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Abstract—Dynamic Spectrum Access (DSA) / Cognitive Radio
(CR) systems utilize spectrum sensing to monitor spectrum status
and decide transmission time in an opportunistic manner. This
results in an increase in wireless spectrum efficiency. Spectrum
sensing can also be used to monitor the statistics of primary
users to gain information on occupation patterns and estimate
the statistics of the primary traffic activity, a useful knowledge
that can be exploited in many ways. In this research, three novel
algorithms are proposed to enhance the estimation of primary
user activity statistics under imperfect spectrum sensing given
the knowledge of minimum transmission time. Simulation results
show that the proposed methods enable accurate estimation for
the primary user statistics. Moreover, the proposed methods are
compared to previously proposed methods and it is shown they
provide a significantly better estimation accuracy.

Index Terms—Cognitive radio, dynamic spectrum access, spec-
trum sensing, spectrum awareness, primary activity statistics.

I. INTRODUCTION

Cognitive radio (CR) is proposed as a solution to increase
the spectrum efficiency. The core concept of CR is based on
dynamic spectrum access (DSA). CR is defined as a smart
radio that is capable of changing its transmission parameters
according to the surrounding environment [1]. In CR systems
the secondary users (SU) access the primary users (PU)
channel in an opportunistic and non-interfering manner during
PU idle times (spectrum holes) [2]. SU have to quickly and
accurately detect spectrum holes in PU bands.

The CR device could benefit from the knowledge of PU
activity for opportunistic transmission, and to estimate the
statistics of PU which could be used to access the spectrum
more effectively. There are two main ways to obtain statistical
information on PU activity: databases with relevant infor-
mation and directly by sensing. There are several spectrum
sensing methods [3], including the well-known energy detec-
tion (ED) method [4] which benefits from simplicity and low
complexity with no requirements for PU signal characteristics.
It can be assumed that the sensing is nearly perfect when the
PU signal has a sufficiently high power, while in the case of
low power from PU sensing errors might occur. Given the
opportunistic nature of CR, the knowledge of PU spectrum
occupation is very important as it limits the operation time of
SU. The statistical information of PU spectrum occupation can
be used by SU to accurately predict the channel state, select
appropriate transmission channel and increase the spectrum
efficiency for CR. The calculation of PU spectrum occupancy
in real life is far from being perfect as a result of sensing
errors. The main target of this research is to design methods to
correctly estimate the statistics of PU activity (e.g., distribution
of period durations) in the presence of spectrum sensing

errors. Multiple methods and algorithms have been proposed to
reduce the effect of imperfect spectrum sensing including [5–
8]. In this research, the errors and their effect are investigated
and new algorithms to estimate the statistics and correct the
imperfect sensed periods are proposed. The methods in [8]
are the closest ones to this research and the obtained results
will be compared to them. The computational cost/complexity
analysis for all the considered methods is provided as well.

The rest of this work is organized as follows. First, Section
II provides a formal description of the problem of estimating
the PU activity statistics under imperfect spectrum sensing.
The proposed algorithms to mitigate sensing errors are ex-
plained in detail along with previous proposed methods in Sec-
tion III. The performance results of the proposed algorithms
(obtained by simulation) are analysed and compared with other
algorithms in Section IV. A discussion on the configuration of
spectrum sensing based on the obtained results is provided in
Section V. Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

A CR senses the channel at a finite rate with duration Ts

as shown in Fig. 1. In every sensing event (Ts), a binary
decision is made to result in either idle (H0) or busy (H1)
state of the channel. A perfect spectrum sensing (PSS) is
obtained when a CR receiver operates in a high PU trans-
mission power. However under low SNR imperfect spectrum
sensing (ISS) may occur with two types of errors: false alarm

(Ĥ = H1|H0) where the signal is not present but announced
as present because of the high noise level, and missed detection

(Ĥ = H0|H1) where the signal is present but with power
lower than the energy detection threshold.

Sensing errors have a significant impact on the performance
of communication systems (both PU and SU). In the case of a
false alarm, the SU transmitter will be silent in this slot when it
should be transmitting, leading to a low CR transmission rate.
While in the case of a missed detection interference with the
PU signal will occur. Inaccurate detection leads to inaccurate
estimation for PU activity statistics as well.

