
Lightweight Monocular Depth with a Novel Neural Architecture Search Method

Lam Huynh1 Phong Nguyen1 Jiri Matas2

Esa Rahtu3 Janne Heikkilä1
1University of Oulu 2Czech Technical University in Prague 3Tampere University

Abstract

This paper presents a novel neural architecture search
method, called LiDNAS, for generating lightweight monoc-
ular depth estimation models. Unlike previous neural ar-
chitecture search (NAS) approaches, where finding opti-
mized networks is computationally demanding, the intro-
duced novel Assisted Tabu Search leads to efficient architec-
ture exploration. Moreover, we construct the search space
on a pre-defined backbone network to balance layer diver-
sity and search space size. The LiDNAS method outper-
forms the state-of-the-art NAS approach, proposed for dis-
parity and depth estimation, in terms of search efficiency
and output model performance. The LiDNAS optimized
models achieve result superior to compact depth estima-
tion state-of-the-art on NYU-Depth-v2, KITTI, and Scan-
Net, while being 7%-500% more compact in size, i.e the
number of model parameters.

1. Introduction
Depth information is essential to numerous computer vision
applications, including robotics, mixed reality, and scene
understanding. Traditionally, accurate depth measurements
are acquired using stereo or multi-view setups [23, 52] or
active sensors such as ToF cameras, LIDARs. However, de-
ploying such methods for resource-limited devices is costly
or may even be infeasible in practice. Considering this, cur-
rent advances in learning-based monocular depth estimation
proffering them as viable alternatives to conventional ap-
proaches.

Recent deep neural networks (DNN) show compelling
results on single image depth estimation by formulating ap-
parent depth cues [3, 5, 13, 27, 28, 33, 35, 36, 44, 57] or es-
timating relative depth in unconstrained settings [4, 34, 45].
Moreover, self-supervised methods [15, 19] offered appeal-
ing solutions for single image depth estimation. Neverthe-
less, most studies focus on increasing accuracy at the ex-
pense of model complexity, making them infeasible to de-
vices with limited hardware capabilities.

To tackle this problem, lightweight depth estimation

A
bs

ol
ut

e
R

el
at

iv
e
E
rr
or

 (
%

)
202 3 40 60 120

Params (millions, log scale)

0.10

0.11

0.13

0.14

0.15

0.17

5

0.12
LiDNAS-N

FastDepth

EfNet + FBNet

EDA AutoDepth-BOHB-S

DAV BTS

AdaBins
VNL

DPT

SparseSupNet

T
hr

es
ho

ld
ed

 A
cc
u
ra
cy

 δ
1

(%
)

2.51.5 3.0 3.5 4.0
Params (millions)

0.795

0.805

0.815

0.825

0.835

0.845
LiDNAS-K

4.5

PyD-Net

EQPyD-Net

DSNet

2.0

FastDepth

0.16

NYU-Depth-v2

KITTI

Figure 1. Absolute relative error and thresholded accuracy (δ1)
vs. the number of parameters for recent depth estimation meth-
ods on NYU-Depth-v2 (top) and KITTI (bottom) – the LiDNAS
models outperforms the lightweight baselines (black), while us-
ing substantially less parameters than the current state-of-the-art
methods (blue). Compared to the recent NAS-based depth esti-
mation method (red), LiDNAS improves in both performance and
compactness.

methods [55] were proposed by utilizing small and straight-
forward architecture. Usually such simple designs are un-
reliable and yield low-quality predictions. Other popular
strategies include quantizing the weights of a network into
low-precision fixed-point operations [22] or pruning by di-
rectly cutting off less important filters [58]. That being said,
these methods depend on a baseline model, tend to degrade
its performance afterward and incapable of exploring new
combinations of DNN operations. Moreover, creating a

3643

resource-constrained model is a non-trivial task requiring
1) expert knowledge to carefully balance accuracy and re-
source and 2) plenty of tedious trial-and-error work.

Neural architecture search (NAS), proposed recently [61,
62], exhibits compelling results, and more importantly,
promises to relieve from the manual tweaking of deep neu-
ral architectures. Unfortunately, NAS methods mostly ob-
ligate thousands of training hours on hundreds of GPUs.
To address this, recent NAS studies introduced various effi-
ciency increasing techniques, which include weight shar-
ing [41], and network transformation [11]. These meth-
ods show promising results, but they are still expensive and
mainly focus on classification and detection.

This paper introduces LiDNAS, an efficient model
compactness-aware NAS framework, with the objective of
searching for accurate and lightweight monocular depth es-
timation architectures. The approach is based on two main
ideas. First, we observe that previous NAS methods essen-
tially search for a few types of cells and then repeatedly
accumulate the same cells to build the whole network. Al-
though doing this simplifies the search process, it also re-
strains layer diversity that is important for computational
efficiency. Instead, we construct a pre-defined backbone
network that utilizes different layers striving for the right
balance between flexibility and search space size. Sec-
ondly, we proposed the Assisted Tabu Search (ATS) for
efficient neural architecture search. Inspired by the recent
NAS study that suggests estimating network performance
without training [40], we integrate this idea into our multi-
objective search function to swiftly evaluate our candidate
networks. This, in turn, reduces ∼ 90% search time com-
pared to state-of-the-art NAS-based disparity and depth es-
timation approaches [48].

