
  

 

Abstract— Consider the stochastic optimization of a loss 

function defined on p-dimensional grid of points in Euclidean 

space. We introduce the middle point discrete simultaneous 

perturbation stochastic approximation (DSPSA) algorithm for 

such discrete problems and show that convergence to the 

minimum is achieved. Consistent with other stochastic 

approximation methods, this method formally accommodates 

noisy measurements of the loss function.  

    Keywords— Stochastic optimization; recursive estimation; 

SPSA; noisy data; discrete optimization. 

I. INTRODUCTION 

HE optimization of real-world stochastic systems 

typically involves the use of a mathematical algorithm 

that iteratively seeks out the solution. It is often the case that 

the domain of optimization is discrete. Resource allocation, 

for instance, involves the distribution of discrete amount of 

some resource to a finite number of users in the face of 

uncertainty; other problems of interest within this 

framework include weapons assignment, plant location, 

network resource and experimental design. This paper 

introduces a method for stochastic discrete optimization that 

is based on stochastic approximation techniques customarily 

used in continuous optimization problems.  

Many methods have been proposed to deal with discrete 

optimization problems. These methods include random 

search [2], simulated annealing [1], stochastic comparison  

[7], ordinal optimization [11], nested partitions [18]. 

Recently Hannah and Powell [8] propose an algorithm for 

one-stage stochastic combinatorial optimization problems, 

based on evolutionary policy iteration. Li et al. [13] 

introduce a method based on random search in the most 

promising area proposed in [12].  And Sklenar [19] 

considers an exhaustive local search method which is 

designed explicitly for noisy loss. 

    The aim here is to present an alternative method that can 

fully use the information of the structure of objective 

functions (e.g. ―gradient‖) and potentially involve fewer 

function measurements. The simultaneous perturbation 

stochastic approximation (SPSA) algorithm [20, 21] was 
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developed for continuous optimization problems of high 

dimension and where the loss function is expensive to 

evaluate. SPSA is a popular algorithm that creates gradient-

type information from only two noisy function 

measurements in each iteration. The increase in efficiency 

over the finite difference stochastic approximation method, 

for example, has been shown to be a factor equal to the 

dimension of the problem [20]. Spall [20] has considered the 

convergence of SPSA for three times differentiable 

functions, whereas He et al. [9] have analyzed the 

convergence for nondifferentiable, but continuous 

optimization. Also Yousefian et al. [23] have discussed a 

local randomized smoothing technique for convex 

nondifferentiable continuous stochastic optimization. We 

want to use a similar idea of SPSA for the discrete case. 

Because the usual notion of a gradient does not apply in  

discrete problems, it is not obvious that the convergence 

properties demonstrated for SPSA hold for the discrete case. 

Hill et al. [10] considers a discrete form of SPSA and 

develops preliminary results associated with convergence 

for a separable discrete loss function under special 

conditions. However, this algorithm can be shown to not 

converge to the optimal solution in simple examples. We 

introduce a different form of discrete algorithm that applies 

to a broader range of problems while potentially retaining 

the essential efficiency advantages of standard SPSA.   

In particular, we introduce a middle point discrete 

simultaneous perturbation stochastic approximation 

(DSPSA) algorithm that applies in a class of discrete 

problems. As in conventional SPSA, the method needs only 

two noisy measurements of the loss function at each 

iteration. Although a full convergence and convergence rate 

analysis has not yet been conducted, we show conditions for 

almost sure convergence of the algorithm to the true 

parameter value.  

The paper is organized as the follows. In Section II, we 

motivate the general approach by considering the case of 

one dimensional , and describe the basic DSPSA algorithm 

for general p1. In Section III, we show that the algorithm 

converges to the optimal solution for some class of function 

under some conditions. In Section IV, we show how this 

algorithm compares with the localized random search 

method in two examples. In Section V, we conclude with a 

discussion. 
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II. PROBLEM FORMULATION 

A. Motivation: One Dimension Case 

Let us first consider one dimensional discrete function L: 

