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Structured Control of LPV Systems with Application to Wind Turbines

Fabiano Daher Adegas and Jakob Stoustrup

Abstract— This paper deals with structured control of linear
parameter varying systems (LPV) with application to wind
turbines. Instead of attempting to reduce the problem to linear
matrix inequalities (LMI), we propose to design the controllers
via an LMI-based iterative algorithm. The proposed algorithm
can synthesize structured controllers like decentralized, static
output and reduced order output feedback for discrete-time
LPV systems. Based on a coordinate decent, it relies on
a sufficient matrix inequality condition extended with slack
variables to an upper bound on the induced L2-norm of the
closed-loop system. Algorithms for the computation of feasible
as well as optimal controllers are presented. The general case
where no restrictions are imposed on the parameter dependence
is treated here due to its suitability for modeling wind turbines.
A comprehensive numerical example of a gain-scheduled LPV
controller design with prescribed pattern for wind turbines
illustrate the utilization of the proposed algorithm.

I. INTRODUCTION

Practical considerations often dictate structural constraints
on the controller. Control practitioners face the challenge
of designing low-order, decentralized, observed-based, PID
control structures, among others. These control problems are
naturally formulated as Bilinear Matrix Inequalities (BMI),
and to which equivalent convex reformulations based on
Linear Matrix Inequalities (LMI) are not known to exist.
Add to that some systems inherently exhibit time-varying
nonlinear dynamics along their nominal operating trajectory,
motivating the use of advanced control techniques such
as gain-scheduling, to counteract performance degradation
or even instability problems by continuously adapting to
the dynamics of the plant. A systematic way of designing
controllers for systems with linearized dynamics that vary
significantly with the operating point is within the framework
of linear parameter-varying (LPV) control. Wind turbines
are naturally inserted in this context. Firstly, because gain-
scheduling is an usual approach to deal with varying dy-
namics dependent on the operating point [11]. Secondly, the
structure of wind turbine industrial controllers often have a
prescribed pattern [14].

In this context, our interest lies in the synthesis of LPV
controllers with structural constraints, more specifically, the
L2-norm minimization problem,

minimize ‖Tz→w(θ,K(θ))‖2
K(θ) ∈ K
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where Tz→w(·) is an input-output system operator, K(θ) is
a linear parameter varying controller dependent on a vector
of time-varying parameters θ, and K represents a structural
constraint in the controller matrices.

The diversification of LPV controller structures is not
extensively addressed in the literature. The static state feed-
back and full-order dynamic output feedback are by far the
most investigated structures. There are some proposals on
the design of static output feedback controllers [1], [2]. A
few works can be found on other controller structures like
decentralized [3], fixed-order dynamic output for single-input
single-output polynomial systems [4]. Synthesis conditions
based on Linear Matrix Inequalities (LMI) is a common
feature to all these papers. Recently, static output [6] and
full-order dynamic output [7] synthesis procedures relies on
extended LMI conditions with slack variables [5].

Instead of an attempt to reduce the problem to linear
matrix inequalities (LMI), this paper investigates the design
of structured LPV controllers via an LMI-based iterative
algorithm. Iterative LMI algorithms with slack matrices were
investigated in the context of robust [8] and affine LPV [9]
control. Decentralized of any order, fixed-order output, static
output and simultaneous plant-control design are among the
possible control structures. Based on a coordinate decent,
it relies on extended LMI conditions to an upper bound on
the induced L2-norm of the closed-loop system. We propose
a relaxation on the LMI condition useful for computing
feasible controllers. After a feasible controller is found, the
objective is cost minimization until the solution converges to
a stationary point. The general case where no restrictions are
imposed on the parameter dependence is treated here due to
its suitability for modeling wind turbines.

Realizing advanced gain-scheduled controllers can be dif-
ficult in practice and may lead to numerical challenges
[11], [10]. Usually, several plant and controller matrices
must be stored on the controller memory. Moreover, matrix
factorizations and inversions are among the operations that
must be done online by the controller at each sampling
time [12]. The proposed synthesis methodology can be of
practical relevance because the resulting controllers have
simple implementation.

This paper is organized as follows. Section II describes the
system, controller and some possible controller structures.
Section III presents known extended matrix inequalities con-
ditions for the induced L2 norm and the proposed relaxation.
Section IV describes the iterative LMI algorithm along with
convergence and computational considerations. Section V re-
visits the design of wind turbine industry-standard controllers
under the LPV framework.



