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Abstract—An accurate estimation of the noise floor is of
paramount importance for an optimum performance of spectrum
sensing in Cognitive Radio (CR). The most common approach fol-
lowed by existing noise floor estimation methods is to attempt to
isolate a set of noise-only samples based on a given energy/power
threshold. However, this approach is unreliable and in general
unable to provide accurate estimations of the noise floor, in
particular under low SNR conditions where the power of the
Primary User (PU) signal is comparable to the noise floor of
the CR device. In this context, this work considers a different
approach where the power observed by the CR device is modelled
as a Gaussian mixture. Based on a mathematical analysis of the
relation among the parameters of the obtained Gaussian mixture,
a modified version of the well-known Expectation Maximisation
(EM) algorithm is proposed to fit the Gaussian mixture to the
observed power values and provide an estimation of the noise
floor, something that the general EM algorithm fails to achieve in
this scenario. The obtained results demonstrate that the proposed
method provides a highly accurate estimation of the noise floor in
the presence of PU signals over the whole range of SNR values.

I. INTRODUCTION

Cognitive Radio (CR) devices are required to operate under

strict interference constraints, which translates into demanding

Primary User (PU) signal detection requirements [1]. A broad

range of methods for signal detection, referred to as spectrum

sensing in CR jargon, have been proposed in the literature [2].

The performance of spectrum sensing algorithms is severely

constrained by the noise floor of the CR receiver, which is

defined as the aggregated power of all internal noise sources

and external unwanted signals. The noise floor determines the

minimum PU signal level that can be reliably detected by a CR

device. A well-known example is the case of energy detection,

which determines the presence of a PU signal by comparing

the energy (or power) of the observed signal samples with

a predefined decision threshold. Such decision threshold is

frequently selected based on the receiver’s noise floor so as to

guarantee a desired constant false alarm rate [3], although it

can be selected based on other criteria that usually depend on

the receiver’s noise floor as well [4]. One of the main and well-

known phenomena that degrade the performance of energy

detection is the variability (uncertainty) of the noise floor,

which imposes a fundamental limit on the minimum Signal-

to-Noise Ratio (SNR) below which the PU signal cannot

be reliably detected (known as SNR wall [5]). An accurate

estimation of the noise floor can help to overcome the SNR

wall and is therefore of paramount importance to guarantee an

optimum performance of spectrum sensing in CR.

The noise floor of a receiver is not static and therefore

a periodic estimation is required [6]. The aggregated power

of the internal noise sources could be readily estimated with

a hardware implementation where the CR device can switch

from the antenna port to a matched load in order to obtain

clean samples of the internal noise [7]. However, this approach

would not be useful in practice because the effective noise

floor would increase when the receiver switches back to the

antenna for normal operation as a result of external noise

sources such as ambient noise, man-made noise or out-of-band

transmissions [8]. Since these external sources of noise must

be taken into account, the CR receiver needs to estimate the

noise floor while connected to an antenna, which makes the

presence of PU signals unavoidable. The main challenge faced

in practical implementations is the accurate estimation of the

noise floor in the presence of PU signals. While this is not a

new problem [9] and several approaches have been proposed,

existing solutions suffer from drawbacks and limitations.

Most existing methods [10]–[13] rely on a threshold-based

classification of the observed energy/power samples into two

sets, one that is assumed to contain noise-only samples (i.e.,

samples of the observed energy/power when the PU is assumed

to be absent) and another one that is assumed to contain signal-

plus-noise samples (i.e., samples of the observed energy/power

when the PU is assumed to be present). The samples in the

first set (i.e., the assumed noise-only samples) are then used to

estimate the noise floor. In practice it is nearly impossible to

perform such classification in a truly reliable way, in particular

under low SNR conditions where the PU signal energy/power

level is comparable to that of the CR receiver’s noise floor.

As a result, this type of methods is unable to produce a truly

clean set of noise-only samples that can be used to provide

an accurate estimation of the noise floor and, as a matter of

fact, can sometimes fail catastrophically [14].

