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Abstract

Zero-shot learning (ZSL) which aims to learn new con-
cepts without any labeled training data is a promising solu-
tion to large-scale concept learning. Recently, many work-
s implement zero-shot learning by transferring structural
knowledge from the semantic embedding space to the image
feature space. However, we observe that such direct knowl-
edge transfer may suffer from the space shift problem in
the form of the inconsistency of geometric structures in the
training and testing spaces. To alleviate this problem, we
propose a novel method which actualizes recurrent knowl-
edge transfer (RecKT) between the two spaces. Specifi-
cally, we unite the two spaces into the joint embedding s-
pace in which unseen image data are missing. The pro-
posed method provides a synthesis-refinement mechanism
to learn the shared subspace structure (SSS) and synthesize
missing data simultaneously in the joint embedding space.
The synthesized unseen image data are utilized to construct
the classifier for unseen classes. Experimental results show
that our method outperforms the state-of-the-art on three
popular datasets. The ablation experiment and visualiza-
tion of the learning process illustrate how our method can
alleviate the space shift problem. By product, our method
provides a perspective to interpret the ZSL performance by
implementing subspace clustering on the learned SSS.

1. Introduction
Currently, supervised-learning frameworks only focus

on a small fraction of concepts in the real world. For
instance, ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) contains 1,000 popular categories in Ima-

geNet [9] for training and testing. This number is far away
from human beings’ learning ability that ordinary people
can distinguish more than 30,000 basic-level concepts [3].
In addition, to learn a particular concept, popular deep net-
works [23, 20, 36, 39, 16, 34] require hundreds to thou-
sands of labeled training data. However, it may be impossi-
ble to collect enough number of labeled training data for all
categories, such as wild animals, rare plants, and industrial
products. Hence, it is unrealistic to extend the recognition
ability of machines only relying on collecting more train-
ing data. Inspired by human beings’ ability that people can
learn from descriptions without visual samples, zero-shot
learning (ZSL) [33] aims to learn new concepts without any
training data. In this paper, we focus on zero-shot object
recognition [22].

In ZSL, labeled images from seen classes (source do-
main) are given for training, while no training images from
unseen classes (target domain) are provided. The goal is to
recognize testing images from unseen classes by leveraging
auxiliary knowledge to enable knowledge transfer. Usual-
ly, images are embedded in the image feature space using
hand-crafted [32, 27, 8] or deep [20, 36, 39, 16] feature ex-
tractors, and labels are embedded in the semantic (label)
embedding space [13] using auxiliary knowledge, e.g., at-
tributes [22], word vectors of labels [38]. Recently, [46]
proposed a new evaluation protocol and data splits for ZS-
L to avoid the overlap between some unseen classes and
ImageNet-2012 dataset which is frequently used for pre-
training feature extractors. The new setting has been evalu-
ated in papers such as [50, 45]. In this paper, we still follow
the classical ZSL setting used in [22, 43, 5, 53, 15, 25].

According to the different modes of knowledge transfer,
we categorize existing ZSL methods into two types, namely,
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Figure 1: Illustration of the space shift problem. The weight on each edge is the normalized Euclidean distance (dissimilarity) between
two classes. The star is the center of data (points), which represents the data distribution. Clearly, the geometric structures significantly
differ from each other in the three embedding spaces. Hence, the synthesized image data (blue and yellow stars) based on the transferred
structure from other spaces deviate from the ground-truth data distribution (the green star). Therefore, the classifier learned based on the
synthesized data may not fit real testing data.

the mapping-transfer framework and the structure-transfer
framework. The mapping-transfer framework [33, 22] aims
to learn the mapping function from the image feature space
(F) to the semantic embedding space (E), i.e. F→E, us-
ing seen class data. A testing unseen image is first mapped
to the semantic embedding space (using the learned map-
ping function) then classified in this space [22, 19]. In
other words, the learned mapping function is learned from
seen classes then tested on unseen classes. This framework
mainly suffers from the “domain shift problem” [13] which
indicates the shift of training (seen classes) and testing (un-
seen classes) domains.