II. SYSTEM AND CONTROLLER DESCRIPTION

An open-loop, discrete-time augmented LPV system with
state-space realization of the form,

x(k + 1) = A(θ)x(k) +Bw(θ)w(k) +Bu(θ)u(k)

z(k) = Cz(θ)x(k) +Dzw(θ)w(k) +Dzu(θ)u(k)

y(k) = Cy(θ)x(k) +Dyw(θ)w(k),

(1)

is considered for the purpose of synthesis, where x(k) ∈ Rn
is the state vector, w(k) ∈ Rnw is the vector of disturbance,
u(k) ∈ Rnu is the control input, z(k) ∈ Rnz is the controlled
output, and y(k) ∈ Rny is the measured output. A(θ), B(θ),
C(θ), D(θ)are continuous functions of some time-varying
parameter vector θ = [θ1, . . . , θnθ ]. Assume θ ranges over a
hyperrectangle denoted Θ,

Θ =
{
θ : θi ≤ θi ≤ θi, i = 1, . . . , nθ

}
.

The rate of variation ∆θ = θ(k + 1) − θ(k) belongs to a
hypercube denoted V ,

V = {∆θ : |∆θi| ≤ vi, i = 1, . . . , nθ} .

The LPV controller has the form,

xc(k + 1) = Ac(θ)xc(k) +Bc(θ)y(k)

u(k) = Cc(θ)xc(k) +Dc(θ)y(k),
(2)

where xc(k) ∈ Rnc and the controller matrices are contin-
uous functions of θ. Note that depending on the controller
structure, some of the matrices may be zero. The controller
matrices can be represented in a compact way,

K(θ) :=

[
Dc(θ) Cc(θ)
Bc(θ) Ac(θ)

]
. (3)

The interconnection of system (1) and controller (2) leads to
the following closed-loop LPV system denoted Scl,

Scl : x(k + 1) = A(θ,K(θ))xcl(k) + B(θ,K(θ))w(k)

z(k) = C(θ,K(θ))xcl(k) +D(θ,K(θ))w(k).
(4)

This general system structure can be particularized to some
usual control topologies. In the case K(θ) is an uncon-
strained matrix, if nc = 0, the problem becomes a static
output feedback. The static state feedback is a particular case
of static output, when the system output is a full rank linear
transformation of the state vector ∀θ. If n = nc, the full-
order dynamic output feedback arises. In a structured control
context, more elaborate control systems can be designed by
constraining K(θ). A fixed-order dynamic output feedback
has nc < n. For decentralized controllers of arbitrary order,
the structure of K(θ) is constrained to be,

K(θ) :=

[
diag(Dc(θ)) diag(Cc(θ))
diag(Bc(θ)) diag(Ac(θ))

]
where diag(·) stands that (·) has a block-diagonal structure.

In the general parameter dependence case, the open-loop
system matrices are dependent on arbitrary functions of the

varying parameters,A Bw Bu
Cz Dzw Dzu

Cy Dyw Dyu

 (θ) =

A Bw Bu
Cz Dzw Dzu

Cy Dyw Dyu


0

+
∑
i

A Bw Bu
Cz Dzw Dzu

Cy Dyw Dyu


i

ρi(θ), i = 1, . . . , nρ

(5)

where ρi(θ) are scalar functions known as basis functions
that encapsulate possible system’s nonlinearities and nρ is
the number of basis functions. The controller matrices are
continuous functions of θ with similar type of dependence,[

Ac Bc
Cc Dc

]
(θ) =

[
Ac Bc
Cc Dc

]
0

+

nθ∑
i=1

[
Ac Bc
Cc Dc

]
i

ρi(θ)

i = 1, . . . , nθ

(6)

III. INDUCED L2-NORM PERFORMANCE

The design of a closed-loop system usually considers
performance specifications that can be characterized in dif-
ferent ways. Define Tzw(θ) as the input-output operator that
represents the forced response of (4) to an input signal
w(k) ∈ L2 for zero initial conditions. The induced L2-norm
of a given input-output operator,

‖Tzw‖L2
:= sup

θ∈Θ×V
sup

‖w‖L2
6=0

‖z‖L2

‖w‖L2

is commonly utilized as a measure of performance of LPV
systems and allows formulating the control specification
as in H∞ control theory. The LPV system (4) is said to
have performance level γ when it is exponentially stable
and ‖Tzw‖L2

< γ holds. An extension of the bounded
real lemma (BRL) for parameter dependent systems is a
sufficient condition for checking the L2 performance level
of system Scl.