In this context, this work explores a different approach based

on the appreciation that the observed energy/power samples

are distributed according to a weighted sum of Gaussian dis-



tributions (i.e., Gaussian mixture). Based on this observation,

the noise floor can be estimated by fitting the expression of the

Gaussian mixture to a set of energy/power samples. However,

the well-know Expectation Maximisation (EM) algorithm that

is commonly employed to perform such fit is unable (as it will

be shown) to provide satisfactory results. This limitation of the

general EM algorithm motivates this work, where a modified

version is proposed. The main difference of the proposed

EM approach is the explicit inclusion into the fitting process

of a key mathematical relation among the parameters of the

considered Gaussian mixture, which enables the EM method

to provide a highly accurate estimation of the noise floor in

the presence of PU signals over the whole SNR range.

The rest of this work is organised as follows. First, Section

II presents the considered system model and provides a formal

description of the problem under study. Some threshold-based

classification methods are discussed in Section III, while the

general and proposed EM approaches are presented in Section

IV. The performance of the considered methods is assessed in

Section V. Finally, Section VI concludes this work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In order to estimate the noise floor, the CR device records

a sufficiently large set of K samples of the observed signal

power P = {P1, . . . ,Pk, . . . ,PK} = {Pk}
K

k=1
obtained as:

Pk =
1

N

N
∑

n=1

|y[n]|2 (1)

where y[n] denotes the observed signal samples and N is the

signal sample size over which the power is estimated.

The observed signal samples can be expressed as:

y[n] =

{

w[n], H0 (PU signal is absent)

x[n] + w[n], H1 (PU signal is present)
(2)

where w[n] ∼ CN (0, σ2
w) represents the complex baseband

samples of the noise at the CR device (including internal noise

sources and external unwanted signals) distributed according

to a Circularly Symmetric Complex Gaussian (CSCG) distri-

bution with zero mean and variance/power equal to σ2
w, while

x[n] ∼ CN (0, σ2
x) denotes the complex baseband samples of

the received PU signal, assumed to follow a CSCG distribution

with zero mean and variance/power equal to σ2
x.

According to the central limit theorem, the power samples

Pk in (1) can be assumed to be normally distributed with a

certain mean and variance. When the PU signal is absent (H0),

Pk ∼ N (µ0, σ
2
0) with mean µ0 and variance σ2

0 given by:

µ0 = E(Pk|H0) = σ2

w (3)

σ2

0 = Var(Pk|H0) =
σ4
w

N
(4)

However, when a PU signal is present (H1), Pk ∼ N (µ1, σ
2
1)

with mean µ1 and variance σ2
1 given by:

µ1 = E(Pk|H1) = σ2

x + σ2

w (5)

σ2

1 = Var(Pk|H1) =
(σ2

x + σ2
w)

2

N
(6)

Note than when a PU signal is present, the SNR γ = σ2
x/σ

2
w

can be expressed as a function of these parameters as:

γ =
µ1

µ0

− 1 =

√

σ2
1

σ2
0

− 1 (7)

In a channel with intermittent on/off usage from a single PU,

the Probability Density Function (PDF) of the power observed

by a CR device can be characterised as:

fPk
(x) = (1−Ψ)N (x |µ0, σ

2

0) + ΨN (x |µ1, σ
2

1) (8)

where Ψ = P (H1) denotes the probability that the PU signal

is present (i.e., the duty cycle of the PU channel). While the

model in (8) assumes that a single PU with signal power σ2
x

is present in the channel, it can be extended to an arbitrary

number of M disjoint PUs with different transmission powers:

fPk
(x) =

M
∑

m=0

ωm · N (x |µm, σ2

m) (9)

where the weights ωm satisfy the conditions ωm ∈ (0, 1) and
∑M

m=0
ωm = 1. The single PU model in (8) can be seen as a

particular case of (9) with M = 1 (i.e., only one PU), ω0 =
1−Ψ and ω1 = Ψ. For the sake of simplicity and without loss

of generality, the single PU model in (8) will be considered in

this work. In a practical context, the number of PUs present

in the channel (and therefore the required number of Gaussian

components, M +1) can be determined for example based on

the Bayesian information criterion as detailed in [15].

The problem addressed in this work is how to estimate accu-

rately the noise floor (i.e., the average noise power µ0 = σ2
w)

based on a set P of K empirically observed power samples.

III. THRESHOLD-BASED CLASSIFICATION METHODS

This type of methods estimate the noise floor from a subset

P0 ⊆ P assumed to contain only noise power samples (i.e.,

power samples observed in the absence of a PU signal). This

set is obtained by defining a power threshold λ and assuming

that all the power samples below that threshold correspond

to noise-only samples, i.e., P0 = {Pk : Pk ≤ λ}. The main

difference among the existing threshold-based methods is how

the threshold λ is set. Some examples are discussed below.