There are multiple factors that affect the estimation of PU
activity pattern, including the probability of false alarm (Pfa),
the probability of missed detection (Pmd) and how the errors
are distributed. Note that the sensing errors will affect the
lengths of periods depending on their location as it can be
appreciated from Fig. 2 where three types of errors can be
identified: missed detection, false alarm and originally correct
periods but with missed detection/false alarm that occurs at its
beginning, middle or end, which results in making its length
shorter than the minimum PU activity time µi (i = 0 for idle
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Fig. 1. Estimation of period durations from spectrum sensing decisions: (a)
under perfect spectrum sensing, (b) under imperfect spectrum sensing [8].

T̂i represents the estimated period under perfect spectrum sensing and T̆i

represents the estimated period under imperfect spectrum sensing.

periods, i = 1 for busy periods) and therefore detectable if the
value of µi is known. According to this, multiple errors could
occur in a long period dividing it into multiple short periods
which would have a significant effect on the calculation of
PU statistics. Note that at low probability of error the case of
single error is dominant, while at higher error probability the
case of multiple errors is the dominant one.

The main objective of this research is to design algorithms
that are capable of accurately estimating the PU activity statis-
tics (such as the mean, variance, duty cycle and distribution
of period durations) in the presence of sensing errors.

III. METHODS PROPOSED TO OVERCOME THE EFFECT OF

SPECTRUM SENSING ERRORS

As described above, in most cases CR requires to work at
low SNR (close to noise floor) and this will introduce sensing
errors. The presence of errors makes the calculation of PU
activity statistics inaccurate. In order to improve the estimated
statistics, three methods aimed at reconstructing the original
periods are presented. These methods require some knowledge
of the PU signal. In this work, it is assumed that the PU
minimum activity time µi is known at the CR receiver. There
are three methods to obtain the minimum activity duration:

1) Regional beacon signals with real-time information about
minimum activity time for PU present in the geographical
area. The main drawback of this method is the require-
ment to modify the primary network [9].

2) Offline method as in [10], where the SU utilize blind
estimation methods in order to determine the minimum
PU activity time.

3) Offline methods with prior knowledge on the operating
standards. These methods can be applied in slotted sys-
tems where the frame duration is known (e.g., GSM [11]).

Based on the knowledge of µi, three novel algorithms are
proposed to palliate the effects of spectrum sensing errors.

A. Method 1

Fig. 3 shows the probability mass function (PMF) of the
number of consecutive sensing events (Ts) affected by sensing
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Fig. 2. Sensing errors according to their location: (a) Original period, (b)
Single detectable incorrect period, (c) Two detectable incorrect periods, (d)
Multiple detectable incorrect periods.

Fig. 3. PMF of the number of consecutive sensing events affected by sensing
errors (Ψ = 0.8, µi = 10 t.u., E{Ti} = 50 t.u.).

errors (obtained from simulations). As it can be appreciated, in
most cases sensing errors occur in individual isolated sensing
events; only when the probability of error (Pfa/Pmd) is higher
(bottom of Fig. 3) bursts of two or more consecutive erroneous
sensing events can occur. This observation can be exploited
to identify the occurrence of sensing errors and reconstruct
the original periods as follows. First, a threshold βTs (with
β ∈ N

+) is defined, which can be tuned based on Fig. 3.

Starting from an initial estimated period T̆i,n which has a

duration less than the threshold and the minimum (T̆i,n < βTs

and T̆i,n < µi), where n ∈ N
+ represents the index in the



Algorithm 1: Method 1

1 for each T̆i,n < µi and T̆i,n < βTs do
2 N = 1

3 while T̆1−i,n+N < βTs do
4 N=N+1
5 end

6 T̂i,n = T̆i,n + . . .+ T̆i,n+N−1

7 end

8 for each T̂i,n do

9 if T̂i,n < µi then

10 discard T̂i,n

11 else

12 keep T̂i,n

13 end
14 end

sequence of observed periods, the durations of all subsequent
periods (both busy and idle) are checked until a period of
the opposite type with a duration greater than βTs (i.e.,

