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Abstract—This article proposes a communication-efficient de-
centralized deep learning algorithm, coined layer-wise federated
group ADMM (L-FGADMM). To minimize an empirical risk,
every worker in L-FGADMM periodically communicates with
two neighbors, in which the periods are separately adjusted
for different layers of its deep neural network. A constrained
optimization problem for this setting is formulated and solved
using the stochastic version of GADMM proposed in our prior
work. Numerical evaluations show that by less frequently ex-
changing the largest layer, L-FGADMM can significantly reduce
the communication cost, without compromising the convergence
speed. Surprisingly, despite less exchanged information and
decentralized operations, intermittently skipping the largest layer
consensus in L-FGADMM creates a regularizing effect, thereby
achieving the test accuracy as high as federated learning (FL), a
baseline method with the entire layer consensus by the aid of a
central entity.

Index Terms—Communication-efficient decentralized machine
learning, GADMM, ADMM, federated learning, deep learning.

I. INTRODUCTION

Interest in data-driven machine learning (ML) is on the rise,
but difficulties in securing data still remain [[1], [2]. Mission
critical applications aggravate this challenge, which require a
large volume of up-to-date data for timely coping with local
environments even under extreme events [3]]. Mobile devices
prevailing at the network edge are a major source of these data,
but their user-generated raw data are often privacy-sensitive
(e.g., medical records, location history, etc.). In view of this,
distributed ML has attracted significant attention, whereby
the parameters of each model, such as the weights of a
neural network (NN), are exchanged without revealing raw
data [1f], [2f], [4], [5]. However, with deep NN architectures,
the communication payload sizes may be too large, and
hinder the performance of distributed ML, spurring a quest
for communication-efficient distributed ML solutions.

Federated Learning (FL). A notable communication-
efficient distributed ML framework is FL [|6]—[8]]. Each device,
or worker, in FL stores its own dataset and an NN, and
locally trains the NN via stochastic gradient descent (SGD).
As shown in Fig. [Th, the weight parameters of the local NN
are uploaded to a parameter server at a regular interval. The
server thereby produces the global average weight parameters
that are downloaded by each worker. These FL operations are
summarized by its server-aided centralized architecture, ran-
dom data sampling per SGD iteration, and periodic communi-
cation at an interval of multiple SGD iterations. However, the
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Fig. 1: Operational structures of (a) federated learning (FL), (b)
group ADMM (GADMM), and (c) our proposed layer-wise federated
GADMM (L-FGADMM) combining FL. and GADMM, while less fre-
quently exchanging the largest NN layer compared to the other layers.

inherently centralized architecture of FL is ill-suited for mobile
devices located faraway from the server. Due to the limited
transmission power and energy, these devices may easily loose
connectivity, calling for decentralized ML methods.

Group ADMM (GADMM). To achieve fast convergence
while minimizing the number of communication links under
a decentralized architecture, GADMM was proposed in our
prior works [9]-[11]. Under GADMM, each worker commu-
nicates only with its two neighboring workers. To this end,
as illustrated in Fig. m), GADMM first divides the workers
into head and tail groups. The workers in the same group
update their model parameters in parallel, while the workers
in different groups update their models in an alternating
way, after communicating with neighbors in different groups.
Nonetheless, the effectiveness of GADMM was shown only
for convex loss functions without exploring deep NN archi-
tectures. What’s more, GADMM assumes that every worker
identically stores the full batch data and runs gradient descent
(GD) with immediate communication per GD iteration. These
assumptions are ill-suited for the user-generated nature of data
and communication efficiency, motivating us to seek for a
federated and decentralized solution.



Layer-wise Federated GADMM (L-FGADMM). To
bridge the gap between FL and GADMM, in this article
we propose L-FGADMM, by integrating the periodic
communication and random data sampling properties of FL
into GADMM under a deep NN architecture. To further
improve communication efficiency, as illustrated in Fig. [Tk,
L-GADMM applies a different communication period to each
layer. By exchanging the largest layer 2x less frequently than
the other layers, our results show that L-FGADMM achieves
the same test accuracy while saving 48.8% and 60.8% average
communication cost, compared to the case using the same
communication period for all layers and FL, respectively.

