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Abstract—Massive multiple-input multiple-output (MIMO)
systems have been proposed to meet the user demands in terms
of performance and quality of service (QoS). Due to the large
number of antennas, detectors in massive MIMO are playing a
crucial role in guaranteeing a satisfactory performance, while
their complexity is also being increased. This paper considers
several approximate algorithms to avoid direct matrix inversion,
namely the Neumann method, the Gauss-Seidel (GS) method, the
successive over-relaxation (SOR) method, the Jacobi method, the
Richardson method, the optimized coordinate descent (OCD),
and the conjugate gradients (CG) method. Also, this paper
presents a comparison among the approximate matrix inversion
methods and the minimum mean square error (MMSE). Sim-
ulation of 16 x 128, and 16 x 32 MIMO systems shows that a
detector based on the GS method outperforms other detectors
when the ratio of base station (BS) antennas to user terminal
antennas, 3, is small. On the other hand, the detector based
on the SOR method outperforms the other approximate matrix
inversion methods when J3 is large. In addition, this paper studies
and recommends the setting values of relaxation parameter () in
the SOR and Richardson methods. It also provides a comparison
among the approximate matrix inversion methods in the number
of multiplications. Simulation results show that the Neumann
method, the OCD method, and the CG method achieve the lowest
number of multiplications while the CG method outperforms the
Neumann and the OCD methods. This paper also shows that not
every iteration improves the performance.

Index Terms—Massive MIMO, approximate matrix inversion,
MMSE, detection

I. INTRODUCTION

Year-over-year, mobile data traffic is being increasingly
growing. For instance, the mobile data traffic is expected
to increase from 7.2 exabytes per month in 2016 to hit 49
exabytes per month by 2021 where 78% of the world’s data
traffic will be videos [1]. Therefore, the fourth generation (4G)
communication systems require an essential improvement to
meet the user’s demand [2], [3]. Sequentially, fifth genera-
tion (5G) wireless communication is currently proposed with
higher bandwidth, broader coverage, and ultra-low latency
[3]. 5G will be driven largely by several technologies such
as massive multiple-input multiple-output (MIMO), internet
of things (IoT), millimeter wave (mmWave), device-to-device
(D2D) communication and ultra dense networks (UDNs) [4].

MIMO has been successfully implemented in many wireless
communication systems, such as the 3G and 4G where up to
eight antenna elements have been deployed at the base station.
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Massive MIMO is a multiuser communications system that
employs a large number of antenna elements to serve simul-
taneously multiple users with a flexibility to opt what users to
schedule for reception at any given time. The massive MIMO
system increases the spatial multiplexing gain and the diversity
gain by adding massive antennas at the base station (BS) to
serve large number of users with relatively simple scheduling
and receiver algorithms. However, numerous antennas create
new challenges for signal processing in precoding [5], channel
estimation [6] and signal detection [7].

Although maximum-likelihood (ML) detector achieves the
optimum performance, it is unfeasible for massive MIMO
systems because of its exponential complexity. In literature,
suboptimal low complexity detectors have been proposed for
signal detection in massive MIMO such as neighborhood
search algorithms [8], lattice reduction algorithms [9], algo-
rithms based on quadratic programming [10], sphere decoders
[11]-[13], successive relaxation detection [14], successive
interference cancellation (SIC) [15], graph models and belief
propagation [16]. However, numerous antennas require a larger
channel matrix to be considered by signal processing, which
requires better algorithms and more powerful hardware chips
in the physical layer. Matrix inversion is one of the main
challenges for massive MIMO precoding and detection. Re-
cently, approximate matrix inversion [14], [17]-[21] has drawn
the attention of the research community for its capability
of achieving a satisfactory balance between complexity and
performance.

In this paper, a comparison between several approximate
matrix inversion methods will be provided when the ratio
of BS antennas to user terminal antennas () varies. In
addition, the contribution of the number of iterations () in the
performance-complexity profile will be discussed. The setting
values of the relaxation parameter (®) in SOR and Richard-
son methods will be studied and recommended. This paper
also compares the performance-complexity profile among the
approximate matrix inversion methods.

This paper is organized as follows: Section II presents
the ML, MMSE, and detectors based approximate matrix
inversion methods. Section III presents the results as well as
the discussion. Section IV concludes the paper.



II. MASSIVE MIMO DETECTOR

Massive MIMO is a multi-user system with N antennas at
the base-station (BS) availing K single antenna users where
N> K. Let X = [x1, X2, ..., x¢]T and y = [y1, y2,....., yv]7
where x and y vectors are the transmitted and the received
signals respectively. Also xg € C where C is the modulation
alphabet. Elements of the channel matrix (H) are herein
assumed to be independent and identically distributed (i.i.d)
Gaussian random variables with zero mean and unit variance.
The relationship between the input and the output of massive
MIMO detector is represented mathematically in

y = Hx + n, (D)

where n is the N x 1 additive white Gaussian noise (AWGN)
whose entries are i.i.d. However, MIMO signal detection
problem is NP-hard optimization problem [22]. An efficient
massive MIMO system requires advanced signal detection
techniques to achieve a satisfactory balance between the sys-
tem performance and computational complexity. This section
presents the concepts of ML, MMSE, and detectors based on
the approximate matrix inversion methods.