T̆1−i,n+N > βTs) is found. A reconstructed period of the

same type (idle/busy) as T̆i,n is then estimated by adding

the durations T̂i,n = T̆i,n + . . . + T̆i,n+N−1 where T̂i,n

is the new reconstructed period of the original. The period

T̆1−i,n+N (which is of different type than the previously
reconstructed period) is then taken as the starting point for a
new reconstruction based on the same principle. This process
is repeated over the sequence of estimated periods so that
all periods shorter than βTs (which based on Fig. 3 can be
assumed to be short periods resulting from sensing errors) will
be added in an attempt to reconstruct the original sequence of
busy/idle periods. After applying the method above, some of
the reconstructed periods were observed to be shorter than
µi, thus indicating the presence of a few incorrectly recon-
structed periods. Therefore a second step is performed after
the reconstruction process above where all the reconstructed

periods T̂i,n shorter than µi are discarded and not included in
the computation of the PU activity statistics.

B. Method 2

In this method, whenever a period shorter than the minimum

PU activity time is observed (i.e., T̆i,n < µi), a window of
K sensing events with a total duration KTs (K ∈ N

+) is
defined centred around that period. The sensing events within
the window that are observed in busy (idle) state are given a
weight of +1 (−1) respectively. The weights are then added
and the original period is reconstructed as follows:

• If the sign of the sum is different from the sign of the

weight associated with T̆i,n, then the state (idle/busy) of

T̆i,n is reversed and a reconstructed period is estimated

by adding the durations T̂i,n = T̆i,n−1 + T̆i,n + T̆i,n+1.
• If the sign of the sum is the same as the sign of the

weight associated with T̆i,n, then the state of T̆i,n+1 is

reversed and added to its preceding period T̆i,n to produce

a reconstructed period of the same type (idle/busy) as T̆i,n

with duration T̂i,n = T̆i,n + T̆i,n+1.

Algorithm 2: Method 2

1 for each T̆i,n < µi do

2 Define a window of size KTs centered at T̆i,n

3 Give weight of +1 to busy sensing events in window
4 Give weight of −1 to idle sensing events in window
5 Calculate the sum S of the weights in window

6 if sign(S) == sign(weight of T̆i,n) then

7 T̂i,n = T̆i,n + T̆i,n+1

8 else

9 T̂i,n = T̆i,n−1 + T̆i,n + T̆i,n+1

10 end
11 end

Note that when a period shorter than µi is found, a majority
rule is used to determine the most likely state of the channel
around that period and determine how the original period
should be reconstructed according to that most likely case.
This is the main idea this method is based on.

C. Method 3

As observed in Fig. 2, the occurrence of multiple sensing
errors can lead to a pattern where two periods that are longer
than µi (and therefore can be assumed to be observed in their
original idle/busy state) contain a number of other periods
shorter than µi (which cannot be classified as either correct or
incorrect idle/busy observations). This method aims at recon-
structing the original period by adding the durations of all the

periods T̆i,n + . . .+ T̆i,n+N between two consecutive periods
longer than or equal to the minimum PU transmission time

(i.e, T̆i,n−1 ≥ µi, T̆i,n+N+1 ≥ µi and T̆i,n, . . . , T̆i,n+N < µi)
to the next or previous period depending on the period types.

If the starting period T̆i,n−1 and ending period T̆i,n+N+1

are of the same type (busy/idle), then the reconstructed period

will be of that same type. However, if T̆i,n−1 and T̆i,n+N+1

are of different types, then it is not possible to determine
unambiguously the original period type since it depends on
the particular order in which sensing errors occurred and it is
not possible to determine which of the periods shorter than µi

are correct/incorrect idle/busy observations. In this other case,
the period type is randomly decided as busy with probability

Ψ̂ and idle with probability 1− Ψ̂, where Ψ̂ is an estimation
of the PU channel duty cycle Ψ obtained from past spectrum
sensing observations. If the average busy duration is E {T1}
and the average idle time is E {T0}, then the duty cycle (Ψ)
can be estimated as:

Ψ =
E {T1}

E {T0}+ E {T1}
(1)

Fig. 4 shows the estimated duty cycle Ψ̂ quickly converges
to the real value Ψ, meaning that the algorithm needs a short
transition time before it can operate correctly.