  , where  denotes the set of integers {…, −2, −1, 0, 

1, 2, …}. We want to find the minimal solution of the loss 

function L . Let the noisy measurement of the loss function 

be y , where y L   and   indicates the noise. Fig. 1 

shows an example of a discrete function in one dimension 

with a line connecting the neighboring integer points. The 

line L  can be regarded as a continuous extension of L , but 

L  is a nondifferentiable function at the integer points. For a 

point \, the gradient is  
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where .    is the floor function, .    is the ceiling function, 

and  ( ) 2 1 2        is the middle point between     

and    , and   is a Bernoulli random variable taking the 

values 1 . Actually ( ) 2n    and n  is an odd number, so 

( ) 2    must be integers. We can see that ( )g   is also 

well defined at integer points , and it is a subgradient (a 

vector γ  is a subgradient of L() at  if 

L()L() T
γ () for all p) at  (() is now the 

middle point between =     and +1). Then the 

estimated gradient for noisy function is  
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Ref. [9] has shown that SPSA method still converges for 

nondifferentiable functions when the functions are 

continuous and convex and the domains are convex and 

compact sets. 

 

 

 

 

 

 

 
 

 

 

Fig. 1.  Example of strictly discrete convex function and L is a continuous 

extension 

 

B. Basic Algorithm of DSPSA 

Motivated by the special example shown above, we will 

consider the case when θ  is p-dimensional, p = 1,2,3,… . 

We have the general basic algorithm as below for function y 

= L + , where L: p   and ε  is noise.  

The basic algorithm is: 

Step0: Pick an initial guess 0θ̂ . 

Step1: Generate 1 2[ , ,..., ]Tk k k kp   Δ , where the ki  

are independent Bernoulli random variables taking the 

values 1 with probability 1 2 . 

Step2:  ˆ ˆ( ) 2 2,k k p
  
 

π θ θ 1 where 1p is a p-dimensional 

vector with all components equal unity and 

1
ˆ ˆ ˆ,...,

T

k k kp
        

      
θ . 

Step3: Evaluate y at ˆ( ) 2k kπ θ Δ  and ˆ( ) 2k kπ θ Δ , 

form the estimate of ˆˆ ( )k kθg , 

11 1ˆ ˆ ˆˆ ( ) ( ) ( ) ,
2 2

k k k k k k ky y     
       

    
θ θ θ    g  

where 1 1 1
1 ,...,

T

k k kp
     

 
Δ . 

Step4: Update the estimate according to the recursion  

 1
ˆ ˆ ˆˆ ( ).k k k k ka  θ θ θg  

In the theoretical analysis below, we make use of the 

following mean gradient-like expression centered at ( )π θ :  

11 1
( ( )) ( ) ( ) ,

2 2
E L L 
      

        
      

π θ π θ Δ π θ Δ Δ θg  

where Δ  is p-dimensional vector that has the same 

definition as kΔ  mentioned above and  may be a random 

variable in some cases. If each direction is chosen equally, 

then  

11 1 1
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2 22p
L L 



    
       

    
π θ π θ Δ π θ Δ Δg , 

where 
  indicates the summation over all possible 

directions  . Note that 1
k k
 Δ Δ  and 1 Δ Δ in the 

Bernoulli 1 case; we use 1
k


Δ  to accommodate future 

extension to perturbation distributions other than Bernoulli 

1. 

III. CONVERGENCE PROPERTIES 

We now present an almost sure (a.s.) convergence result 

for ˆ
kθ . First we introduce some definitions that are used in 
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the proof to follow. For any point θ , we denote the set of 

middle points of all unit hypercubes containing θ  as . If 

θ  lies strictly inside one unit hypercube,  contains one 

point. But if θ  lies on the boundary,  contains multiple 

points. For any point m  in , we have | 1 2i im t  |  

for  1,...,i p , where  = [t1,t2,…,tp]
T and im is the ith 

component of m . Furthermore let 0 1
ˆ ˆ ˆ{ , ,..., }k k  θ θ θ . 