Recently structure-transfer methods [30, 5, 43, 54, 15]
become popular. They try to learn the structural knowledge
in the semantic embedding space and then transfer it to the
image feature space for synthesizing unseen image data [43]
or classification models [5]. In the testing phase, images of
unseen classes are classified based on these synthesized da-
ta or models. The underlying assumption of this framework
is that the structures (e.g., manifold structure) among class-
es are, to some extent, similar in the two spaces. Hence,
the structural knowledge is transferable between the two s-
paces. Compared to the mapping-transfer framework, the
structure-transfer framework avoids the domain shift prob-
lem, as it does not transfer the mapping function between
training and testing classes. However, we find that such
structure-transfer framework suffers from another problem
caused by the shift of training and testing spaces, which
will be described in detail in Section 1.1.

1.1. Space Shift Problem

Different embedding spaces are built using inherently d-
ifferent data and methods. Specifically, the image feature
space is constructed by image features [32, 27, 8, 20, 36,
39, 16]. The attribute space and word vector space are built
based on human knowledge [22] and the co-occurrence be-
tween words [29] respectively. The geometric structures a-

mong classes differ in these embedding spaces. We illus-
trate this geometric difference in Fig. 1. As shown in the
figure, although “moose” and “deer” are always the clos-
est in different embedding spaces, the geometric structures
formed by “moose”, “deer” and “rhinoceros” significantly
change. In existing methods, the structure among classes
learned in the semantic embedded space is directly trans-
ferred to the image feature space for synthesizing virtual
image data. However, the learned structural knowledge is
biased towards the training space. Hence, the synthesized
image data (the blue and yellow stars in the figure) deviate
from the ground-truth data distribution (the green star). Fur-
thermore, the classifier trained on such biased synthesized
data will not fit the real testing data. Therefore, the direct
knowledge transfer between the image feature and semantic
embedding spaces suffers from the problem of the inconsis-
tency of geometric structures in the training and testing s-
paces. We name it the “space shift problem” due to the shift
of training and testing spaces.

The essential reason why traditional structure-transfer
methods suffer from the space shift problem is that the
structural knowledge is learned and exploited in different
spaces asynchronously. We assume that the image feature
space and the semantic embedding space share part of the
structure, however, they both have their own private parts.
When the structural knowledge is learned in one space, both
the shared and private parts are learned [4]. Hence, it will
be biased to the training space.

To solve this problem, this paper focuses on reducing
the bias (or private knowledge) during the learning process.
We propose a novel method (illustrated in Fig. 2) to learn
the shared subspace structure (SSS) in the two embedding
spaces. Specifically, we joint the image feature and seman-
tic embedding spaces by concatenating the corresponding
datapoints in the two spaces. An alternating optimization
algorithm is proposed to learn the SSS and synthesize miss-
ing data (unseen image data) simultaneously. During the



learning process, the knowledge is recurrently transferred
between the image feature and semantic embedding spaces.
Hence, the learned SSS and synthesized missing data adapt
to both two spaces. In this way, the space shift problem is
alleviated. The synthesized unseen image data are further
utilized to learn the classifier for unseen classes.

In comparison experiments (Sec. 3.2), our method out-
performs the state-of-the-art ZSL methods on three popu-
lar datasets, namely Animals with Attributes [21], Caltech-
UCSD Birds-200-2011 [42] and ImageNet [9]. In Sec. 3.3,
we implement spectral clustering on the learned SSS. Class-
es in the dataset are divided into many meaningful clusters.
The clustering results interpret the effectiveness of subspace
structure in knowledge transfer. Then, in Sec. 3.4, we veri-
fy that our method can alleviate the space shift problem by
both the ablation experiment and visualization of the learn-
ing process.

The main contributions of this paper include: 1) The s-
pace shift problem in zero-shot learning is first identified.
2) We propose a novel method based on the shared sub-
space structure to alleviate the space shift problem by im-
plementing recurrent knowledge transfer (RecKT). 3) Many
meaningful clusters in a dataset can be discovered using our
method, which helps interpret ZSL performance.

