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ABSTRACT A multisensor system is used to improve the ability of monitoring and tracking accuracy
of an engineering system since only one sensor is not enough, whereupon, faulty diagnosis, as a typical
information fusion problem which is under multisensor environment, has attracted much attention in recent
years. The evidence theory has been widely used to solve this problem. However, when there is a high
level of conflict between the information gathered from different sensors, the counter-intuitive result could
be obtained when using the classical Dempster’s combination rule. To address this problem, an improved
multisensor data fusion method is proposed to fuse the data collected from multisensors. Some numerical
examples are illustrated to show that the proposed method is effective and feasible. Moreover, the fusion
results using different methods are analyzed, which indicate the superiority and stronger application of the
proposed method in the field of fault diagnosis.

INDEX TERMS Conflict evidence, Dempster’s combination rule, belief entropy, Dempster-Shafer evidence
theory, information theory.

I. INTRODUCTION
With the development of various defense, surveillance, and
traffic control systems, higher and higher requirements are
placed on sensors [1]–[3]. Especially in military applications,
sensor systems are required to have greater reliability and
flexibility. Traditional single sensor systems have been diffi-
cult to adapt to the needs of sensor performance. To this end,
the research on multisensor systems is still in the process.
At the same time, the information obtained from different
sensors may be uncertain, fuzzy, or even conflict. Since so
many scenarios need the fusion of multisensors information
[4], [5], it is very important to make reasonable decision for
the problems like how to cope with the uncertainty [6]–[8],
how to handle the inconsistent information [9]–[11], as well
as how to make a reasonable decision [12], [13]. In actual
applications, even attributer eduction is required to deal with
large and uncertain data which is linked to multiple relevant
data sources [14]–[16].

However, due to the possibility of error in the sensor data
which is likely to cause a great conflict between multisen-
sors. Dempster-Shafer evidence theory plays a crucial role
in dealing with the conflict information [17]. As introduced

by Dempster [18] and then developed by Shafer et al. [19],
it’s widely applied to uncertainty modeling [20], [21], and
so on. But until recently, existing methods can not deal with
the conflict information accurately and effectively. In order to
cope with the impact of the high conflict, twomain streams of
methods have been proposed, which are, modifying the clas-
sical Dempsters combination rule (DCR) [22] and focusing
on the pretreatment for basic probability assignment (BPA)
[23], [24]. Also, there are some other research aspects like
how to fuse conflict evidences [25]–[27] and generate BPAs
[28], [29]. The typical example using the first approach can be
the method of Yager [30], which reallocated the conflict mass
assignments to the unknown domain and proposed amodified
DCR. It’s likely that this method could increase the uncer-
tainty of the fusion result. Jiang and Hu [31] extends Yager’s
soft likelihood function to combine the BPA. Sun et al. [32]
introduced the valid coefficients in order to consider only par-
tial conflicts. Li et al. [33] thought that each group of evidence
can be treated equally so that the conflicts can be relocated by
measuring weighted averaging support degree. By calculat-
ing the reliability of the evidence, Li and Gou [34] take the
conflict distribution of the propositions in to consideration.
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In the other category, Murphy [35] proposed an average
approach that BPA is directly averaged, so that evidences of
conflicts can be effectively dealt with. Murphy, however, did
not take into account the correlation between the evidences.
Tabassian et al. [36], who used a relabeling procedure to
propose a classification method that combining ensemble
learning with evidence theory. Chen et al. [37] preprocessed
the classical DCR to obtain weighted evidences by calcu-
lating pignistic probability distance and evidence accuracy.
Jiang et al. [38] used the information volume of the evi-
dences as the discounting coefficients to weigh the credibility
of the evidence. Lin et al. [39] importd Euclidean distance
to characterize the differences between different evidences.
Although so many methods have been proposed, there is still
space for making further progress.