Related Works. Towards improving communication effi-
ciency of distributed ML, under centralized ML, the number
of communication rounds can be reduced by collaboratively
adjusting the training momentum [12], [[13]. On the other
hand, the number of communication links can be decreased by
collecting model updates until a time deadline [14]], upon the
values sufficiently changed from the preceding updates [15],
[16]], or based on channel conditions [[17]]-[19]]. Furthermore,
the communication payload can be compressed by 1-bit gra-
dient quantization [20], multi-bit gradient quantization [16],
or weight quantization with random rotation [21]]. Alterna-
tively, instead of model parameters, model outputs can be
exchanged for large models via knowledge distillation [22],
[23]. Similar principles are applicable for communication-
efficient decentralized ML. Without any central entity, com-
munication payload sizes can be reduced by a quantized
weight gossiping algorithm [24], ignoring communication link
reduction. Alternatively, the number of communication links
and rounds can be decreased using GADMM proposed in our
prior work [9]. Furthermore, by integrating stochastic quanti-
zation into GADMM, quantized GADMM (Q-GADMM) was
proposed to reduce communication rounds, links, and payload
sizes altogether [[11]]. To achieve the same goals, instead of
quantization as in Q-GADMM, L-FGADMM applies a layer-
wise federation to GADMM under deep NN architectures.
Combining both quantization and layer-wise federation is
deferred to future work.

II. PROBLEM FORMULATION

We consider N workers, each of which stores its own batch
of input samples and runs a deep NN model comprising L
layers. Hereafter, the subscript n identifies the workers, and
the superscript ¢ indicates the layers. The n-th worker’s model
parameters (i.e., weights and biases) are denoted as ¢, =
{6,0%, - 6%}, where 0!, € R? is a d-dimensional vector
whose elements are the model parameters of the /-th layer.

Every worker has its local loss function f,(¢,,), and op-
timizes its local model ¢,, such that the global average loss
22;1 fn(¢,,) can be minimized, at which all local models
reach a consensus on a global model ¢ = ¢, = --- = ¢y
To solve this problem in parallel, each worker runs a first-order
iterative algorithm by selecting a mini-batch X,(Lk) at the k-th
iteration, while communicating with other workers to ensure

Algorithm 1 Layer-Wise Federated GADMM (L-FGADMM)
I: Input: N, f.(¢,,) Vn,p, K

2: Output: ¢, Vn

3. Initialization: 6., =AL© = 0vn,!

4: while £ < K do

5. Head worker n € N},: in Parallel

6: Randomly selects a mini-batch x

7: Updates its primal variable ¢! via (@)

8: if k mod Ty = 0 then

9: Transmits Oﬁl(kﬂ) to its two tail neighbors
10:  end if

11: Tail worker n € N;: in Parallel

12: Randomly selects a mini-batch X,(Lk)

13: Updates its primal variable ¢! via (@)

14 if £k mod Ty = 0 then

15: Transmits Bln(kﬂ) to its two head neighbors
16:  end if

17: All workers: in Parallel

18:  if k mod Ty = 0 then

19: Updates the dual variables AL ALK g ()
20:  end if

21 k+k+1

22: end while

the consensus across {¢,,}. Unfortunately, this consensus
requires exchanging local models, incurring huge communi-
cation overhead for deep NNs. To reduce the communication
payload sizes, we instead consider a consensus across {6},
leading to the following problem formulation:

K N
1
Minimize N Z Z fn(dy,, Xf(zk)) (1
k=1n=1
subject to 6% = 9fl+1. 2)

The constraint (2) implies a per-layer consensus between the
n-th and (n—+1)-th workers. This enables layer-wise federation
and neighbor-based communication, as elaborated in the next
section.

III. PROPOSED ALGORITHM: L-FGADMM

To solve the problem defined in (I)-(Z), in this section we
propose L-FGADMM, by extending GADMM proposed in our
prior work [9]]. Following GADMM (see Fig. [Tb), workers
in L-FGADMM are divided into head and tail groups, and
communicate only with their neighboring workers. Compared
to GADMM, L-FGADMM further improves communication
efficiency through the following two ways. First, workers L-
FGADMM periodically communicate as done in FL [6[]—[8]],
in contrast to the communication per iteration in GADMM.
Second, the communication period of L-FGADMM is ad-
justed separately for each layer (see Fig. [Tk), as opposed to
GADMM and FL exchanging the entire models. L-FGADMM
can thereby increase the communication periods for large-sized
layers, while reducing the communication payload size.



To be specific, a physical network topology is converted into
a logical worker connectivity graph in L-FGADMM. Then,
the workers are split into a head group N}, and a tail group
N, such that each head worker is connected to neighboring
tail workers. For the workers in the same group, their model
parameters are updated in parallel, by iterating the mini-
batch stochastic gradient descent algorithm (SGD). After T,
iterations, the workers share the updated model parameters Ofl
of the ¢-th layer with their neighbors. These operations of L-
FGADMM are summarized in Algorithm [I] and detailed next.