2. Methodology
In zero-shot learning, images and labels of train-

ing seen classes are provided, i.e., (Xs,Ys) =
{(xs

1, y
s
1), ..., (xs

Ns , ysNs)}. Ns denotes the number of al-
l images of seen classes. For unseen classes, only the list
of candidate labels Yu = {yu1 , ..., yuKu} are known. Ks

and Ku mean the numbers of seen and unseen classes re-
spectively, while K = Ks + Ku denotes the total num-
ber of all classes. Each seen or unseen image datum, xs

i

or xu
i ∈ <d, is a d-dimensional feature vector in the im-

age feature space. The label sets of the seen and unseen
classes are disjoint, i.e. Ys ∩ Yu = ∅. Auxiliary knowl-
edge, e.g., attributes or/and word vectors, are provided for
embedding all classes into the semantic (label) embedding
space. Es = [es1, ..., e

s
Ks ] and Eu = [eu1 , ..., e

u
Ku ] denote

semantic embeddings of seen and unseen classes respective-
ly. esk and euk ∈ <p correspond to the labels ysk and yuk . In
this way, seen and unseen classes are semantically connect-
ed, and knowledge transfer is enabled. Using the seen data
pairs (xs

i , y
s
i ), ZSL aims to predict the label yui for each test-

ing unseen image xu
i by leveraging the auxiliary knowledge

Es and Eu for knowledge transfer.

2.1. Class Prototype

We learn and transfer the class-level rather than instance-
level structural knowledge between different embedding s-
paces. The reason is that most datasets provide only one at-
tribute and/or one word vector per class and only the class-

level structure can be learned. We use one datum, name-
ly prototype [37, 13], to represent each class in the image
feature space and semantic embedding space respectively.
Similar to existing works [53, 43], we assume that data from
each class form a tight cluster and are linearly separable
from other classes in the image feature space, e.g., deep
feature spaces. The class prototype in the image feature s-
pace (namely image prototype), which is denoted as fk, can
be calculated by averaging all instances in the class. For
seen classes, fsk = 1

Nk

∑
xs
i , s.t. yi = k, k ∈ {1, ...,Ks}.

Nk denotes the instance number in the kth class. Note that
only image prototypes of Ks seen classes can be calculated
in the training phase, as we do not have any training images
from unseen classes. The class prototype in the semantic
embedding space (namely semantic prototype) is defined as
class-level semantic embeddings ek as provided in many
datasets or calculated by averaging all instance-level seman-
tic embeddings in the class. In this way, we have datum pair
(fsk , e

s
k) of each seen class. For each unseen class (fuk , e

u
k),

the image prototype fuk is missing, which is illustrated in
Fig. 2. Then we learn and transfer knowledge based on
these datum pairs.

2.2. Shared Subspace Structure

Joint Embedding Space. Although the structures a-
mong classes in the image feature space and semantic em-
bedding space differ, we aim to learn and transfer shared
structural knowledge which is compatible with both two s-
paces. Hence, we unite the two spaces and form the join-
t embedding space by concatenating corresponding image
prototypes and semantic prototypes (vectors). This opera-
tion is illustrated in Fig. 2. Instead of direct concatena-
tion of two vectors [24], we use weighted concatenation, i.e.(
ek
γfk

)
, where γ < 1 is the weight. The structure learned

on the joint embeddings will be transferable, because it is
learned based on data in both two spaces. As the image pro-
totypes of unseen classes are unknown, there exist missing
values in these joint embeddings.

Shared Subspace Structure. We assume that the shared
structure between the image feature and semantic embed-
ding spaces is a subspace structure. Intuitively, when im-
plements subspace clustering [11] on AwA dataset, “tiger”,
“lion”, “bobcat” and “leopard” are divided into one sub-
space, while “spider monkey”, “gorilla” and “chimpanzee”
are in another subspace. Such subspace structure (parti-
tion) should be compatible in both image feature and se-
mantic embedding spaces. Therefore, we propose to learn
the shared subspace structure (SSS) in the joint embedding
space. By joint learning, instead of traditional learning and
transferring steps, the shared knowledge between two s-
paces can be captured, while the private parts are discarded.