In this paper, based on the Euclidean distance and evidence
entropy, a new method to combine conflict evidences that
take into account the uncertainty of information - expressed
by the belief entropy [40] - is introduced. The information
obtained from different sensors were considered as the diag-
nosis evidences and the fault diagnosis system is considered
as evidence fusion problem. By calculating the Euclidean
distance and the evidence entropy of each sensor, two support
degrees of each evidence are obtained. The weighted factors
of every evidence are gained by considering these two ele-
ments together, with which we can get the modified BPA.
In the end, the classic Dempster’s combination rule is used
to fuse the modified evidences.

The paper is organized as follows. The preliminaries basic
concept of the evidence theory as well as the belief entropy
are briefly introduced in Section 2. Section 3 presents a new
method to deal with evidences that have high conflict degree.
A counter-intuitive result of a classical DCR and an example
in a complete different situation are illustrated in Section 4 to
show the feasibility of the proposed method. In Section 5,
numeric experiments are used to illustrate the performance of
it and a fault diagnosis architecture of a distributed multisen-
sor system is introduced. Then, a case of a rotating machine
is used to manifest the effectiveness of this method. After
that, a specific application is listed in Section 6 and finally,
the conclusion is discussed.

II. PRELIMINARIES
In this section, some preliminaries are briefly introduced.

A. DEMPSTER-SHAFER EVIDENCE THEORY
Several powerful methods including improved evidence
theory [41]–[43], fuzzy aggregation operators [44], [45],
D numbers [46]–[48], Z-number [49], [50], and entropy
[51], [52] are proposed to handle uncertainty. Dempster-
Shafer evidence theory (D-S theory), also referred to as the
theory of belief functions, is proposed by Dempster [18] and
developed later by Shafer et al. [19]. It has been widely
used in the fields of uncertainty modeling [20], [21], deci-
sion making [53]–[56], fault diagnosis [57]–[60], informa-
tion fusion [61]–[63], medical diagnosis [64], word sense

disambiguation [65], complex network [66], multi-criteria
decision-making [67] and so on. Some basic concepts in D-S
theory are introduced.

A complete set of mutually incompatible basic proposi-
tions (assumptions) represents all possible events called the
frame of discernment, indicated by:

X = {θ1, θ2, . . . , θi, . . . , θ|X |} (1)

The power set of X :

2X={φ, {θ1}, . . . ,{θ|X |}, {θ1, θ2}, . . . ,{θ1, θ2, . . . ,θi}, . . . ,X}

(2)

A subset of the recognition framework is called a proposi-
tion. The degree of trust assigned to each proposition is called
basic probability distribution, that is,m(A), which reflects the
reliability of A.

Let function M be a map that satisfies the following
conditions:

M : 2X → [0, 1] (3)

• The result of the mass function of an impossible event
is 0, that is:

m(8) = 0 (4)

• The sum of the basic probabilities of all elements in X
is 1, that is: ∑

A⊆2X

m(A) = 1 (5)

In D-S theory, a mass function is also called a basic proba-
bility assignment (BPA). BPA can be generated from different
sensors based on the same focal discernment. Assume that
two BPA are called m1 and m2, they can be combined using
the Dempster’s rule of combination:

m(A) =


1

1−K

∑
B∩A=A

m1(B)m2(C), A 6= ∅;

0, A = ∅.
(6)

where

K =
∑

B∩A=∅

m1(B)m2(C) (7)

The severity of the conflict: The larger the value of K ,
the greater the conflict between different evidences [68]. Note
that the Dempster’s rule of combination is only applicable to
such two BPA which satisfy the condition K < 1.

B. BELIEF ENTROPY
The belief entropy, also called as Deng entropy [40]. It is
the generalization of Shannnon entropy [69] that was first
presented by Shannon for a random variable with commu-
nication theory. The belief entropy is used to measure the
uncertainty degree of BPA that can be presented as follows:

Ed = −
∑
i

m(Fi)log
m(Fi)

2|Fi| − 1
(8)
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FIGURE 1. Flowchart of the proposed method.

where, Fi is a proposition in mass function m, and |Fi| is the
cardinality of Fi. We can easily see from the above definition
that the belief entropy is similar with the classical Shannon
entropy formally, whereas the belief for each proposition Fi
is divided by a term (2|Fi|− 1) which represents the potential
number of states in Fi (The empty set is not included). Spe-
cially, the entropy can definitely degenerate to the Shannon
entropy if the belief is only assigned to single elements.
That is:

Ed = −
∑
i

m(Fi)log
m(Fi)

2|Fi| − 1
= −

∑
i

m(Fi)logm(Fi) (9)

III. THE PROPOSED METHOD BASED ON THE
BELIEF ENTROPY
A new proposed method is presented in this section which is
also shown in Fig 1. The process steps are analyzed in detail.