Figure 1 summarizes a comparison between our LiD-
NAS models and other state-of-the-art lightweight ap-
proaches. Compared to PyD-Net [42], our method improves
the REL, RMSE, and thresholded accuracy by 13.6%,
8.3%, and 3% with similar execution time on the Google
Pixel 3a phone (see Table 4). Compared to FastDepth [55]
and EDA [54], our model achieves higher accuracy with
fewer parameters. To summarize, our work makes the fol-
lowing contributions:

• We propose a multi-objective exploration frame-
work, LiDNAS, searching for accurate and lightweight
monocular depth estimation architectures.

• We introduce a novel scheme called Assisted Tabu
Search, enabling fast neural architecture search.

• We create a well-defined search space that allows com-
putational flexibility and layer diversity.

• We achieve the state-of-the-art results compared to the
lightweight baselines on NYU-Depth-v2, KITTI, and
ScanNet while using less parameters.

The implementation of LiDNAS will be made publicly
available upon publication of the paper.

2. Related work

Monocular depth estimation Learning-based single image
depth estimation was first introduced by Saxena et al. [50].
Later studies improved accuracy by using large network
architectures [5, 9, 10, 27, 32] or integrating semantic in-
formation [30] and surface normals [43]. Fu et al. [14]
formulated depth estimation as an ordinal regression prob-
lem, while [4, 34] estimated relative instead of metric depth.
Facil et al. [13] proposed to learn camera calibration from
the images for depth estimation. Recent approaches fur-
ther improve the performance by exploiting monocular pri-
ors such as planarity constraints [35, 36, 59, 28, 33] or oc-
clusion [44]. Gonzalez and Kim [20] estimated depth by
synthesizing stereo pairs from a single image, while [57]
and [45] applied vision-transformer for depth prediction.
However, these studies mostly focus on increasing accu-
racy at the cost of model complexity that is infeasible in
resource-limited settings.
Lightweight depth estimation architectures For resource-
limited hardware, it is more desirable to not only have a fast
but also accurate model. One simple alternative is employ-
ing lightweight architectures such as MobileNet [24, 25,
49, 55], GhostNet [21], and FBNet [54]. One popular ap-
proach is utilizing network compression techniques, includ-
ing quantization [22], network pruning [58], and knowledge
distillation [60]. Other methods employ well-known pyra-
mid networks or dynamic optimization schemes [1]. How-
ever, these tasks are tedious, require a lot of trial-and-error,
and usually lead to architectures with low accuracy.
Neural Architecture Search There has been increasing in-
terest in automating network design using neural architec-
ture search. Most of these methods focus on searching
high-performance architecture using reinforcement learn-
ing [2, 37, 41, 61, 62], evolutionary search [46], differen-
tiable search [38], or other learning algorithms [39]. How-
ever, these methods are usually very slow and require huge
resources for training. Other studies [8, 12, 26] also attempt
to optimize multiple objectives like model size and accu-
racy. Nevertheless, their search process optimizes only on
small tasks like CIFAR. In contrast, our proposed method
targets real-world data such as NYU, KITTI and ScanNet.

3. LiDNAS

We propose the LiDNAS framework to search for accurate
and lightweight monocular depth estimation architectures.
The overview the our approach is presented in Figure 3. It
takes in a dataset as input to search for the best possible
model. This model can be deployed for depth estimation on
hardware-limited devices. The first subsection defines the

3644

Network scale 1Encoder
Block 1,1

Encoder
Block 1,2

Decoder
Block 1,3

Decoder
Block 1,4

Refine
Block 1,5

Encoder
Block S,1

Encoder
Block S,2

Decoder
Block S,3

Decoder
Block S,4

Refine
Block S,5

Element-wise
Summation Concat

Network scale S

Network scale 2..S-1
Layer

1
Layer

NS,7 FS,7

Bilinear
Sampling

Image

Depth S

Depth 1

Upsample Block

Downsample Block
Layer

1
Layer
N1,2 F1,2

conv
1x1

conv
5x5

SE
0.25

conv
1x1

Layer
1

Layer
N1,5 F1,5=1

conv
5x5

conv
3x3

Figure 2. The search space of our LiDNAS framework. Models are constructed from a pre-defined backbone network containing encoder,
decoder, refine, downsample and upsample blocks (green). A block is formed by several identical layers (orange) that are generated from
a pool of operations and connections. Layers within a block are the same while layers of different blocks can be different.

search space while the remaining two describe our multi-
objective exploration and search algorithm.

