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Abstract—We consider the problem of complementing the
capacity of an existing network of macro base stations by
dynamically placing a network of 5G small base stations in the
form of Unnamed Aerial Vehicles UAV (better known as drones).
Our goal is to maximize the capacity boost provided by the
UAVs in each considered time frame and extend the battery
life of the served mobile users. With this in mind, we propose
two clustering algorithms that build on mobile users’ spatio-
temporal data excess demand (here intended as the portion of
demand which is not satisfactory addressed by the existing macro
base stations). For the numerical analysis, we use real Beijing
downtown trajectory data. The obtained results show that our
algorithms perform well and can be considered for enabling real
time connection provisioning.

I. INTRODUCTION

Better coverage and capacity requirements of future

cellular networks may not be fully satisfied by traditional

fixed terrestrial base station (BS) deployments. Moreover,

deployment of a very dense network of BSs to provide high

capacity and coverage is not suitable in terms of CAPEX and

OPEX, due to the fact that: 1) user wants better service at

affordable price; and 2) a high percentage of densely deployed

BSs will be lightly loaded most of the time and space. To

address such challenges, the utilization of Unnamed Aerial

Vehicles or drone BSs (here on referred to as UAV-BSs) is a

promising solution. One of the greatest challenges involved

in the UAV-BS deployment is to find the optimal placement

for the UAV-BSs at each time instant by relying on mobile

users’ spatial demand.

Obtaining and using mobile users’ spatial demand

is becoming more and more important in wireless

communications. Such information can in fact be used by the

operators for a variety of purposes, such as deployment and

design of new network elements (e.g., 5G small cells, relays

and Internet of Things Gateways) for punctual coverage,

network resource allocation, indoor coverage planning and

better interference management. However, obtaining punctual

information on the users’ radio conditions has historically

been a challenging task. Nowadays, the availability of GPS

in the vast majority of user terminals (UT) allows retrieving

this information when it is available. Thanks to the 3GPP

functionality ”Minimization of Drive Tests (MDT)” [1] the
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UTs can, upon network request, send a series of radio quality

indicators (coverage, quality of service as a function of the

service etc.) by associating them to their geo-location. The

first field tests of the MDT function have started in 2016 and

many operators are envisioning a commercial deployment by

2018-2019.

In this paper, we leverage mobile users’ spatial excess

demand (i.e., the demand that is not satisfied by the macro

base stations, here on simply referred to as demand) to

design algorithms for dynamically placing 5G UAV-BSs. Our

goal is to capture the spatio-temporal relation between data

demand points and depict the clusters (here intended as an

agglomerate of demand points served by a UAV-BS) and their

centers during well-chosen time frames.

Generally speaking, clustering algorithms attempt to

classify elements into categories (the clusters), on the basis

of their similarity. Several different clustering strategies

have been proposed in the literature, though the definition of

cluster may vary. In K-means [2] and K-medoids [3] methods,

for instance, clusters are groups of data characterized by a

small distance to the cluster center. An objective function,

typically the sum of the distance to a set of putative cluster

centers, is optimized until the best cluster centers candidates

are found. However, because a data point is always assigned

to the nearest center, these approaches are not able to detect

nonspherical clusters [4]. In distribution-based algorithms,

one attempts to reproduce the observed realization of data

points as a mix of predefined probability distribution functions

[5]; the accuracy of such methods depends on the capability

of the trial probability to represent the data. Clusters with

an arbitrary shape are easily detected by approaches based

on the local density of data points. In density-based spatial

clustering of applications with noise (DBSCAN) [6], one

chooses a density threshold, discards as noise the points

in regions with densities lower than this threshold, and

assigns to different clusters disconnected regions of high

density. However, choosing an appropriate threshold can

be non-trivial, a drawback not present in the mean-shift

clustering method [7], [8]. There a cluster is defined as a set

of points that converge to the same local maximum of the

density distribution function. This method allows the finding

of nonspherical clusters but works only for data defined by a
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set of coordinates and is computationally costly.

In this paper, we propose an alternative approach by

drawing inspiration from [9], which is in turn based on quick

density peak search [10] and on the theory of data field

[11]. The advantages brought by our algorithms are in that

they 1) automatically determine cluster parameters, 2) can be

effectively applied to work with irregular spatial distribution

of demand data points (such as trajectory data), and 3)

they have very low computational complexity. Besides, by

associating input data to a specific time span, they could allow

to track in real time the evolution of the clusters and their

respective centers, this by relying on the instantaneous spatial

demand. Such information could be readily used by mobile

operators to boost the capacity of their existing networks by

designing efficient and effective UAV-BS migration strategies.