• Step 1
Suppose an evidence set in the same focal discernment:
M = {mi|i = 1, 2, . . . , n} with {F1,F2, . . . ,FN }. The
average value ma(Fk ) was described as follows:

ma(Fk ) =
1
n

n∑
i=1

mi(Fk ), k = 1, 2, . . . ,N (10)

which satisfy: {
ma(Fk ) ∈ [0, 1]∑N

k=1
ma(Fk ) = 1

• Step 2
In this step, we calculate the Euclidean distance between
the original BPA and the average BPA that denoted as
d(mi,ma) which can be described as follows:

d(mi,ma)=

√√√√ N∑
k=1

[mi(Fk )− ma(Fk )]2, i=1, 2, . . . , n.

(11)

When the goal is to calculate the distance between
n-dimensional vectors, distance vector is shown as
follows:

D =


d(m1,ma)

d(m2,ma)

· · ·

d(mn,ma)


As we all know, the greater the distance between the two
vectors, the smaller the similarities between them. Based
on this common scene and the distance between two
BPA that we have just given, the similarities are defined
as follows:

Sia = e−d(mi,ma), i = 1, 2, . . . , n. (12)

Similarly, for the situation of n-dimensional vectors,
the similarity degree vector can be defined:

S =


S1a

S2a

· · ·

Sna


And then one of the support degree of the evidence mi is
defined as:

Sup(mi) =
Sia
n∑

k=1
Ska

(13)

• Step 3
In this step, the belief entropy of the BPA is shown:

Ed (mi) = −
∑
i

m(Fi)log
m(Fi)

2|Fi| − 1
(14)

the second weighted factor:

Iq(mi) =
Ed (mi)
n∑

k=1
Ed (mk )

(15)
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• Step 4
After that, we use the belief entropy tomodify theweight
and to normalize the results:

Crd(mi) =
Sup(mi)× Iq(mi)
n∑

k=1
Sup(mk )× Iq(mk )

(16)

It can be easily seen that
∑n

i=1 Crd(mi) = 1, thus,
the credibility degree is actually a weight of the i-th
evidence. Then, the modified evidence can be shown as
follows:

m′(Fk ) =
n∑
i=1

wimi(Fk ), k = 1, 2, . . . ,N . (17)

As can be seen, the credibility degree of an evidence
would be higher and has more effect on the final com-
bination result if the evidence is supported by other
evidences or have a higher belief entropy and vice versa.

• Step 5
In the end, we use the classical DCR to combine the
modified BPA:

m(F) =



∑
∩Fk=F

∏n
i=1 m

′
i(Fk )

1−
∑
∩Fk=∅

∏n
i=1 m

′
i(Fk )

,

F 6= ∅ ∀Fk ⊆ 2

0, F = ∅

(18)

where m(F) is the final fusion result.

IV. EXAMPLES
Example 1: Suppose a frame discrimination of a faulty

diagnosis system is 2 = {F1,F2,F3}, The BPA is shown
as m1 and m2. The BPA from two sensors are shown
in Table 1.

TABLE 1. BPA from two different sensors.

As we can see in the Table 1, the support degree of F1 is
0.99 whereas from the second sensor is 0. On the contrary,
the support degree of F3 is 0 from the first sensor whereas it is
0.99 form the second sensor. They are obviously conflicting.
At the same time, the support degree of F2 from both of them
are 0.01 which can almost be considered to be impossible.
Nevertheless, when the classic method was used to combine
them, the fusion result is: m(F1) = 0, m(F2) = 1, m(F3) = 0
and m(2) = 0.

The result shows that F2 will definitely happen while F1
and F3 will not happen, which is obviously not true. There-
fore, when there is a conflict between evidences, the tradi-
tional fusion method is flawed.