3.1. Search Space

Previous neural architecture search (NAS) studies demon-
strated the significance of designing a well-defined search
space. A common choice of NAS is searching for a small
set of complicated cells from a smaller dataset [62, 37, 46].
These cells are later replicated to construct the entire ar-
chitecture that hindered layer diversity and suffered from
domain differences [53]. On the other hand, unlike classifi-
cation tasks, dense prediction problems involve mapping a
feature representation in the encoder to predictions at larger
spatial resolution in the decoder.

To this end, we build our search space upon a pre-defined
backbone that is shown as the set of green blocks in Fig-
ure 2. The backbone is divided into multi-scale pyramid
networks operating at different spatial resolutions. Each
network scale consists of two encoder blocks, two decoder
blocks, a refine block, a downsample and a upsample block
(except for scale 1). Each block is constructed from a set
of identical layers (marked as orange in Figure 2). Inspired
by [53], we search for the layer from a pool of operations
and connections, including:

• The number of resolution scales S.

LiDNAS

Data Model Devices Depth

Image

Figure 3. Overview of the proposed approach.

• The number of layer for each block Ni,j .
• Convolutional operations (ConvOps): vanilla 2D con-

volution, depthwise convolution, and inverted bottle-
neck convolution.

• Convolutional kernel size (KSize): 3× 3, 5× 5.
• Squeeze and excitation ratio (SER): 0, 0.25.
• Skip connections (SOps): residual or no connection.
• The number of output channels: Fi,j .

where i indicates the resolution scale and j is the block in-
dex at the same resolution. Internal operations such as Con-
vOps, KSize, SER, SOps, Fi,j are utilized to construct the
layer while Ni,j determines the number of layer that will
be replicated for blocki,j . In other words, as shown in Fig-
ure 2, layers within a block (e.g. layers 1 to N1,2 of Encoder
Block 1,2 are the same) are similar while layers of different
blocks (e.g. Layer 1 in Refine Block 1,5 versus Layer 1 in
Upsample Block S,7) can be different.

We also perform layer mutation to further diversifying
the network structure during the architecture search process.
The mutation operations include:

• Swapping operations of two random layers with com-
patibility check.

• Modifying a layer with a new valid layer from the pre-
defined operations.

Moreover, we also set computational constraints to bal-
ance the kernel size with the number of output channels.
Therefore, increasing the kernel size of one layer usually
results in decreasing output channels of another layer.

Assuming we have a network of S scales, and each block
has a sub-search space of size M then our total search space
will be M5+[(S−1)∗7]. Supposedly, a standard case with
M = 192, S = 5 will result in a search space of size ∼
2× 1075.

3645

0.115 0.130 0.145

0.7 0.79 0.88

2000

sc
or

e

1900

1800

1700

1600

2000

sc
or

e

1900

1800

1700

1600
sc

or
e

0.13

sc
or

e

Validation Accuracy

1850

sc
or

e

Validation Accuracy ↑ ↑

1750

1650

1550

1450

2050

sc
or

e

0.09
Validation iMAE ↓

0.10 0.11

1950

1850

1750

1650

NYU

KITTI

ScanNet

0.7 0.78 0.87
Validation REL

0.130 0.145 0.160

1850

1750

1650

1550

1450

0.15 0.17

2050

1950

1850

1750

1650

Validation REL

Validation REL ↓

(d)

(e)

(f)

(a)

(b)

(c)

↑↑

Figure 4. Plots of the score at initialisation of untrained architec-
tures against evaluation metrics after training: (a), (b) accuracy
(δ1); (e) mean absolute error of the inverse depth (iMAE); and (d),
(e), (f) absolute relative error (REL). Plots from the first, second
and third row are obtained from NYU-Depth-v2, KITTI and Scan-
Net dataset, respectively.

3.2. Multi-Objective Exploration

We introduce a multi-objective search paradigm seeking for
both accurate and compact architectures. For this purpose,
we monitor the validation grade G that formulates both ac-
curacy and the number of parameter of a trained model. It
is defined by

G(m) = α×A(m) + (1− α)×
[

P

P (m)

]r
(1)

where A(m) and P (m) are validation accuracy and the
number of parameters of model m. P is the target com-
pactness, α is the balance coefficient, and r is an exponent

with r = 0 when P (m) ≤ P and otherwise r = 1. The
goal is to search for an architecture m∗ where G(m∗) is
maximum.

However, computing G requires training for every archi-
tecture candidate, resulting in considerable search time. To
mitigate this problem, Mellor et al. [40] suggested to score
an architecture at initialisation to predict its performance
before training. For a network f , the score(f) is defined as:

score(f) = log|KH | (2)

where KH is the kernel matrix. Assume the mapping of
model f from a batch of data X = {xi}Ni=1 is f(xi). By
assigning binary indicators to every activation units in f , a
linear region xi of data point i is represented by the binary
code ci. The kernel matrix KH is defined as:

KH =

NA − dH(c1, c1) . . . NA − dH(c1, cN)
...