With this paper, our contribution is two-fold:

‚ By drawing inspiration from an algorithm recently pro-

posed to solve the taxi hotspot problem, we design two

clustering algorithms for the real-time placement of 5G

UAV-BSs which are complementary to already existing

macro base stations. To the best of our knowledge, we are

the first using data field clustering for dynamic resource

(in our particulr case, UAV-BSs) allocation in the context

of wireless cellular neworks.

‚ We simulate the behavior of our algorithms relying on

real people’s trajectories in Beijing downtown.

II. MODEL AND PROBLEM FORMULATION

We model an operator’s served region as a 2D space where

mobile users move while demanding data service. We assume

that demand points can be characterized by means of data

mining techniques utilizing, e.g., GPS traces, cell load trends

and handovers1.

In this paper, we propose an algorithm that can work by

taking as input either trajectory demand points (atomic level)

or statistical demand points (aggregate level).

Definition 1 (Trajectory demand point). A mobile user’s

trajectory demand point is defined as a geographical point

which is part of a mobile user’s trajectory and is representative

of that mobile user’s spatial demand only in a given time span.

Definition 2 (Statistical demand point). A statistical demand

point is defined as a geographical point which is associated

to the aggregate demand of all the mobile users passing by

that point in a given time span and requesting data services.

Let us denote by Pptq a data set made of n data demand

points tP1ptq, P2ptq, ..., Pnptqu related to time period t. Note

that in order to lighten notation we will some time omit the

iteration index if the latter refers to the current iteration t. Each

point is modeled as a particle characterized by a mass and a

virtual field around it. The potential of each point depends on

1The way info on user data demand patterns are collected is out of the
scope of this paper.

the interaction measure of that point with the points located

in its vicinity. The potential value φ of the demand point Pi

can be expressed as in [12]:

φpPiq “
n

ÿ

j“1

mj ¨ e
´

´

dij

σ

¯k

(1)

where mj is the mass of the demand point Pj , dij is the

distance between Pi and Pj , k P N is the distance index, and

σ ą 0 is the impact factor. The latter controls the distance of

interaction between data objects and has a strong impact on

the spatial distribution of data field. Please note that the mass

must satisfy mi ě 0 @i,
řn

i mi “ 1.

It has been proven [12], [11] that spatial distribution of data

field is insensitive to the value of k, and strongly depends

on σ. Thus, by setting k “ 2 we get a Gaussian potential

function which has desirable mathematical properties.

In our case, we model each demand point i as a particle

characterized by a certain mass (demand in bits normalized

by the sum of all demands2) and a certain potential during a

given time span. Please recall that in the trajectory clustering

case the demand is wrt a single user, while in the case of

statistical demand points is wrt multiple mobile users.

III. THE CLUSTERING MECHANISM

We adapt a method of trajectory clustering based on

decision graphs and data fields which was recently proposed

to solve the taxi hotspot problem. This method is particularly

suitable in our case because it takes as input uneven demand

points (in [9] these are the moving users’ trajectories) and

assigns to each point (or to a subset of points) a potential,

which is a function of the local data demand point density

and mass. A drawback of [9] is that it doesn’t take into

consideration the spatio-temporal relation of the trajectory

points. To cope with this problem, one can draw trajectories

corresponding to well-chosen time periods, run the trajectory

clustering algorithm for each period and then put the results

one after the other (like for time-lapse photography).

The algorithm proposed in [9] builds on [10] and [12],

which were the first to apply field theory to users’ interaction

data mining (the former) and to propose a clustering method

relying on decision graphs (the latter). In this paper we adapt

the algorithm proposed in [9] to find the optimal position for

UAV-BSs.

A. Impact factor optimization

We would like the impact factor to guarantee the lowest

uncertainty wrt clusters formation; in other words, we want

to minimize the entropy. The latter can be rewritten from

Shannon [13] as follows:

H “ ´
n

ÿ

i“1

φpPiq

Z
log

ˆ

φpPiq

Z

˙

(2)

2If the algorithm is run iteratively the sum of demands must be updated so
as to satisfy the constraint

ř

n

i
mi “ 1
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where φpP1q, φpP2q, ..., φpPnq are the potential values

of the data objects P1, P2, ..., Pn, Z “
řn

i“1
φpPiq and

0 ď H ď logpnq.

From Eq. (2) one can notice that the maximum entropy is

reached when H “ logpnq and φpP1q “ φpP2q “ .... “ φpPnq
and that the minimum entropy corresponds to the maximum

possible heterogeneity among potential values. Thus, if the

potential values are asymmetric, the system experiences low

uncertainty, i.e., the entropy level is low.