Next, we calculate Example 1 in detail:
• Step 1
In this step, the average matrix is calculated.

ma(F1) =
1
2

2∑
i=1

mi(F1) =
1
2
(0.99+ 0) = 0.495

ma(F2) =
1
2

2∑
i=1

mi(F2) =
1
2
(0.01+ 0.01) = 0.01

ma(F3) =
1
2

2∑
i=1

mi(F3) =
1
2
(0+ 0.99) = 0.495

• Step 2
The support degree is shown as:

d(m1,ma) = |E1 − Ea| =

√√√√ 3∑
k=1

[m1(Fk )− ma(Fk )]2

=

√
0.4952 + 02 + 0.4952

= 0.7

d(m2,ma) = |E2 − Ea| =

√√√√ 3∑
k=1

[m2(Fk )− ma(Fk )]2

=

√
0.4952 + 02 + 0.4952

= 0.7

S1a = e−d(m1,ma) = 0.4966

S2a = e−d(m2,ma) = 0.4966

Sup(m1) = S1a/
2∑
i=1

Sia = 0.5

Sup(m2) = S2a/
2∑
i=1

Sia = 0.5

• Step 3
Then the information quality is obtained:

Ed (m1) = −
∑
i=1

m1log
m1

2|m1| − 1

= −0.99log
0.99
21 − 1

− 0.01log
0.01
21 − 1

− 0

= 0.0560

Ed (m2) = −
∑
i=1

m2log
m2

2|m2| − 1

= 0− 0.01log
0.01
21 − 1

− 0.99log
0.99
21 − 1

= 0.0560

Iq(m1) = Ed (m1)/
2∑
i=1

Ed (mi) = 0.5

Iq(m2) = Ed (m2)/
2∑
i=1

Ed (mi) = 0.5
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• Step 4
After that, the original BPA have been modified.

m′(F1) =
2∑
i=1

wimi(F1) = 0.495

m′(F2) =
2∑
i=1

wimi(F2) = 0.01

m′(F2) =
2∑
i=1

wimi(F3) = 0.495

• Step 5
Finally, the classical DCR is used to combine the mod-
ified BPA. The fusion result is: m(F1) = 0.4999,
m(F2) = 0.0002 and m(F3) = 0.4999 which shows
that the F1, F3 is much more likely to occur than F2.
Obviously, this result is more reliable. Another numeric
simulation that in a totally different situation still needs
to be used for verifying the performance.

Now, the configuration is changed. The necessity of this
situation is explained as follow:
Under normal conditions, the situation is considered ideal,

that every sensor can give us the information we need. How-
ever, in reality, it is difficult to guarantee that there is no
non-ideal situation, such as a failure of a sensor which could
lead to the loss of information, etc. For instance, the data we
obtained is no longer ‘‘m(F1) = 0.6,m(F2) = 0.1,m(F3) =
0.3’’ but ‘‘m({F1}) = 0.7,m(F2,F3) = 0.3’’.
Given a frame of discernment X with seven elements,

element F1, F2, and F3 are on behalf of three different faults.
Three mass functions are shown in Table 2.

TABLE 2. BPA from three different sensors.

TABLE 3. Fusion results of Example 2.

From the Table 3, we can clearly see that despite the
huge conflicts in the data, when combining all of Sensor1,
Sensor 2, and Sensor 3, the support degree of F1 is the high-
est, that is to say, the right judgment was made. Therefore,
the proposed new method is feasible.

V. EXPERIMENT
In this section, by comparing with the existing methods,
the better applicability and accuracy of the proposed method
is shown.
Example 2: Again, we assumed a frame discrimination of

a faulty gnosis system is 2 = {F1,F2,F3} and the BPA is
shown in Table 4.

TABLE 4. BPA from five different sensors.