Lemma 1 (Extended L2 Performance): [5], [7] For a
given controller K(θ), if there exist P(θ) = P(θ)T and
Q(θ) satisfying (7) with r = 1 for all (θ,∆θ) ∈ Θ×V , then
the system Scl is exponentially stabilizable by the controller
K(θ) and ‖Tzw(θ)‖L2

< γ.

The term r2 multiplying the Lyapunov matrix at the (1,1)
entry of (7) is, in the present paper, artificially inserted into
the formulation. For frozen θ (LTI system) r represents
the z-plane circle radius, thus r = 1 in the Schur stability
criteria. By imposing r > 1 the z-plane circle would be
enlarged, meaning that even unstable closed-loop systems
(eigenvalues lying out of the unit circle) would satisfy
Lemma 1. For parameter varying systems, this notion
of enlargement still exists when r > 1, defined by the
following lemma.

Lemma 2 (Enlarged L2 Performance): For a given
controller K(θ), if there exist P(θ) = P(θ)T and Q(θ)
satisfying (7) with r = re > 1 for all (θ,∆θ) ∈ Θ×V , then
the system Scl satisfies the enlarged L2 performance with




r2P(θ+) A(θ,K(θ))Q(θ) B(θ,K(θ)) 0

? −P(θ) +Q(θ)T +Q(θ) 0 Q(θ)TC(θ,K(θ))T

? ? γI D(θ,K(θ))T

? ? ? γI

 > 0 (7)

‖Tzw(θ)‖L2,r=re
< γ.

Even systems that are not exponentially stabilizable may
satisfy the enlarged L2-norm condition. This fact will be
utilized in the proposed algorithms for finding a feasible
controller. The shifted-H∞-norm is a similar concept for
continuous-time LTI systems [13].

The Lyapunov and slack variables mimic the general
parameter dependence of the plant and controller,

P(θ) = P0 +

nθ∑
i=1

ρi(θ)Pi (8a)

Q(θ) = Q0 +

nθ∑
i=1

ρi(θ)Qi (8b)

The Lyapunov function at θ+ := θ+ ∆θ can be described
as,

P(θ+) = P0 + ρi(θ
+)Pi (9)

Conveniently, the basis functions at θ+ are approximated
by a linear function of ρ(θ) and ∆θ,

ρi(θ
+) := ρi(θ) +

∂ρi(θ)

∂θ
∆θ, (10)

thereby turning inequality (7) affine dependent on the rate of
variation ∆θ. This approximation makes sufficient to verify
(7) with (9)-(10) only at Vert V .

IV. OPTIMIZATION ALGORITHM

The optimization algorithm iterates between LMI prob-
lems by fixing the controller variables and the slack variable
alternatively. In this way, the parameter dependent Lyapunov
matrix remains as a variable during the whole optimization
process. In the general parameter dependence case, the con-
troller is designed in a gridded parameter space. A gridding
procedure consists of defining a gridded parameter subset
denoted Θg ⊂ Θ, designing a controller that satisfies the
matrix inequalities constraints ∀θ ∈ Θg , and checking the
inequalities constraints in a denser grid. If the last step fails,
the process is repeated with a finer grid.

In order to save text during the exposure of the algorithms,
denote the inequality constrains by

ΠQ(x) := (7), ∀(Θ,∆θ) ∈ Θg × Vert V

The algorithm for computing a feasible structured LPV
controller is described next. The aim is to create a sequence
of r convergent to 1, that is, for a certain tolerance ε,
r(j) ≥ 1− ε, r(j) → 1± ε, as j →∞.

