
Hidden States Exploration for 3D Skeleton-based Gesture Recognition

Xin Liu1,2, Henglin Shi1, Xiaopeng Hong1, Haoyu Chen1, Dacheng Tao2 and Guoying Zhao1,*

1Center for Machine Vision and Signal Analysis, The University of Oulu, Finland
2UBTech Sydney AI Institute and SIT, FEIT, The University of Sydney, Australia

*Corresponding author: guoying.zhao@oulu.fi

Abstract

3D skeletal data has recently attracted wide attention
in human behavior analysis for its robustness to variant
scenes, while accurate gesture recognition is still challeng-
ing. The main reason lies in the high intra-class variance
caused by temporal dynamics. A solution is resorting to the
generative models, such as the hidden Markov model (H-
MM). However, existing methods commonly assume fixed
anchors for each hidden state, which is hard to depict the
explicit temporal structure of gestures. Based on the obser-
vation that a gesture is a time series with distinctly defined
phases, we propose a new formulation to build temporal
compositions of gestures by the low-rank matrix decompo-
sition. The only assumption is that the gesture’s “hold”
phases with static poses are linearly correlated among each
other. As such, a gesture sequence could be segmented into
temporal states with semantically meaningful and discrim-
inative concepts. Furthermore, different to traditional H-
MMs which tend to use specific distance metric for cluster-
ing and ignore the temporal contextual information when
estimating the emission probability, the Long Short-Term
Memory (LSTM) is utilized to learn probability distributions
over states of HMM. The proposed method is validated on t-
wo challenging datasets. Experiments demonstrate that our
approach can effectively work on a wide range of gestures
and actions, and achieve state-of-the-art performance.

1. Introduction

Human body gesture analysis is a fundamental study
which has been widely applied in a variety of artificial intel-
ligence applications, such as human-computer interaction,
intelligent security surveillance, and video games. Recent-
ly, 3D skeletal joint-based research is attracting increasing
attention in the community of human behavior understand-
ing. One reason underlying its popularity is that the 3D

skeleton data can effectively represent a gesture instance as
a temporal evolution of spatial joint configurations in 3D s-
pace. Another reason is that realtime 3D data collection and
skeleton extraction have become much easier [31].

Over the last few years, various 3D skeleton-based mod-
els have been developed for gesture recognition, ranging
from feature representations [44, 45, 35, 7, 3, 1, 48, 27, 26,
8] to various forms of parametric approaches [36, 37, 32,
28, 22, 29, 14, 15, 41, 38, 46]; and also including many
deep learning methods [43, 42, 25, 10, 4, 49, 23, 17, 19,
30, 20, 13]. Despite the encouraging progress having been
made by various studies, accurately recognizing human ges-
tures is still challenging. Especially, one open issue of hu-
man gestures recognition lies in the temporal dynamics. For
instance, even the same subject may have different imple-
mentation rates and starting/ending points when perform-
ing a gesture, let alone different performers. Consequently,
the variability of a category of human gestures can be very
large. If those temporal dynamics being ignored, the accu-
racy of recognition would be deteriorated undoubtedly [1].

Recently, researchers pay more attention to modeling hu-
man behaviors by studying temporal structures, e.g. [7, 38,
34]. However, most of their work focus on human action-
s rather than body gestures. Compared with actions, the
structural property of gestures is more semantically mean-
ingful and discriminative. According to the research on ges-
ture movements [11, 12], a gesture can be decomposed into
the following “gesticular phases” (see Fig. 1): (1) Resting:
see Fig. 1 (a). (2) Preparation: hands move to the initial
position of the stroke, see Fig. 1 (a)→(b). (3) Pre-stroke
hold: brief pause at the end of preparation, see Fig. 1 (b).
(4) Stroke: hands movement that expresses the meaning of
the gesture, see Fig. 1 (b)→(c)→(d). (5) Post-stroke hold:
brief pause at the end of a stroke, maintaining the hands’
configuration and position, see Fig. 1 (d). (6) Retraction:
the hands move back to a rest position to conclude a gesture
unit, see Fig. 1 (d)→(e)→(f). (7) Resting: see Fig. 1 (f).
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Figure 1. Frames (cropped) selected from two gestures [5] representing the meanings of “basta (enough)” and “furbo (clever)” respectively.
These frames illustrate a gesture consists of a series of “gesticular phases”: Resting→Preparation→Pre-stroke hold→Stroke→Post-stroke
hold →Retraction→Resting [11, 12]. (a) Resting, (a)→(b) Preparation, (b) Pre-stroke hold, (b)→(c)→(d) Stroke, (d) Post-stroke hold,
(d)→(e)→(f) Retraction, (f) Resting. It is noted that the gesticular phases Preparation and Pre-stroke hold are optional, and can be merged
into the obligatory Stroke [12]. For example, the lasting time of Pre-stroke hold in “furbo (clever)” is too short to be determined.