As we can see in the Table 4, Sensors 1, 2, 3, 4 support the
faultF1 whereas Sensor 5 has a different result that it supports
the fault F3 with which there is no other sensor support.
Moreover, it’s unlikely that the fault F1 would happen as
well, which shows clearly that there is a high level of conflict
among these information. From the above analysis, we can
draw the conclusion that m(F2) and m(F3) should be much
lower than m(F1) with DCR. Different fusion results are
shown in Table 5 and the combination result of m1,2,3,4,5 are
shown in Fig 2. The detailed analysis is as follows.

TABLE 5. Combination results.

3932 VOLUME 7, 2019



Z. Wang, F. Xiao: Improved Multisensor Data Fusion Method and Its Application in Fault Diagnosis

FIGURE 2. Combination result when fusing data from five sensors.

The classic DCR is unserviceable under this situation given
that it can not obtain the fusion results when the fifth evidence
of a high degree of conflict was involved. Yager’s method
removes the process of normalizing in the DCR and assigns
the conflict to an unknown domain for which reason it is
also unable to combine the high conflict evidences. Li et al.
sets up a model to allocate the evidence conflict whereas Sun
considered only partial conflicts between different evidence
that could definitely lead to strong uncertainty. Li and Gou
modified themodel by distributing the conflict and as a result,
the fusion result are relatively conservative. All in all, most
methods have the same view that the second evidence has
the greatest credibility and the fifth evidence is the least
believable. It can be seen that the proposed method has a
better performance when dealing with information with high
degree of conflict that the fusion result of fault F1 only has
a slight decrease from 0.9764 to 0.9495 when combining the
fifth evidence which is conflict with the first four pieces of
evidences. The degree of decrease is minimal whereas the
support degree of the correct result is still the highest.

VI. APPLICATION
A. THE APPLICATION I OF FAULT DIAGNOSIS
A new fault diagnosis architecture of a distributed multisen-
sor system is introduced.

In order to improve the accuracy of the system, we usemul-
tisensor in the fault diagnosis system to get the system status.
When the system is working, each sensor can continuously
generate its own diagnostic evidence for different faults. After
that, we use DCR to fuse all the evidences. And in the end,
the decision rules make the final decision on the final state of
the system. Now, the architecture of the system is presented.

To achieve the goals of the system, the system is divided
into five levels. They are: Data level, Feature level, Evidence
level, Fusion level, and Decision level.

At the Data level, the data are collected from different
sensors and the frame of discernment could be built. At the
Feature level, a number of faulty features that can monitor

the state of the system would be extracted. At the Evidence
level, BPA of different sensors will be generated based on
the extracted features. At the Fusion level, different BPA will
be combined, and finally, at the Decision level, a reasonable
decision rule will be applied to get the final conclusion.

Next, a rotating machinery system [39] is used to verify
the performance of the system. Before we go any further,
there are four faulty types: ‘‘Imbalance’’, ‘‘Shaft crack’’,
‘‘Misalignment’’ and ‘‘Bearing loose’’ which are presented
by F1, F2, F3, and F4. Namely, the frame of discernment is:
2 = {F1,F2,F3,F4}.

Then, in Data level, the data from five sensor that can
monitor the status of the system are collected and in Fea-
ture level, the fault features are: E1 = ‘‘Wavelet energy
spectrum entropy’’, E2 = ‘‘Wavelet space spectral entropy’’,
E3 = ‘‘Wavelet energy spectrum entropy’’, and E4 = ‘‘Power
spectrum entropy’’.

The reference fault feature vector is: R(Fi) =

{Ei1,Ei2,Ei3,Ei4}(i = 1, 2, 3, 4), which is obtained from
the training samples. In Evidence level, the distance between
the reference and the measurement fault feature vec-
tor of five sensors which are presented as M (F)(k) =
{E ′1,E

′

2,E
′

3,E
′

4}(k = 1, 2, . . . , 5) is defined as follows:

dki = dk (Fi) =

[
5∑

k=1

|M (F)(i) − R(Fi)|

] 1
2

(19)

Since the greater the distance, the smaller the degree of
the similarity. The similarity degree was presented using an
inverse function to transform the distance function. Then,
the BPA of sensor k could be obtained by normalize the
similarity degree. In the end, in Decision level, assume that
∀F1,F2 ⊂ 2, satisfy:{

m(F1) = max{m(Fi),Fi ⊂ 2}
m(F2) = max{m(Fi),Fi ⊂ 2,Fi 6= F1}

(20)

ε1, ε2 are two thresholds of decision and, F1 would be the
final decision only if they satisfy:

m(F1)− m(F2) > ε1

m(2) < ε2

m(F1) > m(2)

In this example, the reference features of four typical
mechanical faults are shown in Table 6 according to data
statistics in [72].

