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Abstract

We propose a deblurring method that incorporates gy-
roscope measurements into a convolutional neural network
(CNN). With the help of such measurements, it can handle
extremely strong and spatially-variant motion blur. At the
same time, the image data is used to overcome the limita-
tions of gyro-based blur estimation. To train our network,
we also introduce a novel way of generating realistic train-
ing data using the gyroscope. The evaluation shows a clear
improvement in visual quality over the state-of-the-art while
achieving real-time performance. Furthermore, the method
is shown to improve the performance of existing feature de-
tectors and descriptors against the motion blur.

1. Introduction
Motion blur is often unavoidable when capturing images

with a fast moving camera. It not only degrades the visual
quality but it also has a negative impact on applications such
as visual odometry, augmented reality (AR) and simulta-
neous localization and mapping (SLAM). Even though the
blind deblurring methods have improved significantly over
the years, they generally struggle with strong and spatially-
variant motion blur. We intend to overcome these limita-
tions by utilizing inertial measurements.

Blind deconvolution methods aim to recover the sharp
image without any additional information about the motion
blur. This is an ill-posed problem since the blurred image
only provides a partial constraint on the solution. Promising
results have been obtained with recent deep learning based
approaches [12, 15]. These methods are especially good at
generating perceptually convincing images while avoiding
deblurring artifacts. To simplify the problem, the existing
methods typically assume a spatially-invariant blur, which
may not hold in practice. An example of such case is shown
in Figure 1.

Mobile devices are often equipped with an inertial mea-
surement unit (IMU), which provides information about the
motion blur. Accelerometers and gyroscopes have been suc-

Figure 1. Heavily blurred images captured with a fast moving cam-
era (top). Images deblurred by DeepGyro CNN (bottom).

cessfully used in motion deblurring [10, 20, 6, 7, 31, 14].
Most of these methods focus on the removal of the camera
shake blur. An application such as SLAM may involve a fast
moving camera, which generally results in much stronger
motion blur. The existing methods are also not capable of
running in real-time, apart from [14]. What further compli-
cates the problem is that inertial-based blur estimates may
be inaccurate. This can be due to noisy IMU readings, tem-
poral misalignment between the camera and IMU, unknown
scene depth or translation. These limitations should be con-
sidered in order to avoid deblurring artifacts.

We propose a deblurring method that incorporates gy-
roscope measurements into a convolutional neural network
(CNN). It can handle extremely strong and spatially-variant
motion blur as illustrated in Figure 1. When computing the
gyro-based blur estimates, we take into account that mobile
devices are usually equipped with a rolling shutter camera.
The method naturally overcomes the limitations of gyro-
based blur estimation by utilizing image data. We also in-
troduce a novel data generation scheme, which is an essen-
tial component needed to train our network. The evaluation
on real-world images shows a clear improvement in visual
quality over the state-of-the-art while achieving real-time
performance. The method will also improve the robustness
of existing feature detectors and descriptors against mo-
tion blur as indicated by the higher repeatability and better
matching performance.
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2. Related work
Despite being a classical image processing problem, de-

blurring continues to be an active research area with plenty
of recent progress. For example, regarding blind single-
image deblurring, the recent papers utilizing so called dark
and bright channel priors have shown promising results
[17, 29]. Nevertheless, these approaches typically assume
uniform and spatially invariant blur, which is often not the
case in practice. For example, if there is rotation around
optical axis, the blur kernel is clearly spatially variant.

Recently, there have emerged also several deep learning
based blind deblurring methods. For example, the con-
cept of generative adversarial networks has been utilized
for learning deep neural networks that perform deblurring
[12, 16, 15]. In particular, inspired by pix2pix [9], Deblur-
GAN [12] trains a conditional GAN for deblurring using
pairs of corresponding blurred and sharp images. However,
as the blind deblurring problem is severely ill-posed, the
results are often not good or satisfactory. In fact, we use
DeblurGAN as one of the baseline methods and Figures 5
and 8 illustrate that its results are clearly inferior to ours.