Algorithm 1: (Feasibility) Given initial slack matrix
Q(1)(θ) = I , ∀θ ∈ Θg , an initial radius r(1) > 1, a target

radius rtg ≤ 1 and a convergence tolerance ε1. Set j = 1
and start to iterate:

1) Find P(θ), K(θ), and γ that solves the LMI problem,
Minimize γ subject to ΠQ(x) with r = r(j), and

frozen Q(θ) = Q(j)(θ) ∀θ ∈ Θg .
2) If Step 1 is feasible, K(j)(θ) = K(θ). Else, K(j)(θ) =

K(j−1)(θ).
3) Find P(θ), Q(θ), and γ that solves the LMI problem,

Minimize γ subject to ΠQ(x) with r = r(j), and
frozen K(θ) = K(j)(θ), ∀θ ∈ Θg

4) If Step 3 is feasible, Q(θ)(j+1) = Q(θ). Else,
Q(θ)(j+1) = Q(j)(θ)

5) If Step 1 and step 3 are feasible, r(j+1) = 0.5 (r(j) +
rtg) and ∆r(j+1) = |r(j+1) − r(j)| (Reduced radius).
Elseif Step 3 is feasible, r(j+1) = r(j) and ∆r(j+1) =
∆r(j) (Same radius).
Else, r(j+1) = r(j) +0.5 |r(j−1)−r(j)| and ∆r(j+1) =
|r(j+1) − r(j)| (Increased radius).

6) If |r(j+1) − r(j)| < ε1, stop. Else, j = j + 1 and go
to step 1.

The initial radius r(1) should be made large enough
to make the first iteration feasible. Our experience shows
that r(1) = 2 suffices for most situations. The target
radius rtg can be made slightly smaller than 1. Once the
radius reaches the target radius within a certain tolerance
ε1, the objective is only to minimize the performance level γ.

Algorithm 2: (Performance Level) Given initial controller
K(j)(θ), ∀θ ∈ Θg , and a convergence tolerance ε2. Set j = 1
and start to iterate:

1) Find P(θ), K(j)(θ), and γ that solves the LMI prob-
lem,
Minimize γ subject to ΠQ(x) with r = 1, and frozen

Q(θ) = Q(j)(θ) ∀θ ∈ Θg .
2) Find P(θ), Q(θ), and γ(j) that solves the LMI prob-

lem,
Minimize γ subject to ΠQ(x) with r = 1, and frozen

K(θ) = K(j)(θ), ∀θ ∈ Θg .
3) If |γ(j) − γ(j−1)| < ε2, stop. Else, j = j + 1 and go

to step 1.

Algorithm 2 generates a convergent sequence of solutions
such that the cost is non-increasing, that is, γ(1) ≥ γ(j) ≥
γ(∗). To realize this, notice that taking the slack variable
equal to the Lyapunov variable implies sufficiency of Lemma
1 [5]. Therefore, P(θ) computed at step 1 is a solution for
Q(θ) at step 2, implying feasibility of step 2 with at least the
same value of γ of step 1. The controller K(θ) at the iteration



j is also a solution for the step 1 at iteration j+ 1, implying
feasibility of step 1 with at least the same performance level
as iteration j.

Algorithms 1 and 2 are in fact very similar and can be
unified in a single algorithm.

Computational Load

Depending on the system/controller order and number
of basis functions, the procedure may be computationally
expensive. Slight modifications on the algorithms alleviate
computational load at the expense of some conservatism.
• The step at which the slack matrix is computed can be

replaced by an update rule of the form

Q(j+1)(θ) = P(j)(θ), ∀θ ∈ Θg.

Indeed, taking the slack variable equal to the Lyapunov
variable implies sufficiency of Lemma 1 [5].

• The slack matrix can be made parameter independent,
e.g. Q(θ) = Q.

• Parameter dependent matrix variables may also de-
pend on a fewer number of basis functions/varying
parameters than the plant, thus reducing the number of
optimization variables. Some basis functions are more
representative of system’s nonlinearities than others. For
example, the LPV controller can be made dependent of
some basis functions while being designed robust to the
reminiscent ones by including them in the Lyapunov
variable.

Controller Implementation

Due to the fact that no linearizing change of variables
is involved in the formulation, the resulting controller can
be easily implemented in practice. The iterative LMI op-
timization algorithm provides the controller matrices Ac,i,
Bc,i, Cc,i, Dc,i, for i = 0, 1, . . . , nρ. These matrices, the
basis functions, and the value of the scheduling variables are
the only required information to determine the control signal
u(k). At each sample time k, the scheduling variable θ(k)
is measured (or estimated) and a control signal is obtained
as follows.

1) Compute the value of the basis functions ρi(θ(k)), for
i = 0, 1, . . . , nρ. The basis functions may be stored in
a lookup table that takes θ(k) as an input and outputs
an interpolated value of ρ(θ(k)).