A. Maximum likelihood (ML)

Maximum-likelihood (ML) detector achieves optimal per-
formance but the complexity is exponential in the number of
decision variables |C|X. ML detector examines all possible
signals as illustrated in

X = arg min |y —+/——Hx||%, 2
g min ly /% Bx| @

where X is the estimated received signal and SNR refers to
the signal-to-noise ratio. ML detector is unfeasible for massive
MIMO systems because it requires an exponential complexity.
Therefore, it is mandatory to utilize suboptimal detectors with

a reduced complexity in massive MIMO systems. A widely
utilized suboptimal detector for massive MIMO is the MMSE.

B. Minimum Mean Square Estimation (MMSE)

MMSE detector minimizes the mean-square error (MSE)
between the transmitted x and the estimated signal H” y [23].
The detected signal can be expressed as

o H K B H
XMMSE = <H H+ SNRI> H Y. (3)
MMSE algorithm (3) depends on reduced noise enhancement.
However, the complexity of MMSE-based detector is still
high for massive MIMO system because the detector involves
matrix inversion and computation of Gram matrix with a
complexity O(N?) and O(NK?), respectively [24]. Thus, ap-
proximate matrix inversion methods such as Neumman, GS,
SOR, Jacobi, Richardson and OCD methods are needed to
reduce the complexity.

C. Neumann method

In the Neumann method, the Gram matrix G = H”H has
been decomposed into G =D+ E, where E is the non-diagonal
matrix and D is the main diagonal matrix [25]. The inverse of
Gram matrix can be found as

G'=Y (-D'E)D", 4)
i=0
which converges to the matrix inverse G~ if the condition
lim (-D7'E)' =0, (5)
i—soo0
is satisfied. In real systems, a sum of finite terms () is utilized
(4) and thus, a fixed number of iterations is performed.

A high precision of the matrix inverse will be achieved
by increasing the number of iterations (n) in expenses of
higher computational complexity. This method suffers from
considerable performance loss when the ratio between BS
antennas and the user antennas, B, is close to 1.

D. Successive Over-Relaxation

The detected signal using SOR iteration is described as

-1
g0 = <1D+L> <>2MF+(<11>DU> f((”‘l)), (6)
(O] (O]

where o is the relaxation parameter and it plays a crucial role
in the convergence and convergence rate. In SOR method, a
Gram matrix should be pre-computed and provided as an input
which increases the computational complexity [26]. It also has
uncertain relaxation parameter 0 < ® < 2.

E. Gauss-Seidel Method

GS method is a special case of the SOR method where
o = 1. In GS method, any Hermitian positive definite matrix,
A can be decomposed into A =D+ L+ U [20] [27], where
D, L and U are the diagonal component, the strictly lower
triangular component, and the strictly upper triangular compo-
nent, respectively. It can be utilized to estimate the transmitted
signal vector (X) [21] as

R =0+ (Rur "), n=120, (D)

where Xjr is the output of matched filtering method. The
initial solution f((o), can be considered as zero if there is no
priori information about its value [27]. It also requires an
internal sequential iterations structure, thus, GS is not suitable
for parallel implementation [20].

F. Jacobi Method

Jacobi method determines the solution of a diagonally
dominant system as

g —p-! (ﬁMF +(D—A) f;("‘l)) , )
which holds if:
lim (I-D~'A)" =0. 9)

n—oo



The initial estimation can be identified as
2O =D gy p. (10)
However, Jacobi method converges slowly, and thus, implying
higher latency [28].
G. Conjugate Gradients Method
The estimated signal (X) can be obtained using

ﬁ(nJrl) — ﬁ(") + a(”)p(”)) (1 1)

where p(") is the conjugate direction [29] [30] with respect to
A, ie.,

H A
(p) ApY) =0, for n#j, (12)
d
) g S
P =Rt o cw P 13
Xmr - XMF
and a is a scalar parameter shown as
o) o (n)
o) = MEZME (14)
ARy Xy

The CG-based detection algorithm outperforms the NS-based
detection scheme in terms of performance and complexity [30]
[31]. The CG method requires a large number of iterations and
include several divisions [30] [32].

H. Optimized Coordinate Descent Method

Coordinate descent (CD) obtains an approximate solution
of a large number of convex optimization using series of
simple, coordinate-wise updates. The estimated solution can
be concluded as

~1
m=0mW+%)th—ZM&> (15)
J#k
where N, is the noise variance. In OCD, a preprocessing and
algorithm restructuring will be performed to minimize the
amount of operations during each iteration.