Besides methods that directly perform blind deblurring,
there are also approaches that first estimate a spatially-
variant motion field and blur kernels from a single image
using deep networks, and thereafter perform non-blind de-
convolution [24, 4]. Further, deep nets have been trained
to remove deblurring artifacts that non-blind deconvolution
typically creates, either directly predicting the sharp output
image [22] or the residual image between the deconvolution
result and the desired sharp output [28].

In addition to single-image deblurring methods, there
are also methods that utilize additional information, such
as multiple frames from a video [2, 23], bursts of rapidly
captured photographs [1], pairs of blurred and noisy images
captured with different exposure settings [30], or high- and
low-resolution image pairs [25]. While some of the afore-
mentioned methods provide promising results, they belong
to a different domain than our single-image deblurring ap-
proach. Moreover, multiple images are not always available
or easy to capture as dynamic objects and events may dis-
appear from the scene.

Our work deals with inertial-aided single-image deblur-
ring. That is, we learn a deep neural net for deblurring a
single RGB image so that the input to the net is the blurred
image and a spatially varying motion field estimated based
on gyroscope measurements recorded during the exposure
of the image. This problem setting is highly relevant in
practice since rotation is usually the main source of blur
due to hand shake [6] and most smartphones are equipped
with gyroscopes. There have been relatively many papers
that utilize inertial sensors (gyroscopes and/or accelerome-
ters) for image deblurring [10, 7, 6, 31, 14, 20]. Most of
them focus on estimating and characterizing the blur ker-

nels based on the inertial sensor data [10, 7, 6, 14, 20] and
then apply non-blind deconvolution. Nevertheless, due to
the limitations of consumer grade inertial sensors in smart-
phones, the motion estimates can never be perfect and, in
practice, there may also be dynamic objects in the scene and
their apparent motion is not explained by device motion.
Thus, it seems plausible to combine inertial measurements
and image based information for deblurring [31] and our
work does that by utilizing deep CNNs. To the best of our
knowledge, our method is the first one that combines gyro-
scope measurements and learnt neural network based image
priors for deblurring. This approach has significant benefits
as our results show a clear improvement in visual quality
over the previous state-of-the-art while achieving real-time
performance.

3. Blur estimation
Motion blur is caused by the relative motion of the cam-

era and scene during the exposure of the image. This work
focuses on static scenes, meaning the motion blur is only
due to the rotation and translation of the camera. The initial
estimate for the motion blur is obtained with the gyroscope.
A key challenge is to represent this information in a format
useful for the deep network. This process will be covered
in the next section. As a result, we get a spatially-variant
blur field, which is provided for the deblurring network as
an additional input.

3.1. Rotation from gyroscope measurements

In prior work [20, 6], it has been shown that motion blur
is typically caused by the rotation of the camera. Similar to
these works, we compute the rotations by integrating gyro-
scope readings. More specifically, we numerically integrate
the quaternion differential equation (e.g. [26])

dq(t)

dt
=

1

2
q(t) � ω(t), q(t1) = 1, (1)

where ω(t) is the 3-dimensional gyroscope measurement
and � denotes the quaternion product. The initial condition
is given at the starting time of exposure t1 and the solution
is computed at the end time of exposure t2. The rotation
matrix R(t2) is then formed as the direction cosine matrix
corresponding to the quaternion q(t2) (see, e.g., [26]).

In theory, the translation could also be recovered using
an accelerometer [31, 7, 10, 21]. However, this requires
knowledge of the initial velocity of the camera, or alterna-
tively, known stationary points or reference points which
can be used to aid zero-velocity updates or position updates
in a Kalman filter [21]. However, these are not assumed
to be available here. Furthermore, the motion blur caused
by translation will also depend on the scene depth, which
is difficult to estimate from a single image. We take these
limitations into account when generating training data.