. . .
...

NA − dH(cN , c1) . . . NA − dH(cN , cN)


(3)

where NA is the number of activation units, and dH(ci, cj)
is the Hamming distance between two binary codes. In-
spired by this principle, we generate and train a set of dif-
ferent architectures on NYU, KITTI, and ScanNet. We eval-
uate the performance of these models and visualize the re-
sults against the score that in our case is the mapping of
depth values within image batches. Plots in Figure 4 show
that models with higher score tend to yield better results.
Leveraging this observation, we 1) utilize the score in our
initial network ranking, and 2) define the mutation explo-
ration reward R as:

R(mi,mj) = α× score(mj)

score(mi)
+(1−α)×

[
P

P (mj)

]r
(4)

where mj is a child network that is mutated from mi archi-
tecture.

3.3. Search Algorithm

The flowchart of our architecture search is presented in Fig-
ure 5. We first randomly generate 60K unique parent mod-
els and create the initial network ranking based on the score
in Eq. 2. We then select six architectures in which three
are the highest-ranked while the other three have the high-
est score of the networks with the size closest to the target
compactness.

Starting from these initial networks, we strive for the best
possible model utilizing the Assisted Tabu Search (ATS).
Tabu search (TS) [18] is a high level procedure for solv-
ing multicriteria optimization problems. It is an iterative al-
gorithm that starts from some initial feasible solutions and

3646

A
rc

hi
te

ct
ur

e
G

en
er

at
io

n

In
it

ia
l

N
et

w
or

k
R

an
ki

ng

T
ra

in
in

g

U
pd

at
e

ta
bu

 li
st

(mi)

U
pd

at
e

C
ur

re
nt

 M
od

el
Max

Iteration?

U
pd

at
ed

N

et
w

or
k

R
an

ki
ng

Swap
Current Model

Finished
ATS ?

Mutation Yes

No

Yes

No

No

Yes

<

It
er

at
io

n
+

=
 1

It
er

at
io

n
=

 1

G (mc) G

mc

m1

m2

mn

mi

C
om

pu
te

 G
(m

i)

us
in

g
E

q.
 1

Figure 5. The flowchart of our architecture search that utilizes the Assisted Tabu Search (ATS) with mutation to search for accurate and
lightweight monocular depth estimation networks.

aims to determine better solutions while being designed to
avoid traps at local minima.

We propose ATS by applying Eq. 1 and 4 to TS to speed
up the searching process. Specifically, we mutate numerous
children models (m1, m2, .., mn) from the current archi-
tecture (mc). The mutation exploration reward R(mc,mi)
is calculated using Eq. 4. ATS then chooses to train the
mutation with the highest rewards (e.g. architecture mi as
demonstrated in Figure 5). The validation grade of this
model G(mi) is calculated after the training. The perfor-
mance of the chosen model is assessed by comparing G(mi)
with G(mc). If G(mi) is larger than G(mc), then mi is
a good mutation, and we opt to build the next generation
upon its structure. Otherwise, we swap to use the best op-
tion in the tabu list for the next mutation. The process stops
when reaching a maximum number of iterations or achiev-
ing a terminal condition. The network ranking will be up-
dated, and the search will continue for the remaining parent
architectures. Further comparison between TS and ATS is
provided in the supplementary material.

4. Performance analysis
In this section, we evaluate the performance of the proposed
method and compare it with several baselines on the NYU-
Depth-v2, KITTI, and ScanNet datasets.

4.1. Datasets

We evaluate the proposed method using NYU-Depth-v2
[51], ScanNet [7] and KITTI [16] datasets. NYU-Depth-
v2 contains ∼ 120K RGB-D images obtained from 464
indoor scenes. From the entire dataset, we use 50K images
for training and the official test set of 654 images for evalua-
tion. The ScanNet dataset comprises of 2.5 million RGB-D
images acquired from 1517 scenes. For this dataset, we use
the training subset of ∼ 20K images provided by the Ro-
bust Vision Challenge 2018 [17] (ROB). In this paper, we
report the results on the ScanNet official test set of 5310
images instead. KITTI is an outdoor driving dataset, where

we use the standard Eigen split [9, 10] for training (39K
images) and testing (697 images).

4.2. Evaluation metrics

The performance is assessed using the standard metrics pro-
vided for each dataset. That is, for NYU-Depth-v2 and
KITTI we calculate the mean absolute relative error (REL),
root mean square error (RMSE), and thresholded accuracy
(δi). For the ScanNet dataset, we provide the mean absolute
relative error (REL), mean square relative error (sqREL),
scale-invariant mean squared error (SI), mean absolute error
(iMAE), and root mean square error (iRMSE) of the inverse
depth values.