The Otsu method [10] was proposed in the field of image

processing to automatically reduce graylevel images to binary

images. This method has also been proposed for the processing

of empirical spectrum measurements in the context of CR to

determine when a PU signal is present based on observed

power samples [7]. The Otsu threshold is calculated so as

to minimise the intra-class variance (i.e., between the power

samples classified as either H0 or H1), which is shown to be

equivalent to maximise the inter-class variance (i.e., variance

of the power samples classified within the same set).

More recently, the Forward Consecutive Mean Excision

(FCME) method [12] and some variants thereof [14] have been

proposed to the same end. This method first sorts the values of

the power samples in the observed set P in ascending order.



The algorithm starts with a small initial subset of samples (typ-

ically the 10th percentile) and calculates its mean value (initial

µ0), which is used to calculate the threshold as λ = µ0 ·TCME ,

where TCME is a configurable parameter. A new value for the

mean µ0 is calculated from the samples below the previous

threshold λ. The FCME algorithm iteratively recalculates new

values for the mean and the corresponding threshold until

there are no more new power samples below the threshold.

The mean value µ0 from the last iteration is the estimated

noise floor. The TCME parameter determines the accuracy and

convergence speed of the algorithm and is selected based on

the desired Clean Sample Rejection Rate (CSRR), which is the

fraction of noise-only power samples (H0) that are incorrectly

classified as samples with signal components (H1). The value

of this parameter can be calculated as [16, eq. (12)]:

TCME = F−1
(

1− CSSR, 2N, 2N(K − 1)
)

(10)

where F−1(·) denotes the inverse of the F (Fisher) cumulative

distribution function [17, eq. (26.6.1)].

The main limitation of threshold-based classification algo-

rithms is the inability to perform a reliable classification of

the observed power samples P into two sets for H0 and H1.

Under high SNR conditions (µ1 ≫ µ0), the power samples

drawn from N (µ0, σ
2
0) and N (µ1, σ

2
1) are sufficiently apart

to allow for a wide range of values of λ that can lead to

a perfect classification. However, as the SNR decreases, the

power samples drawn from both distributions (i.e., observed

under the presence and absence of a PU signal) become similar

and it is impossible to distinguish both in a reliable manner. As

a result, the assumed noise-only samples will not always be so

and the noise floor estimated from such set will be inaccurate.

IV. EXPECTATION MAXIMISATION METHODS

An alternative approach to estimate the noise floor is to

fit the distribution in (9) to the elements of the set P, which

means estimating the parameters θ = {ωm, µm, σ2
m}Mm=0 from

the set P of empirically observed power samples. In addition

to the parameter of interest in this work (i.e., the noise floor

µ0), this process also provides an estimation of other relevant

parameters such as the channel duty cycle (Ψ) or the SNR,

which can be obtained based on (7).

A Gaussian distribution can be fitted to empirical samples

through Maximum Likelihood Estimation (MLE) of the mean

and variance. However, in the case of a weighted sum of

multiple Gaussian distributions (Gaussian mixture) as shown

in (9), the MLE equations cannot be solved analytically. While

some methods have been proposed to solve these equations

numerically, the EM method is certainly the most popular one.

A. General Expectation Maximisation Method

The EM method starts with an initial guess of the parameters

to be estimated θ = {ωm, µm, σ2
m}Mm=0, which can be chosen

randomly or following some heuristic method (e.g., using the

k-means algorithm to cluster the data set P and then select

the initial guess θ based on k-means memberships). The EM

method then finds numerically the MLE of the parameters of

the Gaussian mixture based on an iterative process.

Each iteration of the EM method consists of an expectation

(E) step and a maximisation (M) step. In the original method

proposed in [18], the E-step calculates the expected value

of the log-likelihood function using the last estimates of the

model parameters θ (or an initial guess in the first iteration).