It can be concluded from above definitions, three phases
(2, 4, 6) with hands movement, namely Preparation, Stroke,
Retraction are partitioned by four “hold” phases (1, 3, 5, 7)
with static poses, namely Resting (Independent hold [12]),
Pre-stroke hold and Post-stroke hold. In other words, the
temporal structure of a gesture can be obtained once these
“hold” phases are identified.

Based on such observation, in this paper, we develop a
novel model for human gesture recognition aiming to ad-
dress the difficulties of modeling temporal dynamics. We
treat one human gesture as a series of separated phases, each
of which is associated with a segment of arbitrary length, as
illustrated in Fig. 2 (c). We propose to globally capture the
temporal evolution of gestures by a generative model which
is built upon a recurrent neural network to memorize con-
textual information for better prediction of emission proba-
bilities. We formulate the problem in a unified framework
named Hidden States Learning by Long Short-Term Mem-
ory (HSL-LSTM). The main contributions are summarized
as follows:

1) We propose a new formulation to model the tempo-
ral structures based on a low-rank matrix decomposition al-
gorithm. The only assumption is that the gesture’s “hold”
phases with static poses are linearly correlated with each
other, which can be captured by the low rank matrix. We al-
so explicitly consider the column-block prior of the outlier
signals, the part of hand movements (phases) which cannot
be fitted into the low-rank model. Thus, the temporal struc-
ture alignment is interpreted as a binary clustering prob-
lem. Different to conventional methods using fixed anchors
(Fig. 2 (d)), the proposed method can segment a gesture
sequence into temporal compositions (phases) with seman-
tically meaningful and discriminative concepts (Fig. 2 (c)).

2) We propose a new hidden states learning model based
on a recurrent neural network. Different temporal compo-
sitions actually correspond to the different hidden states of
HMM. The usage of HMM allows to distribute heteroge-
neous information of one gesture class over many states

(phases), and is key to improve the capability of model-
ing complex patterns. Different to traditional HMM using
the Gaussian mixture model (GMM) [24] which ignores the
temporal contextual information and uses specific distance
metric for clustering, the LSTM is utilized to enhance the
HMM by generating better emission probability as it pro-
vides robust classification of small temporal chunks.

3) We propose a new gesture recognition framework by
absorbing the advantages of the HMM and LSTM. Rather
than modelling the whole sequences (a gesture) within the
LSTM as conventional RNN methods do, we feed the net-
work by temporal compositions (hidden states) with shorter
temporal length and more training samples. Therefore, the
parameter learning for LSTM with large size training data
is not needed. In addition, we introduce a Lie group based
feature to better represent the 3D geometric relationships
between various body parts. Experiments demonstrate that
our approach achieves a state-of-the-art performance for 3D
skeleton based human gesture recognition benchmarks.

2. Related Methods

2.1. Approaches with local temporal modeling

To account for temporal dynamics, a common treat-
ment is the dynamic time warping (DTW), as adopted in
[35, 8, 46]. DTW resorts to finding an optimal temporal
alignment, then warps all sequences in the same category
to a corresponding template. However, the performance
of DTW heavily depends on the metric used in measur-
ing the frame similarity. Moreover, for periodic gestures,
DTW tends to produce large temporal misalignments which
may harm the classification performance [36]. Wang et al.
[36, 37] proposed the Fourier temporal pyramid (FTP) to
capture local temporal patterns, which is more robust than
DTW to noise and temporal misalignments. While FTP is
restricted by the width of the time window and can only uti-
lize limited contextual information [4]. In [48], Zanfir et al.
proposed a moving pose descriptor by integrating the nor-
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Figure 2. Illustration of phases of a gesture sequence with temporal structures. (a) Frames selected from a gesture [5] representing the mean-
ing of “basta (enough)”, (b) Skeletons (corresponding to selected frames) of static poses from “hold” phases, (c) Temporal structure (phas-
es) segmentation by proposed, resulting hidden states h1 (Resting), h2 (Preparation, Post-stroke hold, Stroke), h3 (Post-stroke hold), h4

(Retraction), h5 (Resting), (d) Fixed anchors based methods with equal-sized segmentation, resulting in hidden states h
′
1, h

′
2, h

′
3, h

′
4, h

′
5.

malized position of joints from discriminative key-frames,
as well as their velocities and accelerations. Leveraging key
frames can help exclude frames that are less relevant to the
underlying gestures, but in comparison to the holistic based
approaches, losing essential information is inevitable. In
the above methods, the local temporal dynamics is general-
ly represented within a certain time window, so they cannot
globally capture the temporal evolution of gestures [4].