4.3. Implementation Details

For searching, we directly perform our architecture explo-
ration on the training samples of the target dataset. We set
the target compactness parameter P using the previously
published compact models as a guideline. We set the max-
imum number of exploration iteration to 100 and stop the
exploration procedure if a better solution cannot be found
after 10 iterations. The total search time required to find
optimal architecture is ∼ 4.3 GPU days.

For training, we use the Adam optimizer [31] with
(β1, β2, ϵ) = (0.9, 0.999, 10−8). The initial learning rate is
7 ∗ 10−4, but from epoch 10 the learning is reduced by 5%
per 5 epochs. We use batch size 256 and augment the input
RGB and ground truth depth images using random rotation
([-5.0, +5.0] degrees), horizontal flip, rectangular window
droppings, and colorization (RGB only).

4.4. Comparison with state-of-the-art

NYU-Depth-v2: We set the target compactness P = 2M
with the balance coefficient α = 0.6 to search for the opti-
mized model on NYU-Depth-v2. We then select the best
performance model (LiDNAS-N) and compare its results
with lightweight state-of-the-art methods [54, 55, 56, 60]

3647

Table 1. Evaluation on the NYU-Depth-v2 dataset. Metrics with ↓ mean lower is better and ↑ mean higher is better. Type column shows
the exploration method used to obtain the model. RL, ATS, and manual, refer to reinforcement learning, assisted tabu search, and manual
design, respectively.

Architecture #params Type Search Time REL↓ RMSE↓ δ1↑ δ2↑ δ3↑
AutoDepth-BOHB-S Saikia et al.’19 [48] 63.0M RL 42 GPU days 0.170 0.599 - - -
EDA Tu et al.’21 [54] 5.0M Manual - 0.161 0.557 0.782 0.945 0.984
FastDepth Wofk et al.’19 [55] 3.9M Manual - 0.155 0.599 0.778 0.944 0.981
SparseSupNet Yucel et al.’21 [60] 2.6M Manual - 0.153 0.561 0.792 0.949 0.985
Ef+FBNet Tu & Wu et al. [54, 56] 4.7M Manual - 0.149 0.531 0.803 0.952 0.987
LiDNAS-N Ours 2.1M ATS 4.3 GPU days 0.132 0.487 0.845 0.965 0.993

along with their numbers of parameters. As shown in Ta-
ble 1, LiDNAS-N outperforms the baseline while contain-
ing the least amount of parameters. Comparing with the
best-performing approach, the proposed model improves
the REL, RMSE, and θ1 by 11.4%, 8.2%, and 6.8% while
compressing the model size by 55%. Our method produces
high-quality depth maps with sharper details as presented in
Figure 9. However, we observe that all methods still strug-
gle in challenging cases, such as the scene containing Lam-
bertian surfaces as illustrated by the example in the third
column of Figure 9. Moreover, the proposed method im-
proves REL and RMSE by 22.3% and 18.7% while using
only 3% of the model parameters comparing to the state-
of-the-art NAS-based disparity and depth estimation ap-
proaches [48]. In addition, our method requires 90% less
search time than [48].

KITTI: In the case of KITTI, we aim at the target com-
pactness of P = 1.5M with α = 0.55. We then train our
candidate architectures with the same self-supervised pro-
cedure proposed by [19] and adopted by the state-of-the-art
approaches [1, 6, 42, 55]. After the search, we pick the best
architecture (LiDNAS-K) to compare with the baselines and
report the performance figures in Table 2. The LiDNAS-K
model yields competitive results with the baselines while
also being the smallest model. We observe that our pro-
posed method provides noticeable improvement from PyD-
Net and EQPyD-Net. Examples from Figure 7 show that
the predicted depth maps from LiDNAS-K are more accu-
rate and contain fewer artifacts.

ScanNet: For ScanNet, we set the target compactness to
4.5M with α = 0.57 for searching. Despite of being com-

Table 2. Evaluation on the KITTI dataset. Metrics with ↓ mean
lower is better and ↑ mean higher is better.
Method #params REL↓ RMSE↓ δ1↑ δ2↑ δ3↑
FastDepth [55] 3.93M 0.156 5.628 0.801 0.930 0.971
PyD-Net [42] 1.97M 0.154 5.556 0.812 0.932 0.970
EQPyD-Net [6] 1.97M 0.135 5.505 0.821 0.933 0.970
DSNet [1] 1.91M 0.159 5.593 0.800 0.932 0.971
LiDNAS-K 1.78M 0.133 5.157 0.842 0.948 0.980

pact, our best performance model (LiDNAS-S) produces
competitive results compared with state-of-the-art methods,
as shown in Table 3. More specifically, it requires only
20% of the number of parameters in comparison with the
best performance baseline. We also observe that although
SARPN [5] and Hu et al. [27] models are multiple times
larger than DS-SIDENet [47] or DAV [28], the latter still
yield better results, emphasizing the importance of optimal
network structure. Furthermore, our model produces com-
parable depth maps as shown in Figure 10. Details of the
generated architectures are provided in the supplementary
material.