Specifically, we reconstruct every (both seen and unseen)
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Figure 2: Overview of the proposed method. The images and labels are embedded into the image feature space and semantic embedding
space respectively. Next, the image features and semantic embeddings are united in the joint embedding space with missing values (unseen
image prototypes). Then, we alternatively learn the shared subspace structure (SSS) and missing values. During the learning process,
structural knowledge is recurrently transferred between the two spaces.

class prototype by linearly regressing on others in the joint
embedding space. The objective function is

L =

∥∥∥∥( E
γF

)
−
(

E
γF

)
A

∥∥∥∥2
F

+ λΩ(A), s.t. αk,k ≡ 0.

(1)

In this equation, F = [Fs,Fu] contains both seen and
unseen image prototypes, while Fu is missing (unknown).
Fs = [fs1 , ..., f

s
Ks ] and Fu = [fu1 , ..., f

u
Ku ] are the set-

s of seen and unseen image prototypes respectively. The
set E = [Es,Eu] has the similar meaning, where Es =
[es1, ..., e

s
Ks ] and Eu = [eu1 , ..., e

u
Ku ]. The vectors in set E

and F are one-to-one corresponding. A = [α1, ..., αK ] con-
tains reconstruction coefficients (i.e. shared subspace struc-
ture) for all classes, where K = Ks +Ku. Here, αk ∈ <K

is a column vector. The regularization term Ω(A) is de-
signed to be sparse for discovering the subspace structure,
which will be discussed later.

In Eq. 1, there are two unknown variables, namely, un-
seen image prototypes Fu and the shared subspace structure
A. We learn the two variables by minimizing the objective
function,

Fu,A = argmin
Fu,A

L. (2)

Sparsity and Locality Regularization. Generally s-
peaking, for each class, there are only a few classes that
have strong correlation with it in a dataset [49, 7]. For ex-
ample, in AwA dataset, “chimpanzee” has only two close
relatives, namely, “spider monkey” and “gorilla”, which are
both visually and semantically close. Hence, we choose
generalized Lasso regularization [41], i.e.

Ω(A) =

K∑
k=1

‖Dkαk‖1, (3)

to regularize the learned SSS to be sparse. Each Dk is a
diagonal matrix.

For small-scale datasets, we simply set each Dk to be an
identity matrix. In this way, the regularization term Ω(A)

is simplified to be
∑K

k=1 ‖αk‖1.
For large-scale datasets (e.g., ImageNet), many classes

are too far away from each other. For instance, the ani-
mal “tiger” has little relationship with the industrial prod-
uct “umbrella”. However, the sparsity regularization cannot
guarantee the locality constraint. Hence, we further intro-
duce the locality regularization to discourage the learning
of reconstruction coefficients between two distant classes.
Specifically, the ith element (Di,i

k ) on the diagonal of Dk

is set to be the locality penalty based on the distance (or
dissimilarity) between the kth and ith classes,

Di,i
k =

{
g(ei, ek) if i 6= k,

1, else.
(4)

The function g(·, ·) is an increasing function of the distance,
and g(·, ·) > 0. Dk,k

k is set to be 1 for simplifying calcula-
tion. This regularization implies that the classes which are
close to the target class are encouraged to be selected (with
non-zero αi,i).

2.3. Recurrent Knowledge Transfer

In this section, we discuss how to solve the Eq. 2, in
other words, how to learn unseen image prototypes Fu and
the shared subspace structure A. Although the objective
function (Eq. 1) is not jointly convex for Fu and A, it is
convex for each variable respectively. Hence, we present
an alternating optimization algorithm to solve it and realize
recurrent knowledge transfer between the image feature and
semantic embedding spaces.

First, we fix Fu and optimize Eq. 2 over A by

min
A

L = min
A

K∑
k

∥∥∥∥ ek −Eαk

γ(fk − Fαk)

∥∥∥∥2
F

+λ‖Dkαk‖1, s.t. αk,k ≡ 0.

(5)



With the notation βk = Dkαk, we can transform Eq. 5 into

min
A

L = min
A

K∑
k

∥∥∥∥( ek
γfk

)
−
(

E(Dk)−1

γF(Dk)−1

)
βk

∥∥∥∥2
F

+λ‖βk‖1, s.t. αk,k ≡ 0.

(6)

Note that Eq. 6 is a typical LASSO problem, and βk can be
easily solved by many available solvers, e.g., LeastR [26].
Then αk can be obtained by αk = (Dk)−1βk. As the Fu is
unknown at the beginning, we set γ = 0 to disable it during
the initialization of A. It means that we learn A only using
semantic embeddings in the first step.