3.2. Blur field computation

If the camera is moving during the image exposure, the
3D scene points will be projected to multiple points on the
image plane. This will appear as motion blur. To estimate
the blur, we need to consider the relative motion of the cam-
era during the exposure. Let R(t) and t(t) denote the rota-
tion and translation of the camera. Assuming that the scene
has a constant depth d, the motion can be modeled using a
planar homography [5]

H(t) = K[R(t)− t(t)n>

d
]K−1, (2)

where K is the intrinsic camera matrix obtained via calibra-
tion. The normal vector of the scene is denoted by n. If the
translation is zero (or if the scene is far away), the previous
equation simplifies to

H(t) = KR(t)K−1 (3)

Let x = (x, y, 1)> be the projection of the 3D point at the
beginning of the exposure. The rest of the projections can
be computed by x′ = H(t)x.

If the exposure time is relatively short (e.g. when cap-
turing a video), the motion blur can be assumed to be lin-
ear and homogeneous. This type of blur can be described
with a 2-dimensional blur vector (u, v), where u and v rep-
resent the horizontal and vertical components of the blur,
respectively. See the visualization in Figure 2. Note that
all blur vectors with equal lengths and opposite directions,
such as (u, v) and (−u,−v) will correspond to the same
blur. Therefore, we choose to constrain the horizontal com-
ponent u to be positive. We compute the blur vectors for
every pixel, which gives us the blur maps U and V in hori-
zontal and vertical directions. Together these are referred to
as blur field B = (U,V).

3.3. Rolling shutter effect

Mobile devices are typically equipped with a rolling
shutter camera. This means, each row of pixels will be cap-
tured at slightly different time. The formula 3 cannot be
used directly since the mapping of the point x depends on
its y-coordinate. Let tr denote the camera readout time, that
is the time difference between the exposure of the first and
last row of pixels. Then, the exposure of the y:th row starts
at

t1(y) = tf + tr
y

N
, (4)

where tf is the frame timestamp and N is the number of
rows. The end of the exposure is defined as t2 = t1 + te,
where te is the exposure time. The mapping of the point
then becomes

x′ = KR(t2)R
>(t1)K

−1x. (5)

u

v

(0, 0)

Figure 2. Comparison of the real blur and gyro-based blur kernel
estimates (u, v), in red. The local real blur is best visible at light-
streaks.

Note that the frame timestamp tf , readout time tr and ex-
posure time te can be typically obtained via the API of the
mobile device.

4. Deblurring
Deblurring is based on a fully-convolutional neural net-

work. It aims to produce a sharp image given a blurred im-
age and gyro-based blur field. The architecture of the net-
work is described in the next section. To train the network,
we propose a data generation scheme that utilizes gyroscope
readings. This topic is covered in Section 4.2.

4.1. Network architecture

The architecture of the network is shown in Figure 3.
The network is similar to U-Net [18], which was originally
used for image segmentation. This type of encoder-decoder
network has proven to be useful in various image-to-image
translation problems [9]. The input of our network consists
of a blurred RGB image and a gyro-based blur field. They
pass through a series of convolutional and downsampling
layers, until the lowest resolution is reached. After the bot-
tleneck, this process is reversed. A low-resolution image
is expanded back into a full resolution image with help of
upsampling layers. Skip connections are used to allow in-
formation sharing between the encoder and decoder. Given
two layers with equal size, the feature maps from the en-
coder are concatenated with those of the decoder. The input
images can be of arbitrary size since the network is fully-
convolutional.