 

Theorem 1. Assume L  is a bounded function on p, and 

it has unique minimal point *
θ . Assume also (i) 0ka  , 

lim 0k ka  , 0 kk a
   and 2

0 kk a
  ; (ii) the 

components of kΔ  are independently Bernoulli 1  

distributed; (iii) For all k, [( ) | , ] 0k k k kE     Δ a.s. and 

the variance of   is uniformly bounded; (iv) 

0
ˆsup || ||k k  θ  a.s.; and (v) *( ) ( ) 0T

  θ θg m  for all 

m and all    p\{*}. Then *ˆ
k θ θ  a.s.  

 

Proof. By the algorithm, we have 
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By conditions (i), (ii), (iv) and boundedness of L, we have 

  1ˆ ˆlim ( ( ) 1 2 ) ( ( ) 1 2 )k k k k k k
k

a L L    


   θ θ 0   a.s. (2) 

Also  suppose the variance of k
  are 2( )k

 . Then by 

Chebyshev’s inequality and (iii),  
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,  

implying by [4, Theorem 4.1.] that  

                    1lim { }k k k k
k

a   


  Δ 0  a.s.                     (3) 

Through (1), we have the relationship that 

    1
1

ˆ ˆ ˆ ˆ( ) 2 ( ) 2k k k k k k k k k ka L L      


        
  

θ θ θ θ ε ε , 

and by the results of (2) and (3), we get 1
ˆ ˆ

k k  θ θ 0  a.s. 

Hence there exists 1  such that 1
ˆ ˆ( ) ( )k k    θ θ 0  

and P(1) = 1. By condition (iv), ˆ{ ( )}k θ  is a bounded 

sequence for any   1. Then there exists a subsequence 

ˆ{ ( )}
sk θ and point ( ) θ  such that ˆ{ ( )} ( )

sk   θ θ .  

In addition, we can rewrite (1) as  
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By the definition of ( )g , we have 
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Similarly, due to conditions (i) (ii) and (iii), we have   
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Since for all k,  
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  Δ  are martingales, then by (4), (5) and [3, 

Theorem 35.5], we know for all k, 

     1ˆ ˆ ˆ( ( )) ( ) 2 ( ) 2i i i i i i ii k
a L L
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   Δ  and 

    1ˆ ˆ ˆ( ( )) ( ) 2 ( ) 2k i i i i i i ii k
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   π θ π θ Δ π θ Δ Δg , 

then   kM  and  kN are reverse martingales ([2, p.472]), 

and by [2, Theorem 35.8], there exist random variables M 

and N, such that kM M  a.s. and kN N  a.s. Furthermore 
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due to (4) and (5), we have  
2

limk kE M
 
 

 = 0, and 

2
limk kE N

 
 

 = 0. Also  limk kE M  = 0 and  

 limk kE N  = 0. Then M=0 a.s., which indicates 0kM   

a.s. and N=0 a.s. which indicates 0kN   a.s. Then there 

exists 2   and 3    such that  P(2) = 1, P(3) = 1  

and such that for any   2, 

1( ( ) ( )) 0i k i i i ia   
      Δ  and for any   3, 
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 0  as s. In addition, we know ˆ{ ( )} ( )
sk   θ θ , 

indicating that   

                   ˆ( ( (ω)))

s

i i
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 π θ 0g  as s.               (6)            

Because ˆ (ω) (ω)
sk θ θ , then for any>0, there exists 

S>0 such that when s>S, ˆ (ω) (ω)
sk θ θ <. Thus there 

existsS, when s>S, all ˆ( (ω))
skπ θ . We now show 

(ω)θ is the optimal point. By way of contradiction, suppose 

(ω)θ  is not the optimal solution. Then by condition (v), we 

have *( ) ( ( ) ) 0T
    θ θg m  for all m, which is a 

contradiction of ˆ( ( (ω)))
s

i ii k
a


 π θ 0g  when s>S. Then 

for all 4 the limiting point of the sequence ˆ{ ( )}k θ is 

unique, which is equal to *
θ . Thus *ˆ

k θ θ  a.s. 

 

Comment 1: The inner product condition (v) is a natural 

extension of the standard inner product condition for 

continuous problem (e.g. [22, p.106]), which includes 

convex function as a special case. 