1. Richardson Method

It utilizes symmetric matrices defined as positive at their
execution and can be slowed as it approaches the exact solution
over time. In order to achieve a fast convergence, a relaxation
parameter ® has been introduced into iterative process and it
satisfies 0 < @ < % where A is the largest eigenvalue of the
symmetric positive definite matrix H [33]. Richardson iteration
is described mathematically as

x("+1>:x(">+m(y—Hx<">) n=0,12 . (16)

The initial solution x(¥) can be identified as 2K x 1 zero vector
without loss of generality as no a priori knowledge of the
final solution is available [34]. Richardson method requires a
large number of iterations [33]. It also has uncertain relaxation
parameter @ [32], [35]. Table I shows the comparison of
computational complexity between several approximate matrix
inversion methods. The complexity of all methods will be
increased over iterations while the complexity of Neumann
method will be increased significantly when n > 3.

Table 1
COMPLEXITY COMPARISON AMONG APPROXIMATE MATRIX INVERSION
METHODS
Method Number of multiplications
Neumann 4AN3(n—2)+ 2K+ DK> + (4N — DK
Richardson | (4N +4n)K> +2KN
SOR (4N +4n—2)K>+2(N —n+ 1)K
GS (4N +4n—2)K*+2(N —2n+ DK
OCD (SNK+4K)n
Jacobi (4N +4n+ DK>+2NK
CG (N+2K%)n

III. RESULTS AND DISCUSSION

In this section, the performances and the complexity figures
of detectors based on the Neumann, GS, SOR, Jacobi, Richard-
son, OCD and CG will be validated. A comparison among
the approximate matrix inversion methods will be provided
in BER performance versus the SNR and number of multi-
plications. In all simulations, we consider the Rayleigh fading
channel and the configuration of massive MIMO systems with
users and BS antennas are 16 X 32 and 16 x 128 and the
modulation scheme is 64QAM.

Figure 1 shows the BER performance of the MMSE
algorithm and MMSE utilizing several approximate matrix
inversion methods in 16 x 128 MIMO system. It also presents
the BER performance when the number of iterations (n) vary
from 1 until 5. The BER performance of the mentioned meth-
ods improved when n increased. However, when n = 1, GS
achieved the best BER performance while CG has the worst
performance. In addition, GS, SOR and OCD achieved the
MMSE performance when when n = 3 while CG achieved the
same performance when n = 4. It is also clear that Richardson
method outperforms the Neumann and Jacobi methods when
n > 4. However, it is known that not every iteration improved
the BER performance. For instance, the BER performance of
GS, SOR, OCD are not improved when n > 4.

Figure 2 shows the comparison among the approximate
matrix inversion methods in 16 x 32 where [ is closer to 1. As
compared with a MIMO system with a small B, it is clear that
more iterations are required to achieve a near MMSE perfor-
mance. For a small number of iterations (n = 1,2), the detector
based on approximate matrix inversion methods provided a
low performance. However, the performance of Neumann and
Jacobi methods have not been improved over iterations while
SOR outperforms the other methods for different iterations and
it achieved a near MMSE performance when n = 6.

The selection of ® plays a crucial role in achieving a
good BER performance of the SOR and the Richardson based
detectors. Figure 3 shows the BER performance of the MMSE
signal detection utilizing the SOR algorithm versus ® at SNR
= 10dB. The BER performance improved when o increased
while the best BER performance can be achieved when the
value of ® is 0.9 then the performance starts to decrease for
higher values for all iterations.

Sequentially, Fig. 4 illustrates the BER performance of
the MMSE signal detection utilizing the Richardson method
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Figure 5 presents the complexity comparison in the number
of multiplications in each iteration as mentioned in Table I. It
is clear that detectors based on the Neumann, the CG and the
OCD method has the lowest number of multiplications where
OCD has the best BER performance among the mentioned
methods (Fig. 1 and 2).

Figure 6 shows the required SNR, number of iterations, and
the number of multiplication to achieve BER = 1072, It is
clear that the detector based on GS method achieves the BER
target at SNR = 14dB with n =1 and 12dB with n = 2. In
addition, the detector based on Jacobi method achieves the
BER target at SNR = 22dB with n =1, 14dB with n =2, and
12dB with n = 3. Sequentially, the detector based on OCD and
CG methods can achieve the BER = 1072 at 12dB with n =3
and a small number of multiplications.
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Figure 5. Complexity comparison among different approximate inversion
methods in 16 x 128 MIMO
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IV. CONCLUSION

This paper has presented a comparison between the ex-
act MMSE based MIMO detector and several approximate
matrix inversion methods at different number of iterations.
The simulation results show that the detector based on the
GS method outperformed the other detector when B is small.
On the other hand, when B is large, a detector based on the
SOR method has achieved the best BER performance. The
selection of the relaxation parameter (®) has been studied for

both SOR and Richardson methods. It has been shown that the

optimum BER performance can be achieved when o = % in

the Richardson method. Furthermore, this paper has compared
the computational complexity of the approximate inversion
methods. The Neumann method, the OCD method, and the CG
method have achieved the lowest number of multiplications,
while the CG method outperforms the Neumann and the OCD
methods.
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