4.2. Data generation

To train the network, we need a set of blurred and sharp
images along with gyro-based blur fields. There is no easy
way to capture such real-world data. As mentioned, the mo-
tion blur is mainly caused by the rotation of the camera. We
utilized gyroscope readings to generate realistic blur fields
and blurred images. Specifically, we use the sequences
room1 - room6 from an existing visual-inertial dataset [19].
These sequences consist of various types of camera motion,
which results to a diverse set of blur fields with varying lev-



Figure 3. The DeepGyro CNN architecture. All convolutional layers use a 3x3 window (except the last one, which is 1x1). The number of
channels is shown below the boxes. Downsampling is 2x2 max pooling with stride 2. Upconvolutional layers consist of upsampling and
2x2 convolution that halves the number of feature channels.

tf

tf + td

Figure 4. DeepGyro training. For each image, two slightly different blur fields are generated, one that is applied to the sharp image (exact
blur, top) and a noisy blur, modelling the IMU derived field (noisy, bottom).

els of spatially-variant motion blur. We also utilize images
from the Flickr image collection [8] to cover a wide range
of different scene types. With the proposed data generation
scheme, it is easy to generate practically unlimited amount
of realistic training data. The data generation tool will be
made publicly available upon the publication of the paper.

The overview of the data generation scheme is shown
in Figure 4. We compute two different blur fields, which
we refer as the ”exact” and ”noisy” blur fields. The ex-
act blur field is used for generating the blurred image. We
perform a spatially-variant convolution given a sharp image
and blur kernels for every pixel. The noisy blur field, which
is slightly different, is provided for the deblurring network
as an additional input.

To generate a blur field, we use the approach described in
Section 3. The start of the exposure tf is selected randomly,
which means every blur field is likely to be somewhat dif-
ferent. We set the exposure time te = 30 milliseconds. The
readout time tr is chosen randomly from the range [0,30]
milliseconds. The zero value corresponds to a global shut-
ter camera. To increase the overall level of motion blur, the
angular velocities were first multiplied by 2. However, the
maximum blur was limited to 100 pixels.

To simulate temporal misalignment between the camera
and gyroscope, we add a small delay td to the start of the

exposure when computing the noisy blur field. The delay is
sampled from normal distribution with µ = 0 and σ = 0.01
milliseconds. The translation will also affect the motion
blur if the scene is close to the camera. In such case, the
blur extents observed by the gyroscope will be somewhat
inaccurate. To this end, we multiply the gyroscope readings
with a small number k ∼ N(0, 0.2) before computing the
noisy blur field. This will mainly affect the blur extents,
rather than the direction of the blur.

4.3. Training

DeepGyro was trained on 100k images with resolution
of 270 × 480 pixels. We used the Adam [11] as the solver.
At the beginning, the learning rate was set to 0.00005. Af-
ter every 10-th epoch, the learning rate was halved. The
network was trained for 40 epochs. For comparison, we
also trained a blind deblurring network, which we refer to
as DeepBlind. In contrast to DeepGyro, it does not take
the blur field as input. The network and training details are
otherwise identical.

5. Experiments
Deblurring performance is evaluated on both syntheti-

cally and naturally blurred images. We compare the pro-
posed approaches against DeblurGAN [12] and Mustaniemi



et al. [14]. DeblurGAN is a blind deblurring method based
on the conditional generative adversarial networks. Similar
to our DeepBlind approach, it only takes the blurred image
as input. The gyro-based deblurring method [14], referred
to as FastGyro, is the closest competitor to our DeepGyro
approach. We use a slightly modified version of the origi-
nal implementation. The blur kernels are estimated for each
pixel instead of image patches. This minimizes the artifacts
near the edges of the patches.

5.1. Synthetic blur

For the quantitative comparison, we add synthetic mo-
tion blur and 30 dB Gaussian noise to sharp images [13].
The evaluation metrics include peak-signal-to-noise ratio
(PSNR) and structural similarity (SSIM). For fairness, the
motion blur is spatially-invariant since DeblurGAN [12] is
not designed to handle spatially-variant blur. Note that we
also need to generate noisy blur fields for the non-blind
methods because the gyroscope readings do not really ex-
ist.

Figure 5 shows the deblurring results on a heavily
blurred image. DeepBlind and DeepGyro clearly outper-
form the rest of the methods. Their performance is compa-
rable to each other, although DeepGyro results to a slightly
higher PSNR and SSIM values. The average results for all
scenes are summarized in Table 1. DeepGyro benefits from
the initial blur estimates, especially when there is significant
amount of blur.