Then, we fix A and optimize Eq. 2 over Fu by

min
Fu

L = min
Fu

K∑
k

γ‖fk − Fαk‖2F

= min
Fu

γ‖F(I−A)‖2F ,
(7)

where I is the identity matrix. With the notation θ = (I −
A), Eq. 7 is simplified as

min
Fu

γ‖Fθ‖2F = min
Fu

γ

∥∥∥∥(Fs Fu)

(
θs

θu

)∥∥∥∥2
F

= min
Fu

γ‖Fsθs + Fuθu‖2F . (8)

θ is split into seen part θs and unseen part θu which corre-
spond to Fs and Fu respectively. Then, the solution Fu can
be obtained by

Fu = −Fsθs(θu)−1. (9)

We iterate the above two steps until both of them converge.
Finally, the unseen image prototypes Fu and the shared sub-
space structure A are both learned. This alternating opti-
mization algorithm can be viewed as a kind of block coor-
dinate descent algorithm with two blocks, hence the conver-
gence of the proposed algorithm is guaranteed by [47]. The
whole alternating optimization algorithm is summarized in
Alg. 1.

Here, we explain how our method can alleviate the space
shift problem in detail. In the first iteration of the learn-
ing process, structural knowledge (A) is learned in the se-
mantic embedding space then transferred to the image fea-
ture space to synthesize Fu. This step is similar to existing
structure-transfer methods [43, 54]. The learned A, howev-
er, is biased towards the semantic embedding space. Hence,
Fu which is synthesized based on such biased A deviates
from the ground-truth data distribution. In the following it-
erations, A is first updated according to the current Fu. In
this way, the structural knowledge in the image feature s-
pace is transferred to the semantic embedding space. Then,

Fu is updated based on the current A. Therefore, the struc-
tural knowledge is transferred from the semantic embed-
ding space to the image feature space. Finally, this recur-
rent knowledge transfer converges, meanwhile A and Fu

are refined.

Algorithm 1 Recurrent Knowledge Transfer

Input: Seen image prototypes Fs, all semantic prototypes
Es and Eu;

Output: Synthesized unseen image prototypes Fu and re-
construction coefficients A;

1: Initialize: Set γ and δ;
2: Construct Dk for each class;
3: while not converge do
4: Update A by solving Eq. 6;
5: Update Fu using Eq. 9;
6: end while

2.4. Zero-shot Classification

To classify testing instances from unseen classes, we
adopt the Nearest Neighbor classifier, which is applied in
many existing works [33, 19]. Specifically, with synthe-
sized unseen image prototypes Fu, each test instance can
be classified based on distance to Fu, and its label is pre-
dicted to be the one with the minimum distance, i.e.

yui = argmin
k
‖xu

i − fuk ‖F , (10)

where fuk means each synthesized unseen image prototype.

3. Experiments
In this section, we implement experiments to verify the

effectiveness of our method and the importance of the pro-
posed space shift problem. The datasets and experimental
settings are presented in Sec. 3.1. We compare our method
with state-of-the-art ZSL methods in Sec. 3.2. Experiments
in Sec. 3.3 justify that the shared subspace structure is rea-
sonable. The subspace clustering result on the dataset is al-
so illustrated and analyzed, which helps interpret ZSL per-
formance. In Sec. 3.4, the existence of the space shift prob-
lem and how our method can relieve it are explained.

3.1. Datasets & Settings

Datasets. We evaluate our method on three popu-
lar datasets, namely Animals with Attributes (AwA) [21],
Caltech-UCSD Birds-200-2011 (CUB) [42] and ImageNet
[9]. AwA is a coarse-grained dataset which contains images
of 50 kinds of common animals. 10 classes are selected as
the unseen classes, and the rest are the seen classes. 85-
dim attributes are provided. CUB is a fine-grained dataset
that contains 200 kinds of birds. 50 classes are used as the