However, referring nowadays to this step as expectation is cer-

tainly a misnomer since the method was modified to compute

the maximum a posteriori estimates for Bayesian inference. In

the modern version of the method, the E-step calculates the

posteriori probabilities p(m | Pk) of each Gaussian component

m for each observed power sample Pk. These probabilities,

referred to as membership probabilities, are calculated based

on the last estimates of the model parameters θ (or an initial

guess in the first iteration) as follows:

p(m | Pk) =
ωm · N (Pk |µm, σ2

m)
∑M

m=0
ωm · N (Pk |µm, σ2

m)
(11)

The M-step then computes new MLE estimates of the param-

eters θ by maximising the expected log-likelihood function

based on the probabilities p(m | Pk) obtained from the E-step:

ωm =

∑K

k=1
p(m | Pk)

K
(12)

µm =

∑K

k=1
p(m | Pk) · Pk

∑K

k=1
p(m | Pk)

(13)

σ2

m =

∑K

k=1
p(m | Pk) · (Pk − µm)2
∑K

k=1
p(m | Pk)

(14)

The process is repeated until convergence is detected, which

is determined by computing the log-likelihood function:

L(θ;P) =
K
∑

k=1

ln

[

M
∑

m=0

ωm · N (Pk |µm, σ2

m)

]

(15)

and comparing its value in the current iteration Lnew(θ;P)
with that of the previous iteration Lold(θ;P). The iterative

process ends when the variation in the value of the log-

likelihood function between consecutive iterations is below a

predefined tolerance threshold ε:
∣

∣

∣

∣

Lnew(θ;P)− Lold(θ;P)

Lold(θ;P)

∣

∣

∣

∣

≤ ε (16)

When (16) is satisfied, the estimated parameters of the Gaus-

sian mixture, θ, are assumed to converge to fixed values.

B. Proposed Expectation Maximisation Method

While the EM method is guaranteed to converge, it does not

necessarily converge to the global optimum of (15). In fact, the

EM method is known to converge typically to local optima.

When this method is employed to fit the Gaussian mixture in

(8) to a set of empirical power samples P, the obtained result

is often inaccurate as it will be shown in Section V.

A variety of solutions can be used to overcome this problem.

For example, since the point to which the EM method con-

verges depends on the initial guess of the model parameters θ,



it may be possible to escape a local maximum by restarting the

algorithm with different random initial guesses or by applying

simulated annealing methods. However, this type of heuristic

approaches are inelegant and increase the complexity.

This paper proposes an alternative, much simpler solution

based on the insights gained from the mathematical analysis

of the relations among the parameters of the Gaussian mixture

in (8)-(9). Notice that, in the most general case, the parameters

of the Gaussian distribution (i.e., its mean and variance) are in

general mutually independent (i.e., their values are unrelated).

The general EM method assumes this general case where the

mean and variance of the distribution are independent and

therefore estimates both parameters independently from the

sample set based on (13) and (14), respectively. However, in

the Gaussian mixture considered in this work, the inspection

of (3)-(6) reveals that mean and variance are not independent

but related in closed form as:

σ2

m =
µ2
m

N
(17)

Therefore, only one parameter (either mean or variance) needs

to be estimated – the other one can be obtained using (17).

In general, an accurate sample estimation of higher order

moments requires a larger sample size. Conversely, given a

finite sample set, the sample estimates of lower order moments

are in general more accurate. Therefore, a more accurate fit

of (8)-(9) to P can be expected if the means {µm}Mm=0 (first

raw moments) are first estimated from the sample set using

(13) and the variances {σ2
m}Mm=0 (second central moments)

are then estimated using (17). The proposed modified version

of the EM method is thus obtained by replacing (14) with

(17). While this is a minor modification of the algorithm, the

impact on its accuracy is very significant as it will be shown.

V. SIMULATION RESULTS

The accuracy of the proposed EM method was assessed

and compared with the rest of estimation methods considered

in this work by means of simulations. The noise floor was

set to a fixed value calculated as µ0 = σ2
w = kBTBF ,

where kB = 1.38064852 · 10−23 J · K−1 is the Boltzmann

constant, T = 290 K is the room temperature, B = 1 MHz
is the receiving bandwidth of the CR device, and F = 10
is its noise factor (equivalent to a noise figure of 10 dB).