2.2. Approaches with generative model

Another solution to temporal dynamics is resorting to the
generative models, where the time series are reorganized by
a sequential prototype, and the temporal dynamics of ges-
tures are trained as a set of transitions among these proto-
types [1]. A representative is the hidden Markov model (H-
MM). It can globally model the temporal evolution of ges-
tures, which is more robust than DTW, and thus it was wide-
ly utilized by [22, 44, 29, 43, 42]. It is noted that the input
sequences of HMM have to be previously segmented, which
itself is a challenging task. Typically, HMMs partition se-
quence into a fixed number of segments with equal-length
for assigning the hidden states. However, they may have
problems on handling complex gestures with diverse tem-
poral durations. Another popular generative model is the
conditional random field (CRF) [14, 15], while the struc-
ture of the graphs needs to be fully known, which makes
this model heavily relying on the high quality annotated da-
ta. In fact, above methods tend to be around the same dif-
ficulty in determining the accurate states from observations
without careful selection of the features, which undermines
the performance of such generative models [36].

2.3. Approaches with recurrent neural network

With the development of deep learning technologies,
plenty of recognition work addressed the problem of tem-
poral dynamics by recurrent neural networks. Especial-
ly, the long short-term memory (LSTM) [9] carefully de-
signs a suit of schemes to memorize (including forget, s-

tore, update, and output) contextual information observed
from previous sequential inputs. Du et al. [4] adopted
the bi-directional LSTMs for action recognition, where
the entire skeleton was divided into five major groups of
joints and each group was fed into a group specific LSTM
sub-network, then system fused the outputs of these sub-
networks hierarchically and finally fed them into another
set of higher level LSTMs to capture the global body move-
ments. Zhu et al. [49] added a group sparse regularization
term to the cost function of LSTM, making the network to
learn the co-occurrence of discriminative skeleton joints au-
tomatically. In [19], Liu et al. introduced the trust gate into
the LSTM to learn the reliability of the inputs and accord-
ingly adjust their confidence on updating the context infor-
mation. In [17], Li et al. utilized a Gaussian-like curve to
measure the confidences of the start and end frame of ac-
tions, and introduced a joint classification regression LST-
M to solve online action detection and recognition problem.
Although LSTM is powerful in modeling sequential data, it
still suffer from remembering the information of the entire
sequence with many time steps (states) [10, 39]. Moreover,
compared with the progress in data augmentation for RG-
B images, research efforts on augmenting 3D skeleton data
augmentation are still at a rather early stage. As such, it
is still challenging to train the LSTM on limited amount of
training data [36, 30]. In [13], Koller et al. embed a H-
MM into a deep CNN-BLSTM network for sign language
recognition which is a problem closely related to temporal
gesture segmentation. They first train a CNN using weak
frame level annotations, then use a LSTM to output the
Bayesian posteriors for HMM training and make use of the
hidden states of each frame predicted by HMM for CNN
fine-tuning. This model is based on the hypothesis that the
certain boundaries can be determined by some rules in con-
tinuous sequences. Obviously, the output of temporal seg-
ment is at the “words” level but not the phase level with
semantically meaningful and discriminative concepts. For
example, this temporal boundary based segmentation may



run into a stone wall when a gesture is composed by many
different poses with temporal boundaries and a subject per-
forms this gesture cyclically with different rates and orders.
Besides, the number of hidden states is very hard to be de-
termined by “words” based model. The method [13] use six
hidden states empirically without clearly defined meanings.

3. HMM for Gesture Modeling
In this paper, the gesture modeling problem in HM-

M is formulated by following definitions, given a set
Θ = {θ1, θ2, · · · , θK−1, θK} which contains K gesture se-
quences with arbitrary lengths. Any gesture sequence θk
can be denoted as θk = {fk,1, fk,2, · · · , fk,Tk−1, fk,Tk},
where fk,t is the tth frame (or the representation of a frame)
of θk and Tk denotes its length. For any θk from Θ, its label
δc satisfies δc ∈ ∆, where ∆ is the set of C gesture labels
which is denoted as ∆ = {δ1, δ2, · · · , δC−1, δC}.

Specifically, given an observation of gesture sequences
as X = {x1, x2, · · ·xT−1, xT }, where X ∈ Θ, we u-
tilize the HMM to infer a hidden state sequence H =
{h1, h2, · · ·hT−1, hT }. Any state ht fromH fulfills ht ∈ Ψ
(1 ≤ t ≤ T ), where Ψ denotes an universal set which con-
tains all possible Markov hidden states.