Runtime Measurement: We also compare the runtime of
our models with state-of-the-art lightweight methods on an
Android device using the app from the Mobile AI bench-
mark developed by Ignatov et al. [29]. To this end, we uti-
lize the pre-trained models provided by the authors (Ten-
sorflow [42], PyTorch [55]) and convert them to tflite. The
results in Table 4 suggest that the proposed approaches pro-
duce competing performance, with the potential of running
real-time on mobile devices with further optimization.

4.5. Ablation studies

Table 3. Evaluation results on ScanNet [7] dataset.
Architecture #params REL sqREL SI iMAE iRMSE
SARPN [5] 210.3M 0.134 0.077 0.015 0.093 0.100
Hu et al. [27] 157.0M 0.139 0.081 0.016 0.100 0.105
DS-SIDENet [47] 49.8M 0.133 0.057 - - -
DAV [28] 25.1M 0.118 0.057 0.015 0.089 0.097
LiDNAS-S 5.2M 0.117 0.059 0.015 0.090 0.097

Table 4. Average runtime comparison of the proposed method and
other lightweight models. Runtime values are measured using a
Pixel 3a phone with input image resolution (640× 480).

Architecture CPU(ms)
FastDepth [55] 458
Ef+FBNet [54, 56] 852
PyD-Net [42] 226
LiDNAS-K 205
LiDNAS-N 262
LiDNAS-S 380

3648

10 20 4030 50 60 8070 90 100
Number of iterations

10 20 4030 50 60 8070 90 100
Number of iterations

A
cc

ur
ac

y
(%

)

0.20
0.27
0.34
0.41
0.48
0.55

0.62
0.69
0.76
0.83
0.90

10 20 4030 50 60 8070 90 100
Number of iterations

P
ar

am
s

(m
il

li
on

s)

0

1
2

10

20

30

40

V
al

id
at

io
n

G
ra

de

0

0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9

1.0

α = 0.0
α = 0.4
α = 0.5
α = 0.6
α = 1.0

α = 0.0
α = 0.4
α = 0.5
α = 0.6
α = 1.0

α = 0.0
α = 0.4
α = 0.5
α = 0.6
α = 1.0

Figure 6. The progress of different searching scenarios on the NYU-Depth-v2 dataset. From left to right, charts show the accuracy, the
number of parameters, and validation grade vs. the number of searching iterations.

Exploration Convergence: We experiment with various
settings for the multi-objective balance coefficient (α) to as-
sess its effect on the performance. For this purpose, we
perform the architecture search with α set to 0.0, 0.4, 0.5,
0.6, and 1.0 while the target compactness P = 2.0M . Fig-
ure 6 presents the searching progress for accuracy (left), the
number of parameters (center), and validation grade (right)
from one parent architecture on NYU-Depth-v2. We ob-
serve that, scenario with α = 0.0 quickly becomes saturated
as it only gives reward to the smallest model. Searching
with α = 0.4 favors models with compact size but also with
limited accuracy. The case with α = 0.5 provides a more
balanced option, but accuracy is hindered due to fluctua-
tion during searching. The exploration with α = 1.0 seeks

(a)

(b)

(c)

(e)

(d)

Figure 7. Comparison on the Eigen split of KITTI. (a) input im-
age, (b) LiDNAS-K, (c) DSNet [1], (d) PyD-Net [42], and (e) Fast-
Depth [55]. Images in the right column presented zoom-in view
for better visualization.

for the network with the best accuracy yet producing sig-
nificantly larger architecture while the case where α = 0.6
achieves promising accuracy although with slightly bigger
model than the target compactness.

Searching Scenarios: To further analyze the outcome
of different searching scenarios, we perform architecture
searches for six parent networks in five settings with α =
0.0, 0.4, 0.5, 0.6, 1.0 and P = 2.0M on NYU-Depth-v2.
Results in Figure 8 show that best performance models in
case α = 0.5 are more spread out, while training instances
with α = 0.6 tend to produce both accurate and lightweight
architectures. This, in turn, emphasizes the trade-off be-
tween validation accuracy and network size.

5. Conclusion

This paper proposed a novel NAS framework to construct
lightweight monocular depth estimation architectures using
Assisted Tabu Search and employing a well-defined search
space for balancing layer diversity and search volume. The
proposed method achieves competitive accuracy on three
benchmark datasets while running faster on mobile devices
and being more compact than state-of-the-art handcrafted
and automatically generated models. Our work provides a
potential approach towards optimizing the accuracy and the
network size for dense depth estimation without the need
for manual tweaking of deep neural architectures.

217 14 28 35 42
Params (millions)

0.45

0.54

0.63

0.72

0.81

0.90

0

A
cc

ur
ac

y
δ1

 (
%

)

α = 0.0
α = 0.4
α = 0.5
α = 0.6
α = 1.0

Figure 8. Trade-off between accuracy vs. the number of param-
eters of best models trained with different searching scenarios on
NYU-Depth-v2 dataset.