2) With the value of the basis functions in hand, de-
termine the controller matrices Ac(θ(k)), Bc(θ(k)),
Cc(θ(k)), Dc(θ(k)) according to (6).

3) Once the controller matrices have been found, the
control signal u(k) can be obtained by the dynamic
equation (2) of the LPV controller, only involving
multiplications and sums.

V. WIND TURBINE LPV CONTROL

At high wind speeds, the power generated by a wind
turbine should be maintained at rated value. A common
control strategy is to regulate the generator speed (Ωg)

by varying the blade pitch angles (β) while maintaining a
constant generator torque (Qg). The wind energy industry
relies on the proportional and integral (PI) controller to
accomplish such task. The PI speed control using pitch
angle as controlled input strongly couples with the tower
dynamics, denoting a multivariable problem, and should be
properly designed. The adopted control structure depicted in
Fig. 1 includes the most common control loops of a industry
standard Region III controller [14].
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Fig. 1: Control loops of generator speed and tower damping.

The generator speed is regulated by a PI controller of the
form,

GPI := kp(θ) + ki(θ)GI(s)

where s denotes the Laplace operator. Instead of a pure
integrator, the PI controller is composed by an integrator
filter,

GI(s) :=
s+ zI

s
,

where the filter zero zI is a design parameter. The PI con-
troller is connected in series with a parameter independent
filter Gf1(s). It is possible to provide an extra signal by
using an accelerometer mounted in the nacelle, allowing
the controller to better recognize between the effect of
wind speed disturbances and tower motion on the measured
power or generator speed. With this extra feedback signal,
tower bending moment loads can be reduced without sig-
nificantly affecting speed or power regulation. Therefore, it
is assumed that tower velocity q̇ is available for measure-
ment, by integrating tower acceleration q̈, and is multiplied
by a parameter-dependent constant kq̇(θ) for feedback. A
parameter independent filter Gf2(s) completes the tower
feedback loop. The order of the filters Gf1(s) and Gf2(s)
can be arbitrarily chosen. The choice trades-off closed-loop
performance and number of controller states. High order
filters leads to better performance with the expense of higher
controller complexity.

The drive train of a wind turbine presents a poorly damped
torsional mode when a constant torque control strategy is



adopted. To counteract this, active drive train damping is
deployed by adding a signal to the generator torque (Qg)
to compensate for the oscillations in the drive train. For a
didactic and clear exposure, the compensation of the drive
train damper is considered ideal. Therefore, for synthesis
purposes, the drive train torsional mode is neglected and the
rotor speed is proportional to the generator speed. The LPV
controller can now be designed to trade off the tracking of
generator speed and tower oscillations with control effort
(wear on pitch actuator). Wind turbine aerodynamics is the
main source of nonlinearities. A linearization-based LPV
model depends on partial derivatives of aerodynamic torque
(Q) and thrust (T ) forces with respect to rotor speed (Ωr),
wind speed (V ) and pitch angle. These partial derivatives,
also known as aerodynamic gains, vary with the operating
point. Thus, they are natural candidates for the basis func-
tions [16],

ρ1 :=
1

Je

∂Q

∂Ω

∣∣∣∣
θ

,

ρ4 :=
1

Mt

∂T

∂Ω

∣∣∣∣
θ

,

ρ2 :=
1

Je

∂Q

∂V

∣∣∣∣
θ

,

ρ5 :=
1

Mt

∂T

∂V

∣∣∣∣
θ

,

ρ3 :=
1

Je

∂Q

∂β

∣∣∣∣
θ

,

ρ6 :=
1

Mt

∂T

∂β

∣∣∣∣
θ

.

(11)

In the above expressions, Jr and Jg is the rotor and generator
inertia, which combined with the gearbox ratio Ng results
in the equivalent rotational inertia in the rotor side Je :=
Jr+JgN

2
g . Mt is the equivalent modal mass of the first bend-

ing moment of the tower. Basis functions with equivalent
inertia and tower mass were chosen to improve numerical
conditioning. The operating point of a wind turbine varies
according to the effective wind speed θ(t) = V̄ (t) driving
the rotor. The dynamic model of the variable-speed wind
turbine can then be expressed as an LPV model of the form,

G :