 

Comment 2: Actually some people have considered the 

discrete convexity. Miller [14] is a forerunner in the early 

1970s in the area of discrete convex function. Ref. [14] has 

introduced the definition of discrete convex function and 

showed that the local optimal points for discrete convex 

function are also global optimal solutions. There are other 

definitions of discrete convex functions [5][15][16][6], but 

[17] shows that Miller’s discrete convexity contains the 

other classes of discrete convexity. Note that Miller’s 

definition does not include all functions satisfying condition 

(v), and condition (v) does not include all functions satisfy 

Miller’s definition of discrete convexity. However, for 

p=1, discrete convex functions satisfying Miller’s 

definition also satisfy (v).  

 

The corollaries below give two common functions 

satisfying condition (v). Even though we describe the 

functions in continuous form, for DSPSA we only use their 

values at multivariate integer points. Strictly convex 

separable functions mentioned in corollary 1 are discussed 

in [10].  

 

    Corollary 1. Strictly convex separable functions with 

minimal value at multivariate integer point satisfy the 

condition (v) in Theorem 1.  

Proof. A separable function can be written as 

1
( ) ( )

p

i ii
L L t


θ , where 1[ ,..., ]Tpt tθ . And L  is a 

discrete function has same values with L  at multivariate 

integer points. Suppose the unique minimal point of L  is *, 

and * is a multivariate integer point with * * *
1[ ,..., ]Tpt tθ . 

Then * is also the optimal point of L.  Because it is strictly 

convex, then  for all   p\{*} and any subgradient 

( )i iL t , we have  *( )( ) 0i i i iL t t t    for i=1,…, p. 

Moreover,  for any m, ( )g m  = 

    11
2 2

2p
L L 
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1

1
( 2) ( 2)

2

p
i i i i i iip

L m L m 
 

    
   Δ
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1

1
( 2) ( 2)

2
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i i i i i ii p
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   Δ

Δ  = 

 
1

( 1 2) ( 1 2)
p

i i i i ii
L m L m 

   e . Then we have  

*( ) ( )T
 θ θg m =   *

1
( 1 2) ( 1 2) ( )

p
i i i i i ii

L m L m t t 
    . 

Because the minimal point is a multivariate integer point, 

then ( 1 2) ( 1 2)i i i iL m L m     has the same sign with  

one of the subgradient of iL  at it , indicating that 

  *( 1 2) ( 1 2) ( ) 0i i i i i iL m L m t t       for all i=1,…,p. 

4523



  

Thus *( ) ( ) 0T
  θ θg m  for all m and all    

p\{*}. Q.E.D. 

 

    Corollary 2. L  is a strictly convex piecewise linear 

function with minimal value at a multivariate integer point 

and it is linear in each unit hypercube, then L  satisfy the 

condition (v) in Theorem 1.  

    Proof. L  is a discrete function that has same values with 

L  at multivariate integer points. Since L  is strictly convex 

function, then for all   p\{*}, and for any subgradient 

( )L θ , we have *( ) ( ) 0TL  θ θ θ . Furthermore for any 

m,     11
( ) 2 2

2p
L L 

  
      Δ Δ Δg m m m  

=     11
2 2

2p
L L 

 
     Δ Δ Δm m =   11

( )
2

T

p
L 


 Δ Δm , 

where   is the notation of gradient. Thus 

*( ) ( )T
 θ θg m =   *1

( ) ( )
2

T T

p
L 


  Δ Δ θ θm  =  

*1
( ) ( )

2

T T

p
L 

 
  ΔΔ θ θm = *( ) ( )TL  θ θm . In 

addition for any m, there will be one subgradient 

( )L θ  at point θ , such that ( ) ( )L L   θm . Then 

*( ) ( )T
 θ θg m  = *( ) ( )TL θ θ θ  < 0, which indicates 

*( ) ( ) 0T
  θ θg m , for all m and all    p\{*}. 

Q.E.D. 

