domain knowl-
edge to audio and video modalities, in the multimodal rep-
resentation learning area, more convenient and effective
methods are still required.

In Addition to the knowledge transferring within the
same modality, cross-modal transfer learning which aims to
transfer knowledge from one modality to another is also a
significant research direction. For example, recent studies
show that the knowledge transferred from images can help
to improve the performance of video analysis tasks [169].
Besides, an alternative but the more challenging approach
is the transfer learning between multimodal datasets. The
advantage of this method is that the correlation information
among different modalities in the source domain can also be
exploited, while the weakness is its complexity, both modal-
ity difference and domain discrepancy should be tackled
simultaneously.

Another feasible future direction to tackle the problem
of relying on large scale labeled datasets is unsupervised
or weakly supervised learning, which can be trained using
the ubiquitous multimodal data generated by internet users.
Unsupervised learning has been widely used for dimension-
ality reduction and feature extraction on unlabeled datasets.

That is why conventional unsupervised learning methods
such as multimodal autoencoders are still active today,
although comparing to CNN or RNN features their perfor-
mance are not so good. Due to a similar reason, generative
adversarial nets has recently attracted much attention in the
multimodal learning area.

Most recently, weakly supervised learning has demon-
strated its potential in exploiting useful knowledge hidden
behind the multimodal data. For example, given an image
and its description, it is highly possible that a segment can be
described by some words in the sentence. Although the one-
to-one correspondences between them are fully unknown,
the work proposed by Karpathy and Fei-Fei [76] shows
that these hidden relationships can be discovered via weakly
supervised learning. Potentially, a more promising applica-
tion of these type of weak supervision based methods is video
analysis, where different modalities such as actions, audios,
languages have been roughly aligned in the timeline.

For a long time, multimodal representation learning suffers
from issues such as semantic confliction, duplication, and
noise. Although attention mechanism can be used to address
these problems partially, they work implicitly and cannot
be controlled actively. A more promising method for this
problem is integrating reasoning ability into multimodal rep-
resentation learning networks. Via the reasoning mechanism,
a systemwould have the capability to select evidence actively
which is sorely needed and could play an important role in
mitigating the impact of these troubling issues. We believe
that the close combination of representation learning and their
reasoning mechanism will endow machines with intelligent
cognitive capabilities.
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