Typically, the states alignment is conducted based on a
hypothesis that gestures are completed by uniformly per-
forming Z defined hidden states in order, and hidden states
from different gesture classes do not overlap. Given a ges-
ture with class δc, the corresponding hidden state sequence
is defined as {ψc,1, ψc,2, · · · , ψc,Z−1, ψc,Z}, then we can
generalize this concept for all gesture classes, and define
the universal set of hidden states for all gesture classes:

Ψ =


ψ1,1 ψ1,2 · · · ψ1,Z−1 ψ1,Z

ψ2,1 ψ2,2 · · · ψ2,Z−1 ψ2,Z

· · · · · · ψc,z · · · · · ·
ψC−1,1 ψC−1,2 · · · ψC−1,Z−1 ψC−1,Z
ψC,1 ψC,2 · · · ψC,Z−1 ψC,Z


where ψc,z denotes the zth hidden state of gesture class δc,
1 ≤ δc ≤ C and 1 ≤ z ≤ Z.

Thus, according to the HMM full probability model:

P (H,X) = P (h1)P (x1|h1)

T∏
t=2

P (ht|ht−1)P (xt|ht)

(1)
the goal of the gesture modeling problem is to find an op-
timal hidden state sequence Ĥ which maximize the join-
t probability P (Ĥ,X), given a set of observations X , the
optimization problem of solving Ĥ can be given as:

Ĥ = arg max
H

P (H|X) ∝
X

arg max
H

P (H,X) (2)

It can be concluded that HMM-based gesture recogni-
tion methods have two key issues required to be carefully
solved:

* Given the observation of a gesture sequence, how to s-
elect a corresponding hidden states sequence that is optimal
in some meaningful sense to best explain the observation?

* Three sets of parameters need to be estimated to com-
plete the specification of a HMM, namely the prior distri-
bution of the state at the first frame P (h1), the hidden state
transition probability P (ht|ht−1), and the emission proba-
bility P (xt|ht) for generating an observation at time twhen
given the hidden state ht. How to efficiently compute these
parameters (distributions)?

For the first problem, Wu et al. [43, 42] adopted a deep
belief network (DBN) to estimate the emission probabili-
ty, while a forced alignment scheme is used to divide video
sequences temporally equal to obtain hidden states for su-
pervised training. In [44], the posture words were learned
by the linear discriminant analysis, and each gesture is mod-
eled as a time series of these words (hidden states). How-
ever, the success of clustering heavily relys on specific dis-
tance metric. Moreover, this one frame one pose tactic can-
not fully characterize the motion temporality since it ig-
nores the contextual information, which is hard to handle
high intra-class variance of human gestures. In fact, for the
task of gesture recognition, the gestures themselves exhibit
internal temporal structure. As defined in Section 1, ges-
tures typically have definite gesticular phases with varied
durations and starting/ending times. For illustration, two
examples are given in Fig. 1 and 2. Based on this obser-
vation, in this paper, gestures are modeled as compositions
of different gesticular phases, when gestures have distinct
phases, models that exploit hidden states are advantageous.
As such, different gesticular phases actually correspond to
the different hidden states of HMM, the usage of HMM al-
lows to distribute heterogeneous information of one gesture
class over many states (phases). Therefore, the mission of
uncovering the hidden states thus can be transformed to i-
dentifying the starting and ending frames of each phases.

For the second issue, the Gaussian mixture model (GM-
M) [22, 29, 24] has been widely utilized as the dominant
technique for estimating the emission distribution of HM-
M. In [43, 42], a DBN is used as a generative model to
replace the traditional GMM for estimating the emission
probability. However, there still exists a conflict that any
frame within a sequence usually has contextual information
and correlated with previous frames, however, which is ig-
nored by previous works. Both of the DBN and GMM treat
input frames from different time steps as independent vari-
ables so that output emission probability in the current time
step only relies on the current input. To solve this issue and
acquire the emission probability more appropriately, the L-
STM [9] is utilized because of its stronger contextual infor-
mation modeling ability, which uses memory cells to store
information learned from previous sequential inputs and s-
tored information can affect the output of the network.



4. Low-rank Decomposition for Exploring
Gesture Temporal Structures

One important issue is the choice of features to capture
the variability of 3D skeletons, within and across gesture
classes. Inspired by [35], the Lie group-based representa-
tion is introduced. Instead of using the absolute coordinate,
we utilize the relative geometry between different body
parts to characterize the body movement. More specifically,
the human skeleton can be modeled by an articulated sys-
tem of rigid segments connected by joints. Mathematically,
any rigid body displacement can be implemented by a ro-
tation about an axis combined with a translation parallel to
that axis. This 3D rigid body displacement forms a SE(3),
the special Euclidean group in three dimensions. Thus, giv-
en a pair of bones (body parts), their relative geometry can
be represented in a local coordinate system attached to the
other, which can be formulated by the SE(3). As a result,
an entire human skeleton can be represented by the relative
geometry between all pairs of bones, as a point on the prod-
uct space of SE(3) × · · · × SE(3), which is a Lie group.
This relative geometry has a natural stability and consisten-
cy. For example, if a pair of bones undergoes the same ro-
tation, their relative geometry matrix would not be altered.
Also, this feature has the property of view-invariance such
that can guarantee the uniqueness of motion. Finally, a hu-
man skeleton can be characterized by a Lie algebra (mapped
from Lie group) feature vector with dimension of G.