D. Previous work

The proposed three methods will be compared with the ones
presented in [8], which are the closest ones to this research.
The methods proposed in in [8] are summarized below:



Algorithm 3: Method 3

1 for each T̆i,n < µi do
2 N = 0

3 while T̆i,n+N+1 < µi do
4 N=N+1
5 end

6 if type of T̆i,n−1 == type of T̆i,n+N+1 then

7 T̂i,n−1 = T̆i,n−1+ T̆i,n+ . . .+ T̆i,n+N + T̆i,n+N+1

8 else

9 Estimate duty cycle Ψ̂ based on equation (1)
10 Generate uniform random number ζ ∈ (0, 1)

11 if ζ ≤ Ψ̂ then

12 if T̂i,n−1 busy and T̂i,n+N+1 idle then

13 T̂i,n−1= T̆i,n−1+. . .+T̆i,n+N

14 else

15 T̂i,n= T̆i,n+. . .+T̆i,n+N+1

16 end
17 else

18 if T̂i,n−1 idle and T̂i,n+N+1 busy then

19 T̂i,n−1= T̆i,n−1+. . .+T̆i,n+N

20 else

21 T̂i,n= T̆i,n+. . .+T̆i,n+N+1

22 end
23 end
24 end
25 end

• Method 4: Every observed period with a length shorter
than the minimum period is discarded.

• Method 5: Every observed period with a length shorter
than the minimum period is discarded along with the
preceding and succeeding periods.

• Method 6: For every observed period with a length shorter
than the minimum a reconstruction attempt is made by
adding it with the preceding and succeeding periods.

IV. SIMULATION RESULTS

The performance of the six methods considered in this work
is evaluated by means of simulations following the same steps
as in [8], which can be summarized as follows:

1) Generate idle/busy periods’ lengths Ti following a gen-
eralized Pareto distribution, which has been proven to
provide the best fit to empirical spectrum data [12].

2) Perform idle/busy sensing decisions H0/H1 on the gen-
erated sequence in step 1 every Ts time units (t.u.).

3) Add random errors (with Pfa > 0 and Pmd > 0) in the
sequence resulting from step 2.

4) Using the new H0/H1 sequence from step 3, calculate

the period lengths T̆i that would be estimated under ISS.
5) Process the sequence of period lengths resulting from step

4 in order to reconstruct the original periods by making
use of one of the six methods considered in this work.

6) Compute the cumulative distribution function (CDF) of
the idle/busy lengths obtained in steps 4 & 5, and compare
with the CDF of the original lengths in step 1.
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Fig. 4. Estimated PU channel duty cycle Ψ̂ as a function of the number of
periods used in the estimation (Ψ = 0.8, µi = 10 t.u., E{Ti} = 50 t.u.).

The comparison of step 6 quantifies the accuracy of the PU
statistics estimated with and without the proposed methods and
therefore determines whether accuracy improvements can be
obtained with the proposed methods. The comparison between
the estimated and original distributions is performed using the
classic Kolmogorov-Smirnov (KS) distance [13], defined as:

DKS = sup
Ti

∣∣∣FTi
(Ti)− F

T̆i
(Ti)

∣∣∣ (2)

Note that the sequence of idle/busy lengths Ti generated in
step 1 contains real positive values and its CDF FTi

(Ti)
has a continuous domain, while the sequences resulting from

steps 4 and 5 contain values T̆i that are integer multiples of

the sensing period (T̆i = NTs, N ∈ N
+) and their CDFs

F
T̆i
(T̆i) have a discrete domain. Since it is not possible to

compare continuous and discrete sets, the discrete set F
T̆i
(T̆i)

is interpolated to produce F
T̆i
(Ti), which is compared in (2)

with the distribution of the original lengths FTi
(Ti).