At first, the augmented Lagrangian of the problem in (I)-(2)
is defined as:

N N—-1
=" Ll X+ ST ST AL (6 - 6h4)
n=1 n=1 1
N—
g Z Z | 65 — 61 I3, 3)

where X! is the n-th worker’s dual variable of the /-th layer,
and p is a constant penalty term. For the sake of explanation,
hereafter the n-th worker’s model parameter vector Hﬁl of the
{-th layer is called a primal variable. Head and tail workers’
primal and dual variables are updated through the following
three phases.

1) Head primal updates. Head workers receive the primal
variables from their tail workers, and update the dual variables
at an interval of Ty iterations. These variables at the (k+1)-th
iteration are thus fixed as the values at the |k/7} |-th iteration.
Given these fixed primal and dual variables associated with
neighbors, at iteration k41, each head worker runs mini-batch
SGD to minimize E;’”l). Applying the first-order condition to
£(k+1) yields the n-th head worker’s mode update as follows:

o, = argmin{ (9., X1)
+Z>\
”Zuezl —0;\|2+§Z|\e;—en+1 Y1) @

l

After Ty iterations, the head worker transmits the updated
+1)

T (k)
“o, " ~a) +Z>J (0n —0ni1 )

primal variable Gfl(k
and n + 1.

to its two tail neighbors, workers n—1

2) Tail primal updates. Following the same principle in the
head primal updates, at the (k + 1)-th iteration, the n-th tail
worker updates its model as:

QSLIZ\I[B = argmm{fn (¢, X(’“))
k+1 T k41
+3A el M —e) +ZAL (AR
1

P L ) (k+1)
l

After Ty iterations, the tail worker transmits the updated primal
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variable 6%
and n + 1.

to its two head neighbors, workers n — 1

(a) MLP (b) CNN

Layer Output Shape #Weights Layer  Output Shape #Weights
fecl 256 200,960 convl 28x28x8 208
fc2 128 32,896 conv2 14x14x6 3,216
fe3 64 8,256 conv3 7x7x32 8,224
fc4 32 2,080 fc4 400 627,600
fcb 16 528 fc5 10 4,010
fcb6 10 170

Total 244,890 Total 643,258

TABLE I: NN architectures: (a) MLP comprising 6 fully-connected
layers (fc1-6) and (b) 5-layer CNN consisting of 3 convolutional
layers (conv1-3) and 2 fully-connected layers (fc4-5).

3) Dual updates. After the updated tail primal variables are
exchanged, every worker locally updates the dual variables
)\271 and )\ﬁl as follows:

AL D (k+1)

R

)- (6)

- 0n+1

The convergence of the aforementioned primal and dual
variable updates are theoretically proved for convex, proper,
and smooth loss functions only when the entire layers are
exchanged at every iteration [9]. The convergence proof of
L-FGADMM for different exchanging periods under deep
NN architectures is deferred to future work. Meanwhile, the
effectiveness of L-FGADMM is empirically corroborated in
the next section.

IV. NUMERICAL EVALUATIONS

This section validates the performance of L-FGADMM
for a classification task, with 4 workers uniformly randomly
distributed over a 50x50 m? plane. These workers are assigned
to head and tail groups, such that the length of the path starting
from one worker passing through all workers is minimized.
The simulation settings are elaborated as follows.

Datasets. We consider the MNIST dataset comprising 28x28
pixel images that represent hand-written 0-9 digits. Each
worker has 500 training samples, independent and identically
distributed across workers, and utilizes randomly selected 100
samples per mini-batch SGD iteration, i.e., X,(Lk) = 100.

Communication periods. Denoting as /¢, the largest
layer, its communication period under L-FGADMM is set as
Ty,.... = BTy for all £ # {1,,«. Hereafter, our proposed scheme
is referred to as L-FGADMM 1x, 2x, or 4x, when 8 =1, 2, or
4, respectively. The communication periods of the other layers

are identically set to 5 iterations.

NN architectures. To examine the impact of NN archi-
tectures, two different NN models are considered, a multi-
layer perceptron (MLP) NN and convolutional neural network
(CNN). As Table [I| describes, the MLP consists of 6 layers,
among which the 1st layer is the largest, i.e., {ax = 1, and
has 82% weight parameters of the entire model. The CNN
comprises 5 layers, and the 4th layer is the largest among
them, i.e., {ymax = 4, having 97.6% weight parameters of the
entire model.
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Fig. 2: Training loss of L-FGADMM under (a) MLP and (b) CNN,
when the largest layer’s exchanging period 1} is 2x or 4x longer.

max

Baselines. We compare L-FGADMM with two benchmark
schemes, (i) FL running mini-batch SGD with the learning rate
0.01, while exchanging local gradients every 5 iterations [6];
and (ii) standalone mini-batch SGD with a single worker. In
FL, the worker having the minimum sum distances to all other
workers is set as a parameter server. In the standalone case,
there is no communication, but for the sake of convenience 5
SGD iterations are counted as a single communication round.