Method AwA CUB ImageNet
Fea. Acc. Fea. Acc. Fea. Top1 Top5

DAP V 57.5 -
SJE G 66.7 G 50.1
ZSKL R 71.0 G 51.7
LatEm G 76.1 G 47.4
SP-AEN - R 55.4
PSR - R 56.0
LEESD G 76.6 G 56.2
SS-Voc O 78.3† - O 9.5† 16.8†

ConSE - - O 7.8 15.5
DeViSE - - O 5.2 12.8
JLSE V 80.46 V 42.11

SC V 70.49 G+R 50.81
ESZSL V 79.53 G+R 51.90
RKT V 81.41 G+R 55.59
Ours V 83.62 G+R 58.10 V 8.14 18.26

Table 1: Comparison to the state-of-the-art (%). † means that ex-
tra vocabulary knowledge (nearly 310k word vectors) is utilized.
ESZSL, RKT and SC are re-implemented using the same features
and semantics. For image features, O: OverFeat, V: VGG, G:
GoogLeNet, R: ResNet. Some results are vacant due to the lack of
released code and parameters.

unseen classes. The rest 150 classes are the seen classes.
312-dim attributes are provided. We follow the seen/unseen
splits of AwA and CUB used in [43]. ImageNet 2012/2010
is a large-scale dataset. No attributes are provided in this
dataset. Following [14], we use 1,000 classes in ImageNet
2012 as seen classes. 360 classes in ImageNet 2010 which
do not exist in ImageNet 2012 serve as unseen classes. We
compare to state-of-the-art methods under the inductive set-
ting, i.e., no images from unseen classes are available in
training phase.

Image & Semantic Embedding. For coarse-grained
datasets, AwA and ImageNet, we use image features ex-
tracted by VGG-19 [36]. Attributes and 500-dim word vec-
tors are used as semantic embeddings. For fine-grained
dataset (CUB), we use GoogLeNet [40] + ResNet [17]
features. Attributes and 1024-dim word vectors are used
as semantic embeddings. Similar as many existing work-
s [13, 43, 52], we use official models (VGG, GoogLeNet,
and ResNet) pre-trained on ImageNet to extract features.

Parameter Selection. There are only two free parame-
ters, namely λ and γ, in the loss function. We select these
parameters by Cross-Validation. Specifically, we split the
seen classes into 5 folds for keeping the same seen/unseen
ratio. One fold is used as new “unseen” classes, and the rest
are “seen” classes. The parameters are selected based on the
average performance on these folds. The searching range of
λ and γ are 10[−2:2] and 10[−2:0) respectively. For large-
scare dataset, we choose g(ei, ek) = log (1 + ‖ei, ek‖F )
to calculate the penalty value.

3.2. Comparison to the State-of-the-Art

3.2.1 Small-scale Datasets

There are many works evaluated on AwA and CUB datasets.
We compare to 11 state-of-the-art methods which are repre-
sentative of different frameworks. They are DAP [22], SJE
[1], SC [5], ZSKL [50], LatEm [44], SP-AEN [6], PSR [2],
LEESD [10], SS-Voc [14], JLSE [52] and ESZSL [35] and
RKT [43]. We re-implement experiments of SC, ESZSL and
RKT using the same features and semantic embeddings. For
the rest, we report their best performance in corresponding
papers.

Tab.1 shows the comparison of classification accu-
racies (%) of different methods. It is clear that our
method achieves the best performances (namely 83.62%
and 58.10%) on both AwA and CUB. Our method outper-
forms the runner-up methods (RKT on AwA and LEESD on
CUB) by 2.21% and 1.90% on the two datasets respective-
ly. Because CUB has more classes while fewer images, the
overall classification accuracy is much lower than AwA.

3.2.2 Large-scale Dataset

The large number of categories makes zero-shot learning
more difficult on ImageNet dataset. Only a few ZSL meth-
ods are evaluated on ImageNet dataset. We compare to
state-of-the-art methods, namely, SS-Voc [14], ConSE [31],
DeViSE [12]. Notice that extra vocabulary knowledge is
utilized in SS-Voc [14]. The result is shown in Tab. 1. Al-
though extra vocabulary knowledge is utilized in SS-Voc,
our method still outperforms it and achieves the best per-
formance (18.26%) on ImageNet measured on Top-5 clas-
sification accuracy. When measured on Top-1 classification
accuracy, our method obtains 8.14% classification accuracy,
which is better than ConSE and DeViSE. The experimental
results on ImageNet show that our method works well on
large-scale datasets.