 

IV. COMPARISION WITH LOCALIZED RANDOM SEARCH 

METHOD 

Let us now compare the performance of DSPSA and the 

localized random search method for two loss functions. The 

first function considered here is a separable function 

2
1

p
ii t . The second one is a skewed quartic loss function 

which is mentioned in [22, Ex 6.6]: ( )L θ  = 

3 4
1 10.1 ( ) 0.01 ( )

p pT T
i ii iB B B B   θ θ θ θ , where pB  is an 

upper triangular matrix of 1’s. Even though the skewed 

quartic loss function does not satisfy condition (v), we will 

see that DSPSA still works for this loss function. We 

consider the high-dimensional case for both functions, 

where p = 200, and the measurement noise ε  is i.i.d N(0,1). 

Since the localized random search method is more efficient 

in noise-free cases than in noisy cases, then we will consider 

both the noise-free situation and noisy situation. The 

localized random search method is described in [22, 

Sections 2.2−2.3], which consider both noise-free loss 

functions and  noisy loss measurements, where a threshold 

parameter τk  is involved. We will restrict the random 

search to the closest neighbor points, and all these points are 

chosen with equal probability. Here for DSPSA, let 

( 1 ) ,ka a k A     a = 0.06 (for separable); a = 0.01 (for 

skewed quartic), A = 100, 0.602  . For the localized 

random search method, we choose 2k  for the noisy case 

after several tuning.  The initial guess is set to be 200101  

in all runs. Fig. 2 and 3 show the performance of both 

methods under noise-free and noisy situations for separable 

function. And Fig. 4 and 5 show the performance of both 

methods for a skewed quartic function.  We can see that 

DSPSA does better than the random search method for these 

two examples. 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 2. Performance of localized random search method and DSPSA under 

noise-free situation for separable function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Performance of localized random search method and DSPSA with 

noisy measurements for separable function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Performance of localized random search method and DSPSA under 

noise-free situation for skewed quartic function. 
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Fig. 5. Performance of localized random search method and DSPSA with 

noisy measurements for skewed quartic function. 

 

V. CONCLUSION 

In this paper, we introduced a discrete SPSA algorithm, 

and presented some preliminary convergence analysis. A 

preliminary numerical study shows that DSPSA works well 

on high-dimensional problems with or without noise in the 

loss measurements. As part of future work, we plan to 

formally study the convergence rate of the DSPSA and 

consider non-Bernoulli random variables for the 

perturbation vectors.  

Also we intend to compare DSPSA with other popular 

discrete optimization algorithms, including those designed 

explicitly for handling noisy loss measurements (e.g. 

[7][13][19]). Two important practical problems of interest 

that involve stochastic discrete optimization are resource 

allocation, where a finite amount of a valuable commodity 

must be optimally allocated, and experimental design, where 

it is necessary to choose the best subset of input 

combinations from a large number of possible input 

combinations in a full-factorial design (e.g., [24]). We 

intend to explore the application of DSPSA to these or other 

problems. 

 

ACKNOWLEDGMENT 

This work was supported in part by the JHU/APL IRAD 

Program. 

REFERENCES 

[1] M. H. Alrefaei, S. Andradóttir, ―A Simulated Annealing Algorithm 

with Constant Temperature for Discrete Stochastic Optimization,‖ 

Management Sci., vol. 45, No.5, May 1999, pp. 748−764. 

[2] S. Andradóttir, ―A Method for Discrete Stochastic Optimization,‖ 

Management Sci., vol. 41, No.12, December 1995, pp. 19461961. 

[3] P. Billingsley, Probability and Measure, Wiley-Interscience, Third 

Edition, 1995 

[4] K. L. Chung, A Course in Probability Theory, Academic Press, Third 

Edition, 2001. 

[5] P. Favati, F. Tardella, ―Convexity in Nonlinear Integer Programming,‖ 

Ricerca Operativa , vol. 53, 1990, pp. 3−44. 

[6] S. Fujishige, K. Murota, ―Notes on L-/M-convex Functions and the 

Separation Theorems,‖ Mathematical Programming, vol. 88, 2000, 

pp.  129−146. 

[7] W. B. Gong, Y. C. Ho, W. Zhai, ―Stochastic Comparison Algorithm 

for Discrete Optimization with Estimation,‖ SIAM J. Optim., vol. 10, 

No.2, 2000, pp. 384404. 