3649

(a)

(b)

(c)

(d)

(e)

Figure 9. Comparison on the NYU test set. (a) input image, (b) ground truth, (c) LiDNAS-N, (d) Ef+FBNet [54, 56], and (e) FastDepth [55].

(a)

(b)

(c)

(d)

(e)

Figure 10. Comparison on the ScanNet test set. (a) input image, (b) ground truth, (c) LiDNAS-S, (d) DAV [28], and (e) SARPN [5].

3650

References
[1] Filippo Aleotti, Giulio Zaccaroni, Luca Bartolomei, Matteo

Poggi, Fabio Tosi, and Stefano Mattoccia. Real-time single
image depth perception in the wild with handheld devices.
Sensors, 21(1):15, 2021.

[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using rein-
forcement learning. arXiv preprint arXiv:1611.02167, 2016.

[3] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.
Adabins: Depth estimation using adaptive bins. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4009–4018, 2021.

[4] Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-
image depth perception in the wild. Advances in neural in-
formation processing systems, 29:730–738, 2016.

[5] Xiaotian Chen, Xuejin Chen, and Zheng-Jun Zha. Structure-
aware residual pyramid network for monocular depth estima-
tion. In Proceedings of the 28th International Joint Confer-
ence on Artificial Intelligence, pages 694–700. AAAI Press,
2019.

[6] Antonio Cipolletta, Valentino Peluso, Andrea Calimera,
Matteo Poggi, Fabio Tosi, Filippo Aleotti, and Stefano Mat-
toccia. Energy-quality scalable monocular depth estimation
on low-power cpus. IEEE Internet of Things Journal, 2021.

[7] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5828–5839, 2017.

[8] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei,
and Min Sun. Dpp-net: Device-aware progressive search for
pareto-optimal neural architectures. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
517–531, 2018.

[9] David Eigen and Rob Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale con-
volutional architecture. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 2650–2658,
2015.

[10] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. In Advances in neural information processing systems,
pages 2366–2374, 2014.

[11] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Ef-
ficient multi-objective neural architecture search via lamar-
ckian evolution. arXiv preprint arXiv:1804.09081, 2018.

[12] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Multi-objective architecture search for cnns. arXiv preprint
arXiv:1804.09081, 2, 2018.

[13] Jose M Facil, Benjamin Ummenhofer, Huizhong Zhou,
Luis Montesano, Thomas Brox, and Javier Civera. Cam-
convs: camera-aware multi-scale convolutions for single-
view depth. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11826–
11835, 2019.

[14] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-
manghelich, and Dacheng Tao. Deep ordinal regression net-

work for monocular depth estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2002–2011, 2018.

[15] Ravi Garg, Vijay Kumar Bg, Gustavo Carneiro, and Ian Reid.
Unsupervised cnn for single view depth estimation: Geom-
etry to the rescue. In European conference on computer vi-
sion, pages 740–756. Springer, 2016.

[16] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013.

[17] Geiger, A. and Nießner, M. and Dai, A. Robust Vision Chal-
lenge CVPR Workshop, 2018.

[18] Fred Glover. Future paths for integer programming and links
to artificial intelligence. Computers & operations research,
13(5):533–549, 1986.

[19] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 3828–3838,
2019.

[20] Juan Luis GonzalezBello and Munchurl Kim. Forget about
the lidar: Self-supervised depth estimators with med proba-
bility volumes. Advances in Neural Information Processing
Systems, 33, 2020.

[21] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing
Xu, and Chang Xu. Ghostnet: More features from cheap
operations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1580–
1589, 2020.

[22] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[23] Richard Hartley and Andrew Zisserman. Multiple view ge-
ometry in computer vision. Cambridge university press,
2003.

[24] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1314–1324, 2019.

[25] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[26] Chi-Hung Hsu, Shu-Huan Chang, Jhao-Hong Liang, Hsin-
Ping Chou, Chun-Hao Liu, Shih-Chieh Chang, Jia-Yu Pan,
Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. Monas:
Multi-objective neural architecture search using reinforce-
ment learning. arXiv preprint arXiv:1806.10332, 2018.

[27] Junjie Hu, Mete Ozay, Yan Zhang, and Takayuki Okatani.
Revisiting single image depth estimation: Toward higher res-
olution maps with accurate object boundaries. In IEEE Win-
ter Conf. on Applications of Computer Vision (WACV), 2019.

[28] Lam Huynh, Phong Nguyen-Ha, Jiri Matas, Esa Rahtu, and
Janne Heikkilä. Guiding monocular depth estimation using

3651

depth-attention volume. In European Conference on Com-
puter Vision, pages 581–597. Springer, 2020.

[29] Andrey Ignatov, Grigory Malivenko, David Plowman,
Samarth Shukla, Radu Timofte, Ziyu Zhang, Yicheng Wang,
Zilong Huang, Guozhong Luo, Gang Yu, et al. Fast
and accurate single-image depth estimation on mobile de-
vices, mobile ai 2021 challenge: Report. arXiv preprint
arXiv:2105.08630, 2021.