Given an observed sequences (T frames), for a subject,
we can construct a matrix D by stacking (Lie group based)
skeletal representations of every frame horizontally (colum-
n wise), thenD ∈ RG×T . Since the gesture’s “hold” phases
are with static poses, we can assume that these static poses
(in the form of Lie group-based features) are linearly corre-
lated with each other, as the Lie group-based representation
reflects the relative geometry of body parts which are in-
dependent of the subject’s position. In other words, these
“hold” phases should be captured by a low-rank matrix, and
the hand movements (phases) mean gesture changes which
cannot be fitted into the low-rank model of static poses,
and thus should be treated as outliers. Based on this ob-
servation, we consider the hidden states exploration from
the viewpoint of matrix decomposition problem, which can
be expressed as follows:

D = L+ S (3)

where L and S denote the “hold” states (phases) and hand
movements signals respectively. We assume that the static
poses of “hold” states forming a low-rank matrix L. And
component S should be a column-block sparse matrix with
non-zero columns corresponding to the outliers. In order
to eliminate ambiguity, the columns of the low-rank matrix
L corresponding to the outlier columns are assumed to be

zeros. To formalize column-block priors, we introduce the
`2,1-norm and then propose a Low-rank and Column-Block
sparsity matrix Decomposition (LCBD) method, as

min
L,S
‖L‖∗+κλ‖S‖2,1 +κ (1− λ) ‖L‖2,1 s.t. D = L+S

(4)
where ‖L‖∗ means the nuclear norm of matrixL, the sum of
its singular values, and ‖S‖2,1 means `1-norm of the vector
formed by taking the `2-norms of the columns of matrix S

‖S‖2,1 =

T∑
i=1

‖Si‖2 (5)

where Si denotes the ith column of S.
Inspired by methods [33, 18, 47], the extra introduced

term κ (1− λ) ‖L‖2,1 ensures that recovered matrix L has
exact zero columns correspond to the non-zero ones of
S. The Eq. (4) is an optimization problem and we could
solve it based on the augmented Lagrange multiplier (ALM)
method [18] [40] [21], which can be defined as

L (L, S, Y ;µ) = ‖L‖∗ + κλ‖S‖2,1 + κ (1− λ) ‖L‖2,1+

〈Y,D − L− S〉+
µ

2
‖D − L− S‖2F

(6)

where Y is a vector of Lagrange multipliers, µ is a positive
scalar. ALM solves (6) by alternating between optimizing
the primal variables L, S and updating the dual variable Y ,
which solves the following three sub-problems Lk+1 = arg minLL1 (L, Sk, Yk;µ)

Sk+1 = arg minSL1 (Lk+1, S, Yk;µ)
Yk+1 = Yk + µ (D − Lk+1 − Sk+1)

(7)

The first problem in (7) which solves for L at fixed S, Y
can be explicitly expressed as the following form

min
L
‖L‖∗+κ (1− λ)‖L‖2,1+

µ

2

∥∥(D − Sk + µ−1Yk
)
− L

∥∥2
F

(8)
In each iteration, the Eq. (8) can be rewritten as

Lk+1 =

arg min
L

{
‖L‖∗ + κ (1− λ) ‖L‖2,1 +

µk
2

∥∥GL − L∥∥2
F

}
(9)

where GL = D − Sk + µ−1Yk. We use the Dou-
glas/Peaceman Rachford (DR) monotone operator splitting
method [2] [6] to iteratively solve (9).

Define f1 (L) = κ (1− λ) ‖L‖2,1+ µk
2

∥∥GL − L∥∥2
F

and
f2 (L) = ‖L‖∗. For β > 0 and a sequence αj ∈ (0, 2), the
DR iteration for (9) is expressed as

L(j+1/2) = proxβf2
(
L(j)

)
,

L(j+1) = L(j) + αj
(
proxβf1

(
2L(j+1/2) − L(j)

)
− L(j+1/2)

)
(10)



where the two proximity operators involved in DR iteration
are defined as

proxβf1 (L) = τ βκ(1−λ)
1+βµk

(
L+βµkG

L

1+βµk

)
proxβf2 (L) = USβ (

∑
)V T

τη (Gp) = Gp max
(

0, 1− η
‖Gp‖2

)
, p = 1, 2, ..., n.