It is shown in [11] that Hpσq is a concave function. There-

fore, several search methods (e.g., numerical and heuristic

methods) can be used to find the optimal σ˚ that minimize

the entropy. However, in practical implementations the use of

the optimal σ˚ may expose the clustering process to noise and

outlier data. For this reason, the final σ©̊ is often chosen to

be slightly larger than its optimal value, i.e., σ©̊ “ c ¨ σ˚,

p1 ă c ď 2q.

B. Clusters and centers selection by decision graphs

We define cluster centers as local density maxima (i.e.,

data objects with relatively higher potential value) that are

’far’ from demand points characterized by higher density [10].

In this way each center depends only on the points relative

densities rather than on their absolute value. Thus, let us define

ρi as the local density of point i.

ρi “
ÿ

jPP

χpdij ´ dcq (3)

where dc is the cutoff distance, dij is the distance between

demand point i and point j, and χpxq is a function which

is equal to 1 if x ă 0, and equal to 0 otherwise (i.e., for

x ě 0). Basically, ρi is equal to the number of points that

are closer than dc to point i. The algorithm is sensitive only

to the relative magnitude of ρi in different points, implying

that, for large data sets, the results of the analysis are robust

with respect to the choice of dc
3.

Let δi denote the distance between point i and the nearest

point v with higher density.

δi “ min
v:ρvąρi

div (4)

For the global maximum (i.e., the point characterized by

the highest density), we set ρi to a very large number (e.g.,

ρi “ maxv div).

IV. THE ALGORITHMS

A. The max-capacity clustering algorithm

The first clustering algorithm we propose is able to spot

clusters of any size and shape and therefore maximizes the

capacity boost the mobile network operator can achieve if such

clusters are duly served. That means, a coverage optimization

problem will have to be set up and solved following the

3Scenario-dependent techniques for fixing dc in can be found in [10].

Algorithm 1 Max-capacity clustering algorithm for 5G UAV-

BS placement

1: Initialization: Set the duration t of a time period, the

masses miptq for all t, the cutoff distance dc.

2: while At each time period t do

3: Obtain the optimal impact factor σ˚ that minimizes the

entropy potential Hpσq, and compute the potential value

for each data demand point according to Eq. (1).

4: Compute δiptq for each demand point i (Eq. (4)).

5: Obtain the threshold values δth, ρth, φ
sup
th and φ

inf
th .

6: Identify the clusters centers, i.e., all those points i

characterized by φiptq ą φ
sup
th ptq and δiptq ě δth.

7: Identify and clear the noise points, i.e., all points i

characterized by φiptq ă φ
inf
th ptq

8: Form the clusters: Assign each remained data object to

the nearest centre characterized by higher potential value.

9: Cover the formed clusters by duly placing and oper-

ating a set of UAV-BSs.

10: end while

clusterization algorithm that we present here. The main steps

of the max-capacity clustering algorithm (Algorithm 1) wrt a

time frame t are detailed here below.

1. Obtain the optimal impact factor σ˚ that minimizes the

entropy potential Hpσq. This can be done, e.g., by means

of the search method proposed in [11].

2. Using the optimal impact factor σ˚, compute the potential

value for each data demand point according to Eq. (1).

3. Compute density values and threshold values for each

demand point i. Threshold values δth, ρth, φ
sup
th and φ

inf
th

can be obtained by means of the modified elbow method

[14]

4. Find the cluster centers. These are the points i with local

maximum potential value (for convenience it is possible

to use a threshold method so that one can label as local

potential maxima all those points i characterized φiptq ą
φ
sup
th ptq and δiptq ě δth).

5. Identify and clear the noise points. Since noise points

usually scatter in data field and receive weak mutual

interaction, they have lower potential values. Thus, clear

all points i characterized by φiptq ă φ
inf
th ptq.

6. Form the clusters: Assign each remained data object to

the nearest centre characterized by higher potential value.

7. Cover the formed clusters by duly placing a set of UAV-

BSs.

A visual example of the decision graph phase, cluster

formation phase and drone covering optimization phase is

shown in Fig. 1 (toy dataset retrieved from [15]).

B. The iterative clustering algorithm

Ideally, we would like the algorithm to tell us where exactly

the UAV-BSs should be placed, rather than the areas to be

served so as maximize the capacity boost. Hence, we propose

an iterative version of the max-capacity algorithm which:

‚ generates clusters whose extension from the center is

proportional to the UAV-BS maximum coverage, and
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Fig. 1. Visual example of Algorithm 1 phases: decision graph phase (left), cluster formation phase (center) and drone covering optimization phase (right).
Dataset is from [15].