Performance measures. The performance of each scheme
is measured in terms of training loss, test accuracy, and total
communication cost. Training loss is measured using the cross
entropy function. Test accuracy is calculated as the fraction of
correct classification outcomes. Total communication cost is
the sum of the total communication energy. With respect to
these three figure of merits, the effectiveness of L-FGADMM
is described as follows.

« Fast convergence of L-FGADMM: As shown by Fig. 2]
under both MLP and CNN architectures, L-FGADMM 1x,
2x, and 4x converge within 100 communication rounds. For
all cases, the final loss values of L-FGADMM are close
to each other, which are up to 13.8% smaller than FL
whose training speed is also slower. It is noted that the
standalone baseline yields the fastest convergence speed.
This is because of its overfitting towards 500 local training
samples, which results in poor accuracy as explained next.
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Fig. 3: Test accuracy of L-FGADMM under (a) MLP and (b) CNN,
when the largest layer’s exchanging period 7% is 2x or 4x longer.
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« High accuracy of L-FGADMM: Fig. 3p shows that under
CNN, L-FGADMM 1x achieves the highest final test ac-
curacy (92.25%), followed by FL (92%), L-FGADMM 2x
(91.42%), L-FGADMM 4x (89.76%), and the standalone
case (87.3%). It is noticeable that L-FGADMM 2x accuracy
is comparable to FL, which converges faster while exchang-
ing less layers than FL. Fig. [3| demonstrates that under
MLP, surprisingly, L-FGADMM 2x achieves the highest
accuracy (91.37%), followed by L-FGADMM 1x (90.87%),
FL (90.72%), L-FGADMM 4x (86.94%), and the standalone
case (83.61%). The excellence of L-FGADMM 2x can
be explained by its regularization effect. Its skipping the
largest layer communications introduces additional errors
compared to L-FGADMM 1x, which exhibits better gener-
alization.

o Low communication cost of L-FGADMM: Fig. [{] illus-
trates the complementary cumulative distribution function
(CCDF) of the total communication cost (energy). We
perform 1000 experiments. Every run, we randomly drop
a 4 workers in 100 x 100 m? grid. We assume that
the bandwidth per worker is 1IMHz (B = 1MHz), the
transmission power is Imw (P = 1mw), and Noise spectral
density is 1E—9 (Ng = 1E—9). We use the free space path
loss model, so the SNR at the receiver 5 when transmitter
i is transmitting is P/(d ; NoB), where d; ; is the distance
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Fig. 4: Total communication cost of L-FGADMM under (a) MLP and (b) CNN, when the largest layer’s exchanging period T, is 2x or

4x longer.

between worker ¢ and j, and the achievable rate is computed
using Shannon’s formula. We assume every element in the
model is transmitted using 32 bits. Therefore, we compute
the duration and the energy needed to transmit the shared
model elements at every iteration, then we sum over all
iterations and workers to find the total energy consumed
by the system. The result shows that L-FGADMM achieves
lower mean and variance of the total communication cost,
compared to FL and the standalone baseline. Specifically,
the mean total communication cost of L-FGADMM is up
to 3.75x and 5.75x lower than FL, under MLP and CNN,
respectively. Furthermore, the variance of L-FGADM is
up to 22.5x and 51.4x lower than FL, under MLP and
CNN, respectively. There are two rationales behind these
results. In L-FGADMM, the worker connectivity is based
on nearest neighbors in a decentralized setting, leading to
shorter link distances than FL whose connectivity is cen-
tralized. Furthermore, the payload sizes are smaller thanks
to partially skipping the largest layer exchanges, inducing
higher communication efficiency of L-FGADMM.

V. CONCLUSIONS

By leveraging and extending GADMM and FL, in this
article we proposed L-FGADMM, a communication-efficient
decentralized ML algorithm that exchanges the largest layers
of deep NN models less frequently than other layers. Numeri-
cal evaluations validated that L-FGADMM achieves fast con-
vergence and high accuracy while significantly reducing the
mean and variance of the communication cost. Generalizing
this preliminary study, optimizing layer exchanging periods
under different NN architectures and network topologies could
be an interesting topic for future research.
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