Sβ (x) = max (0, x− β) , x ≥ 0, β > 0
(11)

With the same idea of developing (8), the second prob-
lem in (7) can be shown as the following formula:

min
S

µ

2

∥∥(D − Lk+1 + µ−1Yk
)
− S

∥∥2
F

+ κλ‖S‖2,1 (12)

Similar, note GS = D − Lk + µ−1Yk. Then,

S = τ κλ
µk

(
GS
)

(13)

In the processing of iteration, the error in outer loop
is computed as ‖D − Lk − Sk‖F /‖D‖F . The outer loop
stops when it reaches the value lower than 10−7 or the max-
imal iteration number 500 is reached. The error in the inner
loop stops when the difference between successive matrices
Ljk equals to 10−6 or a maximal iteration equals to 20. The
tuning parameters κ and λ are set to 0.041 and 0.73, respec-
tively. For the DR iteration, α and β are set to 1 and 0.57,
respectively. Please refer to [18, 33, 2, 6] for more details.

5. Hidden States Learning via LSTM
In previous HMM based methods [43][42], they assumed

fixed anchors for each hidden state, and divide a gesture se-
quence θk into equal-length segments, then assign frames
located in a segment with the same hidden state as the frame
label. While the HMM imposes a geometric distribution on
the time within a state, under that scheme of fixed anchors,
HMM suffers because a state may transit to itself (two con-
tiguously segmented states but with same state in real).

Different to previous approaches, our method is com-
pletely model-based to learn all HMM parameters for tran-
sition and duration distributions adaptively. More specif-
ically, we initialize the hidden states of the temporal seg-
ments for each of training samples, according to the most
discriminative portions (phases) of sequences as presented
in Section 4. Based on these hidden states we can calculate
three sets of HMM parameters with more meaningful sense
than previous.

For representing the probability of the first hidden state
prior, we use π = (πi)E×1, where πi = P (h1 = ψi),
and ψi is the ith state of hidden states set Ψ. Then we can
estimate πi by calculating

πi =

∑K
k=1(hk,1 == ψi)

K
(14)

where k denotes the index of an observation, and K is the
total number of observations (gesture sequences).

Next, the hidden states transition parameter (matrix) is
denoted using A = [ai,j ]E×E , where ai,j = P (ht =
ψj |ht−1 = ψi). We can calculate ai,j by

ai,j =

∑K
k=1

∑Tk
t=2((hk,t−1 == ψi)AND(hk,t == ψj))∑K

k=1

∑Tk
t=2(hk,t−1 == ψi)

(15)
Another important parameter is the emission probability.

Compared with DBN and GMM which are widely used in
pervious methods, LSTM can learn the contextual informa-
tion from sequential data, which is powerful for sequential
data modeling. On one hand, it receives the output from the
previous time step and use it as a part of the input of current
time step. On the other hand, it uses memory cells to store
contextual information learned from the input and uses gate
units to maintain the stored contextual information. In order
to let LSTM generate outputs in the form which is closer to
the emission probability P (xt|ht), we use a softmax loss
function to train the network. It can instruct the LSTM net-
work to generate a posterior distribution P (ht|xt, ζ), where
ζ is the network parameter which is shared in all time steps.
Thus, we can use such network outputs to infer the emission
probability according to

P (xt|ht) =
P (ht|xt)P (xt)

P (ht)
∝
ζ,xt

P (ht|xt)
P (ht)

(16)

Lastly, by combining (1), (2), and (16), we can get our
final objective function as follows

Ĥ = arg max
H

P (h1|x1)

T∏
t=2

P (ht|ht−1)
P (ht|xt)
P (ht)

(17)

where Ĥ denotes the optimal hidden state sequence.
As we know, most of the gesture (action) recognition al-

gorithms feed a whole gesture instance into the LSTM net-
work (frames with the same labeling). In contrast, we feed
the LSTM with a hidden state (segments) of the gesture in-
stance. More specifically, in the training pipeline (see Fig.
3 (a)) of the proposed model, the input of LSTM is the Lie
group based representation fi of frame xi (an 3D skeleton),
and its label is a hidden state ψc,z which is obtained by the
proposed LCBD method, where the subscript c is the ges-
ture category and z is the hidden states index. The purpose
of training is to force the LSTM to generate the posterior
probabilities for modelling the HMM emission probabili-
ties. In the testing pipeline (see Fig. 3 (b)), a first order
hidden Markov is adopted, and the Viterbi [24] algorithm
(optimization problem of (17)) can be utilized to find the
most likely path.
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Figure 3. Illustration of the pipelines of the proposed method. (a) training pipeline, (b) testing pipeline. Please note the purpose we use fi
rather than xi in P (hi|fi) is to emphasize the Lie group based representation.