Algorithm 2 Iterative clustering algorithm for 5G UAV-BS

placement

1: Initialization: Set the duration t of a time period, the

masses miptq for all t and for all i, the minimum distance

dmin between two BSs and the number Nu of available

UAV-BSs. Set the cutoff distance dc equal to the maximum

UAV-BS coverage distance.

2: while At each time period t do

3: while There is still excess demand AND there are still

available UAV-BS do

4: Obtain the optimal impact factor σ˚ that minimizes

the entropy potential Hpσq, and compute the potential

value for each data demand point according to Eq. (1).

5: Choose the threshold δth as the first elbow point

greater than dmin, i.e., δth “ minδelbowądmin
tδelbowu

6: Obtain ρth and φ
sup
th with the modified elbow

method [14].

7: Identify the clusters centers. These are the points

i characterized by φi ą φ
sup
th and δi ą δth.

8: Assign each demand point to the nearest issued

cluster center within its coverage range.

9: Order the issued cluster centers by decreasing den-

sity δi and assign a UAV-BS to the centers characterizes

by higher densities first.

10: Clear all demand points that have been assigned

to a cluster center (i.e., that are served by a UAV-BS) and

update the number of available UAV-BSs.

11: end while

12: end while

whose center is indicative of the point where the UAV-BS

should be placed

‚ takes into account the number of available UAV-BSs.

The iterative clustering algorithm is detailed in Algorithm 2

V. SIMULATION ANALYSIS

For the simulation analysis, we would have liked to test the

performance of our algorithm on real MDT data related to

many users over consecutive limited time spans. However, the

mobile operators we have contacted have either not replied

or not granted us the use of their data sets.

Thus, in order to provide an idea of the functionality of

our algorithms, we fall back on the GeoLife dataset [16]

which includes the GPS trajectories of 182 users over five

years (from April 2007 to August 2012). A GPS trajectory

of this dataset is represented by a sequence of time-stamped

points, each of which contains the information of latitude,

longitude and altitude. Although such data are of course

very far from being a perfect fit to test our algorithms (they

are representative of few users over a very long period, and

there is no timely mass-user correspondence), we believe

this can be taken as a first step to show the potential of our

algorithms. We hope to be able, in the near future, to build a

simulator running with real time MDT data.

Looking at the results achieved by the two algorithms

(Fig. 2-left for Algorithm 1 and Fig. 2-right for Algorithm 2),

we notice right away the difference in terms of coverage. In

fact, despite we have allocated 30 UAV-BSs for Algorithm 2,

the latter is able to cover nearly 46% of the total mass,

against a larger nearly 62% that would be reached by

covering the clusters spotted by Algorithm 1 with a set of

drones. This because the iterative algorithm, if on the one

hand does not require coverage optimization for clusters

covering (the cluster centers are the recommended positions

for UAV-BS placement), on the other hand may end up in

minor capacity boosts, the number or utilized UAVs being

equal. This because it tends to generate clusters whose size

is proportional to the UAV coverage range and which are
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Fig. 2. Algorithm 1 (left) and Algorithm 2 (right) performance with the GeoLife dataset as input. Masses are chosen equal to one for all trajectory points.
Settings for the iterative algorithm: Nu “ 30, dc “ 500m, dmin “ 1Km. The center figure is the first iteration decision graph which contribute (alogn
with other 5 iterations) to generate the figure on the right hand side.

geometrically centered at points of local potential maximum.

In the case of city scenarios and trajectory data inputs, centers

will be very often the crossing between main streets, as one

can infer from Fig. 2-right.

Fig. 2-center show the decision graph of the first iteration

(out of five) which has led to Fig. 2-right (Algorithm 2). The

automatic threshold selection, which occurs at each iteration,

is for this iteration evidenced by a blue frame.

VI. CONCLUSION AND FUTURE WORK

We have considered the problem of complementing the

capacity of an existing network of macro base stations by

dynamically placing Unnamed Aerial Vehicles Base Stations.

We have proposed two data field clustering algorithms that

build on mobile users’ spatio-temporal data excess demand,

i.e., that portion of demand which is not satisfactory addressed

by the existing macro base stations. For the numerical analysis,

we have tested our algorithms with Beijing downtown mobility

patterns. We have shown that the two algorithms require

very low computational capabilities and perform very well

though differ in some critical points. Furthermore, they require

low computational complexity, and are therefore particularly

suitable for operations involving large datasets.

As a future research direction, we plan to build a demo

relying on real 3GPP Minimization of Drive Tests Data and

to integrate the presented algorithms in the context of large

Internet of Things (IoT) networks. In fact, IoT nodes would

greatly benefit from the optimization of the IoT Gateway

position, both in terms of battery life (intuitively, less power

is needed if the IoT Gateway is closer) and scalability (e.g.,

in the case of dense IoT clusters).
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