Fig. 5 shows the accuracy of the estimated CDF of PU idle
periods in terms of the KS distance (with respect to the original
periods of step 1) as a function of the sensing period, when
no reconstruction method is used (i.e., after step 4) and when
a reconstruction method is used (i.e., after step 5). Results are
shown for method 1 (left column), method 2 (centre column)
and method 3 (right column), for Pfa = Pmd = 0.01 (top
row) and Pfa = Pmd = 0.1 (bottom row). Simulations were
performed for duty cycle values of Ψ = 0.2 (low PU channel
load), Ψ = 0.5 (medium load) and Ψ = 0.8 (high load). Due to
the lack of space, results are shown in Fig. 5 only for Ψ = 0.8,
however the results for Ψ = 0.2 and Ψ = 0.5 showed similar
trends and provided the same conclusions.

As it can be appreciated in Fig. 5, the accuracy in all cases
is noticeably better when the probability of error is lower
(top row). However, all the methods proposed in this work
can provide significant accuracy improvements with respect
to the case where no reconstruction is performed (i.e., the
PU statistics are computed based on the raw period lengths
observed under ISS). In some particular cases the estimation
is nearly perfect (i.e., DKS ≈ 0).

For method 1, there is a wide range of (low) values of the
sensing period Ts that can provide a nearly perfect estimation
(DKS ≈ 0). When the probability of sensing errors is lower
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Fig. 5. Performance of the methods proposed in this work (details provided in the text).

(Pfa = Pmd = 0.01), this is true for all the considered values
of the parameter β. However when the probability of sensing
errors is higher (Pfa = Pmd = 0.1) this may not be true for
low values of β (e.g., for the case β = 2 in Fig. 5). This
can be explained based on Fig. 3: when the probability of
sensing errors is lower, most sensing errors occur in individual
isolated sensing events and values of β as low as β = 2 are
sufficient to correctly reconstruct the original period lengths;
however when the probability of sensing errors is higher, there
are some cases where two or a few more consecutive sensing
events can be affected by sensing errors and the value of the
threshold β needs to be increased (e.g., β = 3 or β = 4) in
order to reconstruct the original period lengths. In any case,
with an adequate configuration of the β parameter and the
employed sensing period Ts, method 1 can provide a nearly
perfect estimation of the PU statistics.

Method 2 can provide levels of accuracy comparable to
those of method 1. However in this case the best accuracy
seems to be attained when the sensing period is approximately
half of the minimum PU transmission time (i.e., Ts ≈ µi/2).
Moreover, the accuracy obtained in that region is very sensitive
to the selection of the value of Ts (i.e., small variations of the
value of Ts around the optimum point can result in a noticeable
degradation of the estimation accuracy), which makes the
configuration of this method more complex than method 1. As
observed in Fig. 5, a window size of K = 10 sensing events
tends to provide the best accuracy but there are no significant
differences for other values of the parameter K.

Method 3 can also provide an equally significant accuracy
improvement as shown in Fig. 5. Notice that there is no
significant difference in the level of accuracy obtained when
the method’s decisions are based on the real-time duty cycle

estimated from past sensing observations (Ψ̂) or the true long-
term PU channel duty cycle (Ψ). This means that the method
is implementable in practice since the true PU channel duty
cycle does not need to be known beforehand and the estimation

obtained from past sensing observations is accurate and con-
verges quickly to the correct value (see Fig. 4). As observed in
Fig. 5, method 3 tends to provide the best estimation accuracy
when the sensing period Ts is similar to the minimum PU
transmission time µi (notice that Ts should not be greater than
µi since some short idle/busy periods would then be missed).

Finally, Fig. 6 compares the methods proposed in this work
(methods 1-3) with the methods proposed in [8] (methods
4-6). The proposed methods are capable to attain (with an
adequate configuration of their parameters) a nearly perfect
estimation (DKS ≈ 0) of the PU channel activity statistics,
which cannot be achieved by methods 4-6. It is worth noting
that the performance results shown in Figs. 7 and 8 of [8] for
methods 4-6 show that there are some values of the sensing
period Ts for which the KS distance DKS is very close to
zero. However, this is due to the fact that KS distance in [8]
was computed by comparing the statistics estimated under ISS
with those estimated under PSS, instead of comparing with
the original period lengths as it is done in this work. This
second comparison, which provides a more realistic evaluation
of the estimation accuracy, shows that the proposed methods
can attain a significantly improved accuracy as seen in Fig. 6.