{
ẋ = A(θ) x+Bw(θ) V̂ +Bu(θ) βref

y = Cy x

where states, controllable input and measurements are,

x =
[
Ωr q̇ q β̇ β xΩ,i

]T
,

u = βref, y =
[
Ωg yΩ,i q̇

]T
.

with open-loop system matrices,

A(θ) =

ρ1(θ) −ρ2(θ) 0 0 ρ3(θ) 0

ρ4(θ) − 1

Mt
Bt − ρ5(θ) −Kt

Mt
0 ρ6(θ) 0

0 1 0 0 0 0
0 0 0 -2ζωn −ω2

n 0
0 0 0 1 0 0
Ng 0 0 0 0 0


,

Bw(θ) =
[
ρ2(θ) ρ5(θ) 0 0 0 0

]T
,

Bu =
[
0 0 0 ω2

n 0 0
]T
,

Cy =

Ng 0 0 0 0
zI 0 0 0 1
0 1 0 0 0

 .

Notice the PI controller integrator filter GI conveniently
augmented into the state-space of G, represented by the state
xΩ,i and the output yΩ,i. The plant Gp is defined as the
wind turbine model solely (plant G without the augmentation
of GI). A state-space realization of the control structure
depicted in Fig. 1 is given by,

Ac :=

[
Af1 0
0 Af2

]
, Bc(θ) :=

[
Bkp(θ) Bki(θ) 0

0 0 Bkq̇ (θ)

]
,

Cc :=
[
Cf1 Cf2

]
, Dc :=

[
Df1 Df2

]
.

where the size of sub-matrices depends on the chosen orders
of the filters. The parameter-dependent controller matrix has
the general dependence form,[

Bkp(θ) Bki(θ) 0
0 0 Bkq̇ (θ)

]
:=[

Bkp Bki 0
0 0 Bkq̇

]
0

+

nρ∑
m=1

[
Bkp Bki 0

0 0 Bkq̇

]
ρm(θ).

The Lyapunov matrix is chosen dependent on all basis
functions (11), and the slack matrix is chosen parameter
independent.

Weight Wz1 and Wu governs the tradeoff between ro-
tational speed regulation and pitch wear. In this example,
Wz1 is chosen as a scalar k1, turning the first performance
channel similar to an integral square error measure (z1 =
Wz1GIΩ̂r). Wu is taken as a first order high-pass filter that
penalizes high-frequency content on the pitch angle. Due to
the resonance characteristics of the transfer function from V̂
to q̇, the weighting function Wz2 is chosen as a scalar k2, that
tradeoffs the desired tower damping. Considering the plant
and weighting functions just mentioned, the augmented plant
has 7 states. G(s)f1 and G(s)f1 are chosen as first order and
second order filters, respectively, therefore the controller is
comprised of 3 states.

Remember that the iterative LMI algorithm is a synthesis
procedure in discrete time. Therefore, the augmented LPV
plant in continuous time is discretized using a bilinear
(Tustin) approximation [15] with sampling time Ts = 0.02 s,
at each point Θg ×Vert V . The effective wind speed ranges
θ = V̄ ∈ [12 m/s, 25 m/s] and its rate of variation ranges
∆θ(t) = ∆V̄ (t) ∈ [−2 m/s2, 2 m/s2]. The grid is comprised
of seven equidistant points. The rate of variation of the
scheduling variables in continuous-time must as well be
converted to discrete-time by the relation ∆θ(k) = Ts∆θ(t).

The numerical example is based on data from a typical
2MW utility scale wind turbine. The evolution of radius r(j)

and performance level γ(j) during the course of the opti-
mization is illustrated on Fig. 2. During the feasibility phase,
as the radius gradually converges to 1, the performance
level value increases. The algorithm switches to optimization
phase by maintaining r = 1 during the subsequent iterations,
being the cost monotonically decreasing to a stationary point.

Wind disturbance step responses under different operating
points (frozen θ) are depicted in Fig. 3. The rotor speed
is well regulated around the origin. A similar response
irrespective of the operating point is noticeable, meaning that
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Fig. 2: Evolution of variables during the iterative LMI
optimization.

the controller is gain-scheduling to adapt to the nonlinearities
of the plant. This is corroborated by the magnitude plots of
transfer functions from wind disturbance to rotor speed and
tower velocity, for the open-loop and closed-loop systems.
The increased damping of the tower fore-aft motion is
noticeable in Fig.4d where the magnitude of the open-loop
system (dashed line) is plotted for comparison.
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