6. Experiments

In this section, two benchmarks, ChaLearn 2014 ges-
ture [5] and MSR Action3D [16] are utilized to evaluate
the proposed approach. The proposed method is compared
with eighteen state-of-the-arts. We simply divided them
into three groups. The first group’s methods are most re-
lated to us, including four HMM related methods, name-
ly HMM with GMM (HMM-GMM) [24], HMM with Ad-
aBoost (HMM-AdaBoost) [22], HMM with DBN (HMM-
DBN) [43] and its extension (HMM-DBN-ext) [42]. The
methods in second group are based on classic feature repre-
sentations, including histogram of 3D joints (HOJ3D) [44],
EigenJoints [45], actionlet ensemble (Actionlet) [36, 37],
histogram of oriented 4D normals (HON4D) [27], discrim-
inative key-frames (Key-frames) [48], Lie group [35], Rie-
mannian manifold (Manifold) [3], rotation and relative ve-
locity with DTW (RVV+DTW) [8], latent max-margin mul-
titask learning (LM3TL) [46], spatio-temporal naive-bayes
nearest-neighbor (ST-NBNN) [38]. The last group includ-
ing four deep networks, namely the convolutional neural
network based ModDrop (CNN) [25], LSTM [9], hierarchi-
cal recurrent neural network (HBRNN) [4], spatio-temporal
LSTM with trust gates (ST-LSTM-TG) [19]. The baseline
results are reported from original papers. Note that some
of the compared methods were developed for multi-modal
datasets such as the HMM-DBN-ext [42] utilized RGB and
skeleton, while the proposed method is only based on 3D
skeleton data. All tests are performed on an Intel Xeon CPU
E5-2650 with a NVIDIA Tesla K80 GPU.

In the proposed method, the emission probability esti-
mator is defined as a recurrent neural network with 4 lay-
ers which are connected in the following order: one LSTM
layer with 512 units, a fully connected layer with 256 neu-
rons, a dropout layer with the dropout ratio of 50%, and
a softmax loss layer to force the network to generate the
likelihood P (ht|xt, ζ). When training the network, we set
the batch size to 400. The learning rate is fixed to 0.01 for
the ChaLearn 2014 gesture dataset and 0.002 for MSR Ac-

tion3D dataset. The network is trained till the validation ac-
curacy and the loss is stable after a number epochs of itera-
tions depending on the size of training data. We set 70 as the
max training epoch for the ChaLearn 2014 gesture dataset
due to its large training data size. For the MSR Action3D
dataset, the setting is 200. An important parameter is the
number of hidden states. In our experiments, we found that
almost none of gesture instances have the Pre-stroke hold
phase (or the lasting time of that static pose is too short to
be determined). In most cases, there is a large confusion
among Preparation, Pre-stroke hold, and Stroke. In fact,
according to the study on movement in gestures, some ges-
ticular phases such as the Preparation and Pre-stroke hold
are optional, and can be merged into the obligatory Stroke
[12]. Based on this observation, we choose 5 rather than 7
gesticular phases for dividing hidden states (see Fig. 2).

6.1. ChaLearn 2014 gesture Dataset

The ChaLearn 2014 is a gesture dataset of Looking At
People (LAP) challenge [5] with multi-modality, including
data of RGB frames, depth maps, user body masks, and 3D
skeletal joint positions. This dataset collects 940 videos and
each one contains 10 to 20 Italian cultural gesture instances.
In total, there are 13585 gesture instances from 20 classes.
We use the protocol provided by the dataset which assigns
fixed 7754 gesture sequences for training, 3362 sequences
for validating, and 2742 sequences for testing. It is noted
that the Jaccard index score recommended by the publisher
of Chalearn 2014 dataset is a frame-level metric. However,
the proposed is a sequential based model. In the compari-
son shown in Table 1, all the results reported are in accura-
cy, making the comparison fair. To verify the effectiveness
of the hidden states exploration, we compared the proposed
method with three HMM-based state-of-the-arts, it can be
seen that the recognition accuracies of HMM with GMM
[24] and with DBN (HMM-DBN) [43] are only 49.1% and
83.6%, this is due to both of the DBN and GMM treat in-
put frames at each time step as independent variables, the