TABLE 6. Reference fault feature.
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TABLE 7. Fault feature of five sensors.

TABLE 8. BPA of different sensors.

Now, the fault F3 happens. Five sensors will get a number
of data and the fault features extracted from five sensors in
Feature level are shown in Table 7.

Using the calculation model above, we can obtain the
BPA from which we can see the conflict clearly that all
Sensors 1, 2, and 4 manifest that the fault is F3 whereas
Sensor 3 and Sensor 5 indicated that it is F2 and F4 respec-
tively. The BPA is listed in Table 8.

In the following Table 9, the calculation using both
classic DCR and our method to combine these BPA are
shown.

TABLE 9. Fusion result.

Set ε1 = ε2 = 0.1, according to the results shown
in Table 9, both of these two methods support the Fault F3.
Admittedly, there was a slight drop in the support degree
of F3 when the BPA from the first three sensors was fused
due to conflicting information from the Sensor 3. Finally,
when combining the BPA from Sensors 1 to 5, the result
is still Fault F3. Hence,we have confidence to conclude
that the fault diagnosis system can make a right decision.
And specially, the optimality of our method can be seen in
Fig 3 as it always have a higher support degree for the right
answer.

FIGURE 3. Combination result when confuse data from five sensors.

B. THE APPLICATION II OF FAULT DIAGNOSIS
In order to further illustrate the efficiency of the new method,
a data set recorded from the real situation [73] is shown to
consolidate the conclusion. An engineering application of
fault diagnosis of a motor rotor is carried out. Several sensors
are used to measure the vibration acceleration of the motor
rotor within minor intervals to obtain 9 evidences. A total of
20 samples collected from each sensor within a period of time
make up a data set.

Using the method in [74] to generate the BPA from the
data set provided in [73] which is shown in Table 10. After
that, the proposed method is used to modify the BPA. The
modified BPA and the fusion results using different methods
are shown in Table 12.

From the final BPA after combining, it is clear that the
test sample is classified into F2 class which coincides with

TABLE 10. The BPA generated form the data set.

TABLE 11. Accuracy.
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TABLE 12. Fusion result of the BPA generated from the data set recorded from the real situation.

the reality. Moreover, the simulation results show that the
model improves the support degree of the right result to
99.99% which also always have the highest support degree
of the correct result.

To further evaluate the proposed method, different samples
that are random selected from F1,F2 and F3 were tested as
test sets 100 times, respectively, to generate the BPA. And the
accuracy of the method on the data set diagnosis is presented
in Table 11. It can be seen that by using the proposed men-
tioned, the overall recognition rate of the three categories is
100%. That is, in each of the 100 diagnostic trials, the fault
diagnosis result were correct. Therefore, we have confidence
to say that the proposed method is accurate and effective to
deal with multiple fault diagnosis problems. The calculation
formula of accuracy is as follows:

A =
Ncorrect
Ntest

(21)

where Ntest is the total number of tests and Ncorrect is the
number of tests whose diagnosis results are correct.

VII. CONCLUSION
Multisensor system is widely used in many fields on account
of only one sensor is not adequate to meet the needs of
modern society. Yet the information collected from all the
sensors may be uncertain, fuzzy or even conflict. Therefore,
the modeling of multisensor information fusion system is
indispensable. The main contribution of this paper is that
a new method is proposed to be used in a faulty diagnosis
modeling. The new proposed method takes the belief entropy
in to account so that it could provide a promising way to make
an accurate determination. Furthermore, numerical example
in different situations have been proposed to prove that it is

effective and superior. Moreover, a practical application was
given to prove the feasible of the proposed method. In the
future work, our work should focus on adapting the method
to more complex environments and improving its accuracy.
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