[8] L. A. Hannah and W.B. Powell, ―Evolutionary Policy Iteration Under 

a Sampling Regime for Stochastic Combinatorial Optimization,‖ IEEE 

Transactions on Automatic Control, vol. 55, No.5, May 2010, pp. 

1254−1257. 

[9] Y. He, M. C. Fu, and S. I. Marcus, ―Convergence of Simultaneous 

Perturbation Stochastic Approximation for Nondifferentiable 

Optimization,‖ IEEE Transactions on Automatic Control, vol. 48, 

No.8, August 2003, pp. 1459−1463. 

[10] S. D. Hill, L. Gerencsér and Z. Vágó, ―Stochastic Approximation on 

Discrete Sets Using Simultaneous Difference Approximations,‖  

Proceeding of the 2004 American Control Conference, Boston, MA, 

June 30July 2, 2004, pp. 2795−2798. 

[11] Y. C. Ho, Q. C. Zhao, and Q. S. Jia, Ordinal Optimization: Soft 

Optimization for Hard Problems. Springer, New York, NY, 2007. 

[12] L. J. Hong and B. L. Nelson, ―Discrete Optimization via Simulation 

Using COMPASS,‖ Oper. Res., vol. 54, No.1, 2006, pp. 115−129. 

[13] J. Li, A. Sava, and X. Xie, ―Simulation-Based Discrete Optimization 

of Stochastic Discrete Event Systems Subject to Non Closed-Form 

Constraints,‖ IEEE Transactions on Automatic Control, vol. 54, 

No.12, December 2009, pp. 2900−2904. 

[14] B. L. Miller, ―On Minimizing Nonseparable Function Defined on the 

Integer with an Inventory Application,‖ SIAM Journal on Applied 

Mathematics, vol. 21, No.1, July 1971, pp. 166185. 

[15] K. Murota, ―Discrete Convex Analysis,‖ Mathematical Programming, 

vol. 83, 1998, pp. 313−371. 

[16] K. Murota, A. Shioura, ―M-convex Function on Generalized 

Polymatroid,‖ Mathematics of  Operations. Research, vol. 24, 1999, 

pp.  95−105. 

[17] K. Murota, A. Shioura, ―Relationship of M-/L- Convex Function with 

Discrete Convex Functions by Miller and Favati-Tardella,‖ Discrete 

Applied Mathematics, vol. 115, 2001, pp. 151−176. 

[18] L. Shi and S. Olafsson, ―Nested Partitions Method for Global 

Optimization,‖ Oper. Res., vol. 48, No.3, 2000, pp. 390407. 

[19] J. Sklenar, P. Popela ―Integer Simulation Based Optimization by Local 

Search,‖ Procedia Computer Science, vol. 1, 2010, pp. 1341−1348. 

[20] J. C. Spall, ―Multivariate Stochastic Approximation Using a 

Simultaneous Perturbation Gradient Approximation,‖ IEEE 

Transactions on Automatic Control, vol. 37, No.3, March 1992, pp. 

332−341. 

[21] J. C. Spall, ―An Overview of the Simultaneous Perturbation Method 

for Efficient Optimization,‖ Johns Hopkins APL Technical Digest, 

vol. 19, No.4, 1998, pp. 482−492. 

[22] J. C. Spall, Introduction to Stochastic Search and Optimization: 

Estimation, Simulation, and Control. Wiley, Hoboken, NJ, 2003. 

[23] F. Yousefian, A. Nedić, and U. V. Shanbhag, ―Convex 

Nondifferentiable Stochastic Optimization: A Local Randomized 

Smooting Technique,‖ Proceedings of the American Control 

Conference, Baltimore, MD, June 30–July 2, 2010, pp.  4875−4880. 

[24] J. C. Spall, ―Factorial Design for Choosing Input Values in 

Experimentation: Generating Informative Data for System 

Identification,‖ IEEE Control Systems Magazine, vol. 30, no. 5, 

October 2010, pp. 38−53. 

0 2000 4000 6000 8000 10000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Measurements

 

 

Random Search

DSPSA

*ˆ|| ||

*ˆ|| ||0

k 



θ θ

θ θ

4525