contextual information is ignored when learning the emis-
sion probability. The HMM-DBN-ext [42] can reach up to
86.4%, while it used both skeleton, RGB, and depth infor-
mation. It also can be observed that the accuracy of the
LSTM [9] is 11 percents less than the proposed method. As
discussed in the introduction, LSTM is designed to explore
the long-term temporal dependency, but it is still challeng-
ing for LSTM to memorize the information of the entire
sequence with many states [10, 39]. Moreover, with limited
amount of training data, training a LSTM is prone to over-
fitting [37, 30]. In the proposed method, the shorter gesture
segments (states) are fed into the network to bypass the dif-
ficulty of LSTM when modeling multi-states gestures with
temporal dynamics. Furthermore, this states-based feeding
enlarges the number of training samples but without any da-
ta augmentation operations. Take the Chalern 2014 dataset
for example, we obtained 38770 gesture (hidden states) seg-
ments for training, which is five times more training sam-
ples than LSTM with raw (7754) gesture sequences. The
method [35] utilized the same Lie group to represent the 3D
skeletons as ours, and it employed the DTW to deal with the
temporal dynamics issue. However, DTW cannot globally
capture the temporal evolution of whole sequences, so its
performance is inferior to the proposed. It is notable that the
ModDrop [25] was the winner of the 2014 LAP Challenge
(track 3). The proposed method can achieve the similar per-
formance to ModDrop but without using the RGB-D data.

Table 1. Comparison Of Recognition Accuracy (%) With Skeletal-
Based Methods on Datasets ChaLearn 2014 (ChaL) [5] and MSR
Action3D (MSR) [16] (best: bold, second best: underline).

Methods
Accuracy

ChaL MSR

HMM-GMM [24] 49.1 81.5
HMM-AdaBoost[22] - 63.0
HMM-DBN [43] 83.6 82.0
HMM-DBN-ext [42]* 86.4 -

EigenJoints [45] 59.3 82.3
Actionlet [36][37]* - 88.2
HOJ3D [44] - 78.9
HON4D [27]* - 88.9
Key-frames [48] - 91.7
Lie group [35] 79.2 92.5
Manifold [3] - 92.1
RVV+DTW [8] - 93.4
LM3TL [46] - 95.6
ST-NBNN [38] - 94.8

ModDrop (CNN) [25]* 93.1 -
LSTM [9] 82.0 88.9
HBRNN [4] - 94.5
ST-LSTM-TG [19] - 94.8

Proposed 93.8 96.3

* The methods use skeleton and RGB-D data.

6.2. MSR Action3D Dataset

The MSR Action3D [16] is a commonly used actions
recognition dataset, especially for evaluating the effective-
ness of temporal dynamics modeling techniques, since this
dataset is challenging where actions are highly similar to
each other and have typical large temporal misalignments.
MSR Action3D dataset comprises of 567 pre-segmented ac-
tion instances. There are 10 subjects performing 20 classes
of actions. This dataset is so popular that many researcher-
s have reported their results on it. For a fair comparison,
the same evaluation protocol, namely the cross-subject test
as described in [16] is followed, where half of the subject-
s are used for training (subjects number 1, 3, 5, 7, 9) and
the remainder for testing (2, 4, 6, 8, 10). The recogni-
tion accuracies are recorded in Table 1. It can be seen the
proposed method achieves better performance than DTW-
based recognition approaches, such as Lie group [35] and
RVV+DTW [8]. In [48], the authors emphasized the impor-
tance of discriminative key-frames for action recognition.
However, the key frames selection itself is a difficult task,
which usually suffers from an issue of information losing.
The HMM-DBN [43] employed a deep neural network to
learn the parameters of HMM, while it utilized the fixed an-
chors for obtaining the hidden states. On the contrary, we
formulate a model over the temporal domain that is able to
capture the static poses between sub-gestures, thus, a ges-
ture sequences could be segmented into temporal compo-
sitions (states) with semantically meaningful and discrim-
inative concepts. Compared with HMM-DBN, the exper-
imental results on MSR Action3D dataset verifies the ef-
fectiveness of the proposed method again. As can be seen,
compared with all of the 16 methods (including some most
recent methods, such as RVV+DTW [8], LM3TL [46], ST-
LSTM-TG [19], and ST-NBNN [38]), our model achieves
the highest recognition accuracy.

7. Conclusion

In the study of human movement, a gesture could be ex-
plained as a sequence of separated sub-gestures or phases.
Based on this observation, this paper focuses on studying
HMM-based approaches to explore more appropriate hid-
den states alignment. Possible directions for future work
include studying the embedding problem of the Lie group.
Typically, the embedding is obtained by flattening the mani-
fold via tangent spaces, such as the Lie algebra. However, in
that way, only distances between points to the tangent pole
are equal to true geodesic distances, which may lead to an
inaccurate modeling issue. So, a novel embedding method
will be explored to keep the distances estimation being per-
formed in the framework of Riemannian geometry.
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