[30] Jianbo Jiao, Ying Cao, Yibing Song, and Rynson Lau. Look
deeper into depth: Monocular depth estimation with seman-
tic booster and attention-driven loss. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
53–69, 2018.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[32] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Fed-
erico Tombari, and Nassir Navab. Deeper depth prediction
with fully convolutional residual networks. In 2016 Fourth
International Conference on 3D Vision (3DV), pages 239–
248. IEEE, 2016.

[33] Jin Han Lee, Myung-Kyu Han, Dong Wook Ko, and
Il Hong Suh. From big to small: Multi-scale local planar
guidance for monocular depth estimation. arXiv preprint
arXiv:1907.10326, 2019.

[34] Jae-Han Lee and Chang-Su Kim. Monocular depth estima-
tion using relative depth maps. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 9729–9738, 2019.

[35] Chen Liu, Kihwan Kim, Jinwei Gu, Yasutaka Furukawa, and
Jan Kautz. Planercnn: 3d plane detection and reconstruction
from a single image. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4450–
4459, 2019.

[36] Chen Liu, Jimei Yang, Duygu Ceylan, Ersin Yumer, and Ya-
sutaka Furukawa. Planenet: Piece-wise planar reconstruc-
tion from a single rgb image. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2579–2588, 2018.

[37] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In Proceedings of the European conference on com-
puter vision (ECCV), pages 19–34, 2018.

[38] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

[39] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-
Yan Liu. Neural architecture optimization. arXiv preprint
arXiv:1808.07233, 2018.

[40] Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley.
Neural architecture search without training. In International
Conference on Machine Learning, pages 7588–7598. PMLR,
2021.

[41] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In International Conference on Machine Learning,
pages 4095–4104. PMLR, 2018.

[42] Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mat-
toccia. Towards real-time unsupervised monocular depth es-
timation on cpu. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 5848–5854.
IEEE, 2018.

[43] Xiaojuan Qi, Renjie Liao, Zhengzhe Liu, Raquel Urtasun,
and Jiaya Jia. Geonet: Geometric neural network for joint
depth and surface normal estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 283–291, 2018.

[44] Michael Ramamonjisoa and Vincent Lepetit. Sharpnet: Fast
and accurate recovery of occluding contours in monocular
depth estimation. The IEEE International Conference on
Computer Vision (ICCV) Workshops, 2019.

[45] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. ArXiv preprint, 2021.

[46] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on artificial
intelligence, volume 33, pages 4780–4789, 2019.

[47] Haoyu Ren, Mostafa El-khamy, and Jungwon Lee. Deep
robust single image depth estimation neural network using
scene understanding. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Work-
shops, pages 37–45, 2019.

[48] Tonmoy Saikia, Yassine Marrakchi, Arber Zela, Frank Hut-
ter, and Thomas Brox. Autodispnet: Improving disparity
estimation with automl. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1812–
1823, 2019.

[49] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018.

[50] Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. Learn-
ing depth from single monocular images. In Advances in
neural information processing systems, pages 1161–1168,
2006.

[51] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In European Conference on Computer Vision,
pages 746–760. Springer, 2012.

[52] Richard Szeliski. Structure from motion. In Computer Vi-
sion, pages 303–334. Springer, 2011.

[53] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2820–2828, 2019.

[54] Xiaohan Tu, Cheng Xu, Siping Liu, Renfa Li, Guoqi Xie,
Jing Huang, and Laurence Tianruo Yang. Efficient monocu-
lar depth estimation for edge devices in internet of things.
IEEE Transactions on Industrial Informatics, 17(4):2821–
2832, 2020.

[55] Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman,
and Vivienne Sze. Fastdepth: Fast monocular depth esti-

3652

mation on embedded systems. In 2019 International Confer-
ence on Robotics and Automation (ICRA), pages 6101–6108.
IEEE, 2019.

[56] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10734–10742, 2019.

[57] Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe, and
Elisa Ricci. Transformers solve the limited receptive
field for monocular depth prediction. arXiv preprint
arXiv:2103.12091, 2021.

[58] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec
Go, Mark Sandler, Vivienne Sze, and Hartwig Adam. Ne-
tadapt: Platform-aware neural network adaptation for mobile
applications. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 285–300, 2018.

[59] Wei Yin, Yifan Liu, Chunhua Shen, and Youliang Yan. En-
forcing geometric constraints of virtual normal for depth pre-
diction. In The IEEE International Conference on Computer
Vision (ICCV), 2019.

[60] Mehmet Kerim Yucel, Valia Dimaridou, Anastasios Drosou,
and Albert Saa-Garriga. Real-time monocular depth estima-
tion with sparse supervision on mobile. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2428–2437, 2021.

[61] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

[62] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–8710,
2018.

3653