3.3. Shared Subspace Structure

3.3.1 Sparsity and Locality Regularization

First, we analyze the effectiveness of sparsity and locality
regularization in the learning of shared subspace structure
(Eq. 1). We calculate the classification accuracies on three
datasets with different regularization terms, namely “sparsi-
ty + locality”, “only sparsity” and “no regularization”. For
“only sparsity” experiment, each Dk is defined as an iden-
tity matrix. For ”no regularization” experiment, we set λ to
be zero, so that Dk is disabled. We apply the locality regu-
larization only on the large-scale dataset, i.e., ImageNet.

As shown in Tab. 2, there is steady performance im-
provement on all three datasets when the sparsity regular-
ization is introduced. When only a single type of seman-
tic embeddings is used, namely no fusion of attributes and



Before adaptation Acc. = 63.05% After adaptation Acc. = 72.95%

Figure 3: Illustration of how our method alleviates the space shift problem. We visualize the distribution of the synthesized unseen image
prototypes before/after adaptation to the image feature space. Acc. means the classification accuracy on the testing classes. Points with
the same color are data belonging to the same class. Stars represent the synthesized image prototypes of corresponding classes (the same
color). The left part (before adaptation) can be considered as the traditional method (direct learning and transferring). After the adaptation
(the right part), synthesized image prototypes are more separable and close to the real data distribution. Remarkable improvement can be
found in both synthesized image prototypes and classification accuracy (9.90%).

ImageNet
Locality W - Top 1 W - Top 5

With 8.14 18.26
Without 7.72 17.79

Table 3: Analysis of the locality regularization. W : word vector.
We find that the locality regularization can improve the classifica-
tion accuracy (%) on the large-scale dataset (e.g., ImageNet).

word vectors, the improvement brought by the sparsity reg-
ularization is remarkable. On AwA, the improvement is
15.68% and 8.52% using attributes and word vectors re-
spectively. On CUB, the improvement is 7.77% using at-
tributes as the semantic embeddings. The Top-1 and Top-5
classification accuracies on ImageNet both nearly double
due to the introduction of sparsity regularization. Hence,
the sparsity regularization is important for both small-scale
and large-scale datasets.

When the locality regularization is introduced to the
large-scale dataset, ImageNet, the Top-1 and Top-5 classifi-
cation accuracies rise from 7.72% to 8.14% and 17.79% to
18.26% respectively (shown in Tab. 3). This improvemen-
t proves the effectiveness of the locality regularization for
large-scale datasets.

3.3.2 Discovering Latent Clusters

After learning the coefficients matrix A, we do spectral
clustering on the similarity graph G̃ = (V, Ã), where V
refers to the set of class prototypes and Ã is defined as
Ã = A + AT . When each Dk in Eq. 3 is an identity
matrix, the loss function is similar to that in in Sparse Sub-
space Clustering (SSC) [11, 48] but with missing values. In
SSC, it assumes that each datum is drawn from a linear sub-

space S with a basis U , which is learned via singular value
decomposition. Different from SSC, we don’t enforce affine
combination constraint in our method. Instead, we consid-
er the linear subspace here. By implementing the spectral
clustering on G̃, we divide all classes into many clusters.

We illustrate the clustering result on AwA dataset. The
reason we choose AwA is that there is a moderate number
of classes in AwA, while there are too many classes in CUB
and ImageNet for an intuitive illustration. In this experi-
ment, attributes serve as the semantic embeddings. We can
set different cluster numbers in K-means algorithm and dis-
cover different kinds of clustering results. Tab. 4 shows the
clustering result when the cluster number is set to 11. It
is clear that these clusters are meaningful. Classes in each
cluster are close to each other, while different clusters are
separable from each other. For example, classes in Clus-
ter 1 are all aquatic animals. Cluster 2 are the whales (dol-
phin belongs to whales). Cluster 4 contains four fierce Fe-
lidae species. Cluster 11 includes three kinds of primates.
Clearly, these clusters are separable subsets of animals.