This leads to a noise floor of approximately 4 · 10−14 W or

−104 dBm. A single PU was assumed to be present in the

channel with an activity factor (duty cycle) equal to Ψ = 0.3
and a transmission power equal to σ2

x = γ σ2
w, which was

adjusted to simulate a range of SNR values from −30 dB to

+5 dB. A set P of K = 105 power samples (assumed to be

estimated based on blocks of N = 100 signal samples) was

randomly generated. The selected sample size (K = 105) was

observed to be sufficiently large to allow all the considered

estimation methods provide their best attainable accuracy and

thus remove any potential bias resulting from a limited amount

of samples. Out of these K samples, (1 − Ψ)K = 7 · 104

samples were drawn from a Gaussian distribution N (µ0, σ
2
0)

corresponding to power samples observed in the absence of the

PU signal, while the remaining ΨK = 3 · 104 samples were

drawn from a Gaussian distribution N (µ1, σ
2
1) corresponding

to power samples observed in the presence of the PU signal.

The set P was processed with the different methods considered

in this work. For the FCME method, the value of the parameter

TCME was calculated based on (10) to provide CSSR = 1%,

which for the considered scenario (N = 100 and K = 105)

yields TCME = 1.2473. For the general and proposed EM

methods (both with M = 1), the set of estimates θ was

initialised using the k-means algorithm following the principle

described in Section IV-A, while the log-likelihood tolerance

threshold in (16) was set to ε = 10−10. For all methods, the

accuracy was evaluated by comparing the estimated noise floor

with the true value. The experiment was repeated 500 times

with different random sets P to ensure statistical reliability.

Fig. 1 shows the relative error of the estimated noise floor

as a function of the SNR for the different methods considered

in this work. As it can be appreciated, the Otsu method

can provide an accurate estimation only under high SNR

conditions (for SNR values greater than −5 dB). As discussed

in Section III, under high SNR conditions the power samples

drawn from N (µ0, σ
2
0) and N (µ1, σ

2
1) are sufficiently apart

and a perfect classification of the observed power samples into

both sets is possible. However, as the SNR decreases and both

distributions overlap, a reliable classification is not possible

and the estimation accuracy commences to degrade. As appre-

ciated in Fig. 1, the accuracy of the Otsu method degrades for

SNR values below −5 dB and becomes particularly inaccurate

for very low SNR, even though in the region of very low SNR

all observed power samples are in practice noise-only. This is

an inherent consequence of the criterion employed by the Otsu

method, which sets the threshold somewhere in the middle

of the observed power range, which divides the set into two

groups (even when all samples are noise-only). As a result,

this method provides the worst accuracy under low SNR. The

other threshold-based classification method (i.e., the FCME

method) does not suffer from this problem under low SNR

as it rightly increases recursively the threshold until all power

samples are correctly classified as noise-only; consequently,

it can provide a very accurate estimation of the noise floor

under low SNR conditions. The same applies to FCME in the

case of high SNR, where a perfect classification is possible

as described above. However, the accuracy of FCME is rather

poor in the region of intermediate SNR values, approximately

in the interval [−14 dB,−4 dB], where the samples from

N (µ0, σ
2
0) and N (µ1, σ

2
1) overlap and a threshold-based

classification is not reliable. On the other hand, the EM

methods consistently provide a nearly perfect estimation in

the region of medium/high SNR values. The accuracy suffers

some degradation as the SNR decreases, however to different

extents. The accuracy of the general EM method begins to

degrade at an SNR of −7 dB and deteriorates significantly

until it becomes very inaccurate under low SNR conditions. On

the other hand, the proposed EM method provides a virtually

perfect estimation for SNR values above −10 dB (i.e., 3 dB
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Fig. 1. Relative error of the estimated noise floor.

gain with respect to the general EM method); below this point

the accuracy degrades slightly, however still remains within

limits of very high accuracy. In particular, the worst estimation

accuracy for the proposed EM method is observed at an SNR

of −12 dB where the relative error is only 0.009 (0.9%), which

for a noise floor of −104 dBm corresponds to an absolute

power estimation error of 0.04 dB. For SNR values below

−15 dB the relative error reduces to 0.003 (0.3%), which for

a noise floor of −104 dBm corresponds to an absolute power

estimation error of 0.013 dB. Only the FCME method provides

a more accurate estimation of the noise floor under low SNR

conditions, however the FCME estimation accuracy is poor for

certain intermediate SNR values. Overall, only the proposed

EM method can consistently provide an accurate estimation

of the noise floor over the whole range of SNR values.