Figure 6 shows the performance of DeepGyro for in-
creasing levels of motion blur. The method is able to handle
extremely strong motion blur. It performs well even when
the input blur is not perfect. Figure 7 investigates the effects
of blur estimation errors in more detail. Notice that Fast-
Gyro [14] is quite sensitive to these errors as there are major
ringing artifacts. Another important property of DeepGyro
is that it never ruins an already sharp image.

5.2. Natural blur

Naturally blurred images were captured with the
NVIDIA Shield tablet while simultaneously logging gyro-
scope at 100 Hz. In this section, we rely on visual assess-
ment since the ground truth sharp images are not available.
Figure 8 shows the deblurring results. The resolution of the
images is 512 x 512 pixels. DeepGyro performs consis-
tently better than the other methods. In many cases, Deep-
Blind leaves some parts of the image blurred. FastGyro [14]
is able to recover a lot of details but the artifacts reduce
the quality of the image. DeblurGAN [12] struggles with
strong motion blur. It also seems to produce a grid-like pat-
tern over the image. We also tested our method on a blurred
video sequence. Figure 1 (left) shows the result for a single
frame with a resolution of 270 x 480 pixels. The deblurring
takes around 35 milliseconds on NVIDIA GeForce GTX

1080 GPU. The full video is provided in the supplementary
material.

None of the methods is designed for dynamic scene de-
blurring. Nevertheless, Figure 9 shows a dynamic scene in
which a moving car is tracked by the camera. DeepGyro
is able to remove most of the blur caused by the camera
motion. The car also remains sharp, although a small area
around the car is left blurred. This problem is likely due
to the fact that the blur does not vary smoothly across the
image (as it would in case of camera motion only).

The results are generally quite impressive but there is
still room for an improvement. The entrance scene in Fig-
ure 8 contains bright light sources, which cause some of the
pixels to saturate. Consequently, this area is not deblurred.
The light streaks also indicate that the blur is somewhat non-
linear. This will likely reduce the deblurring performance
because such images are not present in the training set. The
flower scene also shows that a significant translation can
cause problems when the scene is close. In this case, it
is probable that the gyro-based blur field differs too much
from the real blur.

5.3. Feature detection and matching

Motion blur degrades the performance of existing fea-
ture detectors and descriptors [3]. In this section, we use the
proposed methods to improve the robustness against motion
blur. Specifically, we use the publicly available implemen-
tation of Difference of Gaussian (DoG) detector and SIFT
descriptor [27]. The experiment is performed on real-world
images with spatially-variant motion blur. The images are
shown in Figure 10.

For the evaluation, we need to know the ground truth ho-
mography between the images. It defines the mapping of
image points in the first and second image given a planar
scene. Normally, the homography can be estimated by se-
lecting corresponding points from the images. In this case,
the images are blurred, which makes it difficult to select the
points accurately. To solve the issue, we adapt the procedure
from [14]. The idea is to capture a burst of images while al-
ternating short and long exposure time. The corresponding
points are easier to select from the short exposure images,
which are sharp but noisy. The blurred images in Figure
10 also suffer from the rolling shutter distortion. Therefore,
a homography cannot necessarily perfectly define the map-
ping of image points. Nevertheless, we concluded that the
homographies are sufficiently accurate for this experiment.

To evaluate feature detection, we compute the repeata-
bility, i.e. how well does the detector identify the corre-
sponding image regions. It is well known that the repeata-
bility criteria might favor detectors that return many key-
points. To eliminate this issue, we fix the number of detec-
tions. The results of the experiment are shown in Figure 10.
DeepGyro and DeepBlind clearly outperform the standard



Blurred image DeblurGAN [12] FastGyro [14] DeepBlind (ours) DeepGyro (ours) Sharp

Figure 5. Deblurring results on an image with synthetic linear blur, length 60 pixels. The blur passed to the non-blind methods – FastGyro
and DeepGyro – is biased, ε = [5, 3] pixels is added to the blur vector in the x and y directions, respectively.