Table I shows the computational cost (complexity) of the
considered methods when applied to 10,000 pairs of periods
(with 20 repetitions) based on a workstation with an Intel Xeon
processor (E5-1620v3 @ 3.50GHz). Methods 4-6 provide
simplicity and fast execution at the expense of accuracy, while
methods 1-3 are slower but provide a nearly perfect estimation.
It is worth mentioning that method 3 is the most demanding
algorithm as it requires to compute real-time estimated DC

(Ψ̂ = 0.8) which adds a significant calculation burden.

V. CONFIGURATION OF THE PROPOSED METHODS

A relevant practical aspect of the proposed methods is how
the parameters should be configured to ensure an optimum
operation point that can provide a (nearly) perfect estimation.
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TABLE I
COMPUTATIONAL COST (COMPLEXITY) ANALYSIS FOR THE CONSIDERED

METHODS (Ψ = 0.8, µi = 10 t.u., Ts = 9.9 t.u., Pfa = Pmd = 0.01).

Method Average computation time (s)
Method 1 (β = 3) 0.0662

Method 2 (K = 10) 0.1252

Method 3 (real-time est. Ψ̂ = 0.8 ) 0.3811
Method 4 0.0004
Method 5 0.0011
Method 6 0.0008

The system designer can essentially control two parameters,
namely the operating point of the employed spectrum sensing
method and the employed sensing period Ts. The operating
point of the employed spectrum sensing method determines
its performance (i.e., the values of Pfa and Pmd) and can be
tuned by modifying the parameters of the sensing algorithm;
for example, in the case of energy detection the main design
parameter is the detection/decision threshold. As suggested by
the results of Fig. 5, the sensing algorithm should ideally be
configured to operate in a point where Pfa and Pmd are as
low as possible since for lower values of Pfa and Pmd there
is a relatively wider range of values of the sensing period Ts

where the error is zero or very close to zero, which makes
it relatively easy to provide a (nearly) perfect estimation of
the PU activity statistics (i.e., DKS ≈ 0). If the operating
point of the sensing algorithm cannot be modified (e.g., it
is configured to provide specific performance targets required
by a particular service) and the resulting Pfa and Pmd are
high, the proposed methods can still provide a (nearly) perfect
estimation of the PU activity statistics, however in this case
the value of the sensing period Ts should be selected carefully.
In particular, Fig. 5 shows that for method 1 it should take low
values (ideally close to zero, Ts ≈ 0), for method 2 it should
be Ts ≈ µi/2, and for method 3 it should take high values
(ideally close to the minimum PU transmission time, Ts ≈ µi).
Moreover, if the operating point of the sensing method and
the sensing period are both constrained, the only degree of
freedom for the system designer would be the selection of one
of the three proposed methods. In such a case, the decision
could be based on which method provides the best accuracy for
the employed sensing period Ts (e.g., method 1 when Ts ≈ 0,
method 2 when Ts ≈ µi/2, and method 3 when Ts ≈ µi). In
any case, the set of methods proposed in this work can provide
a very accurate (nearly perfect) estimation of the PU activity

statistics under imperfect sensing, even with a high probability
of sensing errors, over a wide range of operating conditions.

VI. CONCLUSION

CR systems can benefit from the knowledge of the PU
spectrum activity statistics. The estimation of such statistics,
however, can be very inaccurate when based on sensing ob-
servations due to the practical limitations of spectrum sensing
and the presence of sensing errors. This paper has addressed
the problem of accurately estimating the PU activity statistics
under ISS by proposing three simple but effective methods to
overcome the degrading effects of spectrum sensing errors on
the estimated statistics. The performance has been evaluated
by means of computer simulations and compared to other
methods previously proposed in the literature. The obtained
results show that the methods proposed in this work are able
not only to provide significant accuracy improvements with
respect to the existing methods but also, and more importantly,
a very accurate (virtually perfect) estimation of the PU activity
statistics. This paper has also discussed how the proposed
methods should be configured in a practical system design
in order to achieve the best attainable accuracy.
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