Sometimes the CR receiver may be more interested in the

distribution of the noise power samples than their average

value (for example, to set the decision threshold of an energy

detector for a given probability of false alarm). Fig. 2 shows

the accuracy of the estimated distribution of noise power

samples, N (µ0, σ
2
0), in terms of the Kolmogorov-Smirnov

(KS) distance between the estimated and true distributions.

The trend of the KS distance is very similar to that of the

relative error shown in Fig. 1. Only the proposed EM method

provides an accurate estimation over the whole range of SNR

values, with a worst-case error of 3.6% observed at an SNR of

−12 dB and a stable estimation error of 1.5% for SNR below

−15 dB, which represents an excellent level of accuracy.

Fig. 3 shows the average computation time of each esti-

mation method as a function of the SNR. While threshold-

based classification methods have the lowest computational

cost, their accuracy is very limited as shown in Figs. 1 and

2. On the other hand, the EM methods provide a higher

estimation accuracy at the expense of a higher computational

cost as it can be appreciated in Fig. 3. Of particular interest is

the appreciation that, under low SNR conditions, the proposed

EM method not only provides a significantly higher accuracy

than the general EM method (Figs. 1 and 2) but also does
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Fig. 2. Kolmogorov-Smirnov distance of the estimated noise floor distribution.

so at a lower computational cost (Fig. 3). Concretely, for the

particular evaluation conditions considered in this work, the

average computation time is reduced by a factor of three, from

9 seconds (general EM method) to 3 seconds (proposed EM

method). This can be ascribed to the immediate calculation of

σ2
m from the estimated µm based on (17) that the proposed

EM method performs as opposed to the iterative estimation

based on (14) that the general EM method carries out, which

increases the number of iterations required until the algorithm

converges. While the important aspect of relevance in Fig. 3 is

the relative time difference among estimation methods, from a

practical implementation point of view it is worth mentioning

that these absolute computation times were obtained with a

simulation code that was not optimised for performance and

using a generic-purpose computer with an off-the-shelf proces-

sor Intel Core i3-6100 at 3.7 GHz. A realistic implementation

based on specialised components (e.g., FPGA, ASIC or SoC)

and optimised for performance would be expected to run the

algorithm within significantly lower execution times.

Finally, as pointed out in Section IV, the EM methods

provide an estimation of the complete set of parameters of

the Gaussian mixture, including not only the noise floor (µ0)

but also the channel duty cycle (Ψ) and the SNR (γ), which

can be obtained based on (7). The ability of these methods

to estimate these other parameters of practical relevance was

investigated as part of this research as well. While the SNR es-

timation resulting from the application of the EM methods was

observed to be inaccurate, the obtained duty cycle estimation

was actually very accurate. Fig. 4 shows the estimated duty

cycle for the EM methods along with the estimation obtained

with the threshold-based classification methods (calculated as

the fraction of power samples above the threshold). Threshold-

based methods can provide an accurate estimation of the duty

cycle for SNR values greater than −3 dB (FCME) and −5 dB
(Otsu), while EM methods provide a better sensitivity with

accurate estimations down to −7 dB (general EM method) and

−10 dB (proposed EM method). As it can be appreciated, the
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proposed EM method provides the best sensitivity, with gains

of 3 dB with respect to the general EM method and 5–7 dB
with respect to the threshold-based classification methods.

VI. CONCLUSIONS

CR devices can benefit significantly from effective methods

that enable an accurate estimation of the noise floor. Most

existing methods are aimed at isolating a subset of noise-

only power samples based on a certain decision threshold.

However, this type of approaches are in general unable to

provide accurate estimations, in particular under low SNR

where the PU signal level is comparable to the noise floor

of the CR device. By modelling the distribution of observed

power samples as a Gaussian mixture, this work has explored

the possibility to estimate the noise floor by fitting such model

to empirical observations. While the general EM method com-

monly used to this end suffers from similar inaccuracy issues,

a modified version that takes into account the relation among

the parameters of the Gaussian mixture can provide accurate

estimations. The proposed EM method not only consistently

provides a highly accurate estimation of the noise floor in the

presence of PU signals over the whole SNR range but does

so at a much lower computational cost than the general EM

method. The proposed EM method can also provide a nearly

perfect estimation of the channel duty cycle over a larger range

of SNR values compared to threshold-based approaches.
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