Blurred images DeepGyro (exact) DeepGyro (noisy)

Figure 6. DeepGyro performance for increasing levels of blur. Blurred images (green). Results obtained when passing the exact blur
ε = [0, 0] as input (orange), and when the blur vector has an error ε = [5, 3] pixels (blue). Testing with blur sizes: 10, 40, 60, 80 pixels.

Input images FastGyro [14] DeepGyro

Figure 7. The effects of blur estimation errors on the FastGyro [14] (orange) and DeepGyro (blue). Showing the results when the input is
sharp (top row) and when it is blurred (bottom row). The error of the blur is gradually increased ε = k ∗ [5, 3] pixels, where k = 0, 2, 4.

detector without deblurring as well as the FastGyro [14].

For the feature matching evaluation, we compute the
number of correct matches and the matching score. The
nearest neighbour in the descriptors space corresponds to a
match. The matching score is the ratio between the num-
ber of correct matches and the smaller number of detected
features in the pair of images. The results of the experi-
ment are shown in Figure 10. Again, the performance of

DeepGyro and DeepBlind is superior compared to the other
approaches.

In this experiment, the performance of DeepGyro and
DeepBlind is close to equal. The scene in Figure 10 has a lot
of texture, which helps especially the DeepBlind. The in-
formation from the gyroscope seems to be redundant when
DeepBlind performs well.



Blurred image DeblurGAN [12] FastGyro [14] DeepBlind (ours) DeepGyro (ours)

Figure 8. Deblurring images blurred by camera motion. From top to bottom: bridge, tower, church, entrance, flower, posters, office.



Table 1. Quantitative comparison of deblurring methods on synthetically blurred images: the average PSNR and SSIM metrics for increas-
ing levels of motion blur on the first image from the graf, ubc, bikes and leuven image sets [13]. DeepGyro* - results when the input blur
is exact (blur only caused by rotation).

Blur size Blurred image DeblurGAN [12] FastGyro [14] DeepBlind DeepGyro DeepGyro*

(pixels) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

10 23.41 0.792 21.46 0.694 18.55 0.567 29.10 0.920 28.91 0.918 29.34 0.921
20 20.69 0.705 20.23 0.642 19.54 0.611 27.14 0.879 26.93 0.880 27.10 0.880
40 18.64 0.647 18.39 0.593 19.73 0.642 24.32 0.815 24.58 0.821 24.74 0.823
60 17.61 0.617 17.27 0.565 19.18 0.633 21.92 0.746 22.55 0.757 22.66 0.759
80 16.97 0.598 16.70 0.557 18.28 0.605 19.13 0.652 20.20 0.684 19.97 0.681

Blurred image DeblurGAN [12] FastGyro [14] DeepBlind (ours) DeepGyro (ours)

Figure 9. Deblurring a dynamic scene.

Figure 10. The evaluation of feature detection and matching. Images used in the experiment (bottom). The left-most image is used as the
reference. Repeatability scores computed for each image pair (left). The overlap criteria is set to 40 % and the number of detections is
fixed to 800. Number of correct nearest neighbour matches (center) and matching scores (right).

6. Conclusion

We proposed a deblurring method that is first to pass
gyroscope readings to a CNN. The network learns that
gyro-based blur estimates are noisy, which allows it to
avoid deblurring artifacts common to non-blind deconvo-
lution methods. The evaluation shows that the method han-
dles extreme and spatially-variant motion blur in real-time,
unlike existing methods, and that it does not damage im-
ages that are sharp. Many of the aforementioned benefits
are made possible by the proposed data generation scheme,

which utilizes gyroscope readings to produce realistic train-
ing data. Finally, it was demonstrated that the method im-
proves performance of existing feature detectors and de-
scriptors against the motion blur.
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