This clustering result also verifies the good ZSL perfor-
mance on AwA, because all unseen classes (bold ones in
Tab. 4) have close seen classes in the same cluster, which
enables effective knowledge transfer. In addition, these
unseen classes are equably in separable clusters. This is
also an important reason why high ZSL accuracy can be
achieved on AwA dataset.

3.4. Space Shift Problem

3.4.1 Ablation Experiment

We verify the space shift problem by implementing ablation
experiments. Specifically, we compare the performance of
our method with/without the adaptation to the image feature



AwA CUB ImageNet
Sparsity A W AW A W AW W - Top 1 W - Top 5

With 80.61 72.95 83.62 54.32 47.88 58.10 7.72 17.79
Without 64.93 64.43 81.22 46.55 47.33 56.76 3.38 9.23

Table 2: Analysis of the sparsity regularization. A/W means attribute/word vector. Clearly, the sparsity regularization is important for
improving ZSL performance (%).

No. Classes in Each Cluster
1 beaver walrus otter seal
2 killer whale blue whale dolphin humpback whale
3 antelope moose deer giraffe zebra horse
4 lion bobcat tiger leopard
5 mouse hamster squirrel mole rabbit sheep
6 elephant rhinoceros hippopotamus
7 buffalo cow ox pig
8 skunk raccoon rat
9 collie dalmatian German shepherd chihuahua Siamese cat Persian cat giant panda
10 fox weasel wolf grizzly bear polar bear bat
11 spider monkey gorilla chimpanzee

Table 4: Clustering result on AwA. Bold ones are unseen classes. Obviously, these clusters are meaningful and separable from each other.

AwA CUB
Embedding A W A W
with Adapt. 80.61 72.95 54.32 47.88

without Adapt. 79.70 63.05 52.87 34.12

Table 5: The ablation experiment for verifying the space shift
problem. Adapt. means adaptation to the image feature space.

space. To disable the adaptation, we simply set the parame-
ter γ = 0. Only one iteration will be implemented and the
loss will converge after the first iteration. In other words, A
is learned only based on semantic embeddings then trans-
ferred to the image feature space directly for synthesizing
unseen image prototypes. Like traditional structure-transfer
methods, it suffers from the space shift problem. The per-
formance comparison is shown in Tab. 5. We only com-
pare the performance with the attributes (A) and word vec-
tors (W) as semantic embeddings respectively. The fusion
(A+W) of the two kinds of semantic embeddings [43] may
make it difficult to tell whether the performance promotion
is caused by the adaptation or the fusion.

From Tab. 5, we can find that the adaptation brings im-
provement of classification accuracy on both two datasets
and two kinds of semantic embeddings. Specifically, with
attributes as the semantic embeddings, the adaptation to the
image feature space brings 0.91% and 1.45% improvement
of classification accuracies on AwA and CUB respectively.
When word vectors are used as the semantic embeddings,
remarkable improvement is shown on both AwA and CUB,
namely, 9.90% and 13.76%. The reason is that there exists
larger divergence between the word vector space and im-
age feature space. It is also verified in many existing works

[51, 44, 18] that attributes work better than word vectors.

3.4.2 Visualization of the Learning Process

We visualize the how our method alleviates space shift
problem in the Fig. 3. The figure is drawn by implementing
t-SNE [28] on testing unseen image features for dimension-
ality reduction. The experiment is performed on AwA with
word vectors as semantic embeddings. Before adaptation
(in the 1st iteration), the learned structure is directly trans-
ferred to the image feature space. Hence, it suffers from
the space shift problem. As shown in Fig. 3, the synthe-
sized image prototypes are not well separated before adap-
tation. The classification accuracy is only 63.05%. After the
adaptation (by recurrent knowledge transfer), synthesized
image prototypes are more separable and close to the real
data distribution, compared to the 1st iteration. In addition,
the classification accuracy increases to 72.95%. Overall,
remarkable improvement can be found in both synthesized
image prototypes and classification accuracy (9.90%) when
the adaptation to the image feature space is realized by re-
current knowledge transfer. This experiment verifies that
the space shift problem exists and significantly influences
ZSL performance. Our recurrent knowledge transfer can
relieve the space shift problem and improve